169
Views
18
CrossRef citations to date
0
Altmetric
Original research

A systems biology based integrative framework to enhance the predictivity of in vitro methods for drug-induced liver injury

, PhD, , PhD, , , PhD, , PhD, , , PhD, , MD, , PhD & , PhD show all
Pages 647-662 | Published online: 04 Nov 2008

Bibliography

  • Kennedy T. Managing the drug discovery/development interface. Drug Discov Today 1997;2:436-44
  • Wishart DS. Improving early drug discovery through ADME modelling: an overview. Drugs RD 2007;8:349-62
  • Subramanian K. truPK- human pharmacokinetic models for quantitative ADME prediction. Expert Opin Drug Metab Toxicol 2005;1(3):555-64
  • Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (CACO-2) cells. Biochem Biophys Res Comm 1991;175:880-5
  • Speth PA, Linssen PC, Termond EF, et al. In vivo and in vitro pharmacokinetic differences between four structurally closely related anthracyclines in hematopoietic cell subtypes in humans. Drug Metab Dispos 1989;17:98-105
  • Zimmermann H. Hepatotoxicity- the adverse effects of drugs and other chemicals on the liver. Lippincott & Williams, 1999
  • Wojnowski L, Kamdem LK. Clinical implications of CYP3A polymorphisms. Expert Opin Drug Metab Toxicol 2006;2:171-82
  • Tribut O, Lessard Y, Reymann JM, et al. Pharmacogenomics. Med Sci Monit 2002;8:RA152-63
  • Lee WJ. Drug-induced hepatotoxicity. N Engl J Med 2003;349:474-85
  • Pushparajah DS, Umachandran M, Plant KE, et al. Differential response of human and rat epoxide hydrolase to polycyclic aromatic hydrocarbon exposure: studies using precision-cut tissue slices. Mutat Res 2008;640(1-2):153-61
  • Obach RS, Baxter JG, Liston TE, et al. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther 1997;283(1):46-58
  • Lu C, Li P, Gallegos R, et al. Comparison of intrinsic clearance in liver microsomes and hepatocytes from rats and humans: evaluation of free fraction and uptake in hepatocytes. Drug Metab Dispos 2006;34(9):1600-5
  • Barros SA, Martin RB. Predictive toxicogenomics in preclinical discovery. Methods Mol Biol 2008;460:89-112
  • Wallace KB, Starkov AA. Mitochondrial targets of drug toxicity. Ann Rev Pharmacol Toxicol 2000;40:353-88
  • Masubuchi Y. Nakayama S, Horie T. Role of mitochondrial permeability transition in diclofenac-induced hepatocyte injury in rats. Hepatology 2002;35:544-51
  • Ainscow EK, Brand MD. Top-down control analysis of ATP turnover, glycolysis and oxidative phophorylation in rat hepatocytes. Eur J Biochem 1999;263:671-85
  • Petrescu I, Tarba C. Uncoupling effects of diclofenac and aspirin in the perfused liver and isolated hepatic mitochondria of rat. Biochem Biophys Acta 1997;1318:385-94
  • Moreno-Sanchez R, Bravo C, Vasquez C, et al. Inhibition and uncoupling of oxidative phosphorylation by non-steroidal anti-inflammatory drugs Biochem Pharmacol 1999;57:743-52
  • Horikawa M, Kato Y, Tyson CA, et al. Potential cholestatic activity of various therapeutic agents assessed by bile canalicular membrane vesicles isolated from rats and humans. Drug Metab Pharmacokin 2003;18:16-22
  • Kinugasa T, Uchida K, Kadowaki M, et al. Effect of bile duct ligation on bile acid metabolism in rats. J Lipid Res 1981;22(2):201-7
  • Graf J, Häussinger D. Ion transport in hepatocytes: mechanisms and correlations to cell volume, hormone actions and metabolism. J Hepatol 1996;24:53-77
  • Watanabe N, Tsukada N, Smith CR, Phillips MJ. Motility of bile canaliculi in the living animal: implications for bile flow. J Cell Biol 1991;113:1069-80
  • Reed DJ. Glutathione: toxicological implications. Ann Rev Pharmacol Toxicol 1990;30:603-31
  • Tirona RG, Pang KS. Bimolecular glutathione conjugation kinetics of ethacrynic acid in the rat liver: in vitro and perfusion studies. J Pharmacol Exper Ther 1999;290:1230-40
  • Peixoto F, Carvalho MJ, Almeida J, et al. Daphnetoxin interacts with mitochondrial oxidative phosphorylation and induces membrane permeability transition in rat liver. Planta Med 2004;70:1-5
  • Deschamps D, DeBeco V, Fisch C, et al. Inhibition by perhexiline of oxidative phosphorylation and the beta-oxidation of fatty acids: possible role in pseudoalcoholic liver lesions. Hepatology 1994;19:948-61
  • Fromenty B, Fisch C, Labbe G, et al. Amiodarone inhibits the mitochondrial beta-oxidation of fatty acids and produces microvesicular steatosis of the liver in mice. J Pharmacol Exp Ther 1990;225:1371-6
  • Huang YS, Su WJ, Huang YH, et al. Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H:quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. J Hepatol 2007;47(1):128-34
  • Aon MA, Cortassa S. Coherent and robust modulation of a metabolic network by cytoskeletal organization and dynamics. Biophys chem 2002;97:213-31
  • Lambeth MJ, Kushmerick MJ. A computational model for glycogenolysis in skeletal muscle. Ann Biomed Eng 2002;30(6):808-27
  • Cortassa S, Aon MA, Marbán E, et al. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J 2003;84(4):2734-55
  • Magnus G, Keizer J. Minimal model of beta cell mitochondrial Ca2+ handling. Am J Physiol 1997;273:C717-33
  • Korzeniewski B, Liguzinski P. Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle. Biophys Chem 2004;110(1-2):147-69
  • Korzeniewski B. Theoretical studies on the regulation of oxidative phosphorylation in intact tissues. Biochim Biophys Acta 2001;1504(1):31-45
  • Korzeniewski B, Zoladz JA. A model of oxidative phosphorylation in mammalian skeletal muscle. Biophys Chem 2001;92(1-2):17-34
  • Korzeniewski B. Simulation of oxidative phosphorylation in hepatocytes. Biophys Chem 1996;58(3):215-24
  • Reinhart GD, Lardy HA. Rat liver phosphofructokinase: kinetic activity under near-physiological conditions. Biochemistry 1980;19(7):1477-84
  • Reinhart GD, Lardy HA. Rat liver phosphofructokinase: use of fluorescence polarization to study aggregation at low protein concentration. Biochemistry 1980;19(7):1484-90
  • Reinhart GD, Lardy HA. Rat liver phosphofructokinase: kinetic and physiological ramifications of the aggregation behavior. Biochemistry 1980;19(7):1491-5
  • Furuya E, Uyeda K. An activation factor of liver phosphofructokinase. Proc Natl Acad Sci USA 1980;77(10):5861-4
  • Albe KR, Butler MH, Wright BE. Cellular concentrations of enzymes and their substrates. J Theor Biol 1990;143(2):163-95
  • Wan B, LaNoue KF, Cheung JY, Scaduto RC Jr. Regulation of citric acid cycle by calcium. J Biol Chem 1989;264(23):13430-9
  • Robb-Gaspers LD, Burnett P, Rutter GA, et al. Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J 1998;17(17):4987-5000
  • Yip B, Rudolph FB. The kinetic mechanisms of rat kidney gamma glutamyl cysteine synthetase. J Biol Chem 1976;251:3563-8
  • Segel IH. Enzyme Kinetics. Behaviour and analysis of rapid equilibrium and steady state enzyme systems. John Wiley & Sons, 1975 USA
  • Orlowski M, Meister A. Isolation of highly purified gamma glutamyl cysteine synthetase from rat kidney. Biochemistry 1971;10:(3)372-80
  • Luo J, Huang CS, Babaoglu K, et al. Novel kinetics of mammalian glutathione synthetase: characterization of gamma glutamyl substrate cooperative binding, Biochem Biochem Res Comm 2000;275:577-81
  • Griffith OW, Meister A. Origin and turnover of mitochondrial glutathione. Proc Natl Acad Sci 1985;82:4668-72
  • Carlberg I, Mannervik B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J Biol chem 1975;250(14):5475-80
  • Antunes F, Salvador A, Marinho HS, et al. A mathematical model for lipid peroxidation in inner mitochondrial membranes. I an integrative kinetic model. Free Radic Biol Med 1996;21(7):917-43
  • Wendel A. Glutathione peroxidase. Methods Enzymol 1981;77:325-33
  • Ookhtens M, Hobdy K, Corvasce MC, et al. Sinusoidal efflux of glutathione in the perfused rat liver – evidence for a carrier mediated process. J Clin Invest 1985;75:258-65
  • Akerboom TPM, Sies H. Transport of glutathione, glutathione disulfide and glutathione conjugates across the plasma membrane. Methods Enzymol 1989;173:523-34
  • Akerboom TPM, Bilzer M, Sies H. The relationship of biliary glutathione disulfide efflux and intracellular glutathione disulfide content in the perfused rat liver. J Biol Chem 1982;257(8):4248-52
  • Rinaldi R, Eliasson E, Swedmark S, Morgenstern R. Reactive intermediates and the dynamics of glutathione-S-transferases. Drug Metab Dispos 2002;30(10):1053-8
  • Fernandez-Checa JC, Garcia Ruiz C, Ookhtens M, Kaplowitz N. Impaired uptake of glutathione by hepatic mitochondria from chronic ethanol fed rats. J Clin Invest 1991;87:397-405
  • Martensson J, Lai JCK, Meister A. High affinity transport of glutathione is a part of a multicomponent system essential for mitochondrial function. Proc Natl Acad Sci 1990;87:7185-9
  • Berk PD, Zhou S. Bradbury MW. Increased hepatocellular uptake of long chain fatty acids occurs by difference mechanisms in fatty livers due to obesity or excess ethanol use, contributing to the development of steatohepatitis in both settings. Trans Am Clin Clim Assoc 2005;116:335-45
  • Philipp DP, Parsons P. Isolation and purification of long chain fatty acyl coenzyme a ligase from rat liver mitochondria. J Biol Chem 1979;254:10776-84
  • Bremer J, Norum KR. The mechanism of substrate inhibition of palmityl coenzyme A: carnitine palmityltransferase by palmityl coenzyme A. J Biol Chem 1967;242(8):1744-8
  • Ramsay RR, Derrick JP, Friend AS, Tubbs PK. Purification and properties of the soluble carnitine palmitoyltransferase from bovine liver mitochondria. Biochem J 1987;244:271-8
  • McKean MC, Herman FE, Mielke DM. General acyl-CoA dehydrogenase from pig liver kinetic and binding studies. J Biol Chem 1979;254:2730-5
  • Yang SY, Schulz H. Kinetics of coupled enzyme reactions. Biochemistry 1987;26(17):5579-84
  • Miyazawa S, Furuta S, Osumi T, et al. Properties of peroxisomal 3-ketoacyl-CoA thiolase from rat liver. J Biochem 1981;90:511-9
  • Shepherd D, Garland PB. The kinetic properties of citrate synthase from rat liver mitochondria. Biochem J 1969;114:597-610
  • Middleton B. The kinetic mechanism and properties of the cytoplasmic acetoacetyl-coenzyme A thiolase from rat liver. Biochem J 1974;139:109-21
  • Lowe DM, Tubbs PK. 3-Hydroxy-3-methylglutaryl-coenzyme A synthase from ox liver purification, molecular and catalytic properties Biochem J 1985;227:591-9
  • Stegink LD, Coon MJ. Stereospecificity and other properties, of highly purified beta-hydroxy-P-methylglutaryl coenzyme A cleavage enzyme from bovine liver. J Biol Chem 1968;243:5272-9
  • Tucker GA, Dawson AP. The kinetics of rat liver and heart mitochondrial P-hydroxybutyrate dehydrogenase. Biochem J 1979;179:579-581
  • Cobelli C, Nosadini R, Toffolo G, et al. Model of the kinetics of ketone bodies in humans Am J Physiol 1982;243(1):R7-17
  • Bates MW. Kinetics of ketone body metabolism in fasted and diabetic rats. Am J Physiol 1971;221(4):984-91
  • Hashimoto T, Numa S. Kinetic Studies on the reaction mechanism and the citrate activation of liver acetyl coenzyme A carboxylase. Eur J Biochem 1971;18:319-31
  • Wang X, Stanley WC, Brunengraber H, Kasumov T. Assay of the activity of malonyl-CoA decarboxylase by gas chromatography-mass spectrometry. Anal Biochem 2001;298(1):69-75
  • Cox BG, Hammes GG. Steady-state kinetic study of fatty acid synthase from chicken liver(enzyme kinetics/multienzyme complex/enzyme mechanism). Proc Natl Acad Sci USA 1983;80:4233-7
  • Vancura A, Haldar D. Purification and characterizatioonf glycerophosphate acyltransferase from rat liver mitochondria. J Biol Chem 1994;269:27209-15
  • Kvilekval K, Lin J, Cheng W, Abumrad N. Fatty acids as determinants of triglyceride and cholesteryl ester synthesis by isolated hepatocytes:kinetics as a function of various fatty acids. J Lipid Res 1994;35:1786-94
  • Yamashita S, Hosaka K, Numa S. Acyl-donor specificities of partially purified 1-acylglycerophosphate acyltransferase, 2-acylglycerophosphate acyltransferase and 1-acylglycerophosphorylcholine acyltransferase from rat-liver microsomes. Eur J Biochem 1973;38(1):25-31
  • Berglund L, Björkhem I, Angelin B, Einarsson K. Activation of rat liver cytosolic phosphatidic acid phosphatase by nucleoside diphosphates. Biochim et Biophys Acta 1989;1002(3):382-7
  • Pontoni G, Manna C, Salluzzo A, et al. Studies on enzyme-substrate interactions of cholinephosphotransferase from rat liver. Biochim et Biophys Acta 1985;836(2):222-32
  • Anderson M, Wettesten M, Borén J, et al. Purification of diacylglycerol acyl transferase from rat liver to near homogeneity. J Lipid Res 1994;35(3):535-45
  • Zammit VA, Lankester DJ, Brown AM, Park BS. Insulin stimulates triacylglycerol secretion by perfused livers from fed rats but inhibits it in livers from fasted or insulin-deficient rats. Implications for the relationship between hyperinsulinaemia and hypertriglyceridaemia. Eur J Biochem 1999;263:859-64
  • Yao Z, Vance DE. The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes. J Biol Chem 1988;263(6):2998-3004
  • Thompson MB, Davis DG, Morris RW. Taurine conjugate of 3 alpha, 6 beta, 7 beta trihydroxy-5 beta, 22-cholen-24-oic acid (tauro delta 22-beta-muricholate): the major bile acid in the serum of female rats treated with alpha-naphthylisothiocyanate and its secretion by liver slices. J Lipid Res 1993;34:553-61
  • Hata S, Wang P, Eftychiou N, et al. Substrate specificities of rat oatp1 and ntcp: implications for hepatic organic anion uptake. Am J Physiol Gastrointest Liver Physiol 2003;285(5):G829-39
  • Lee HB, Blaufox MD. Blood volume in the rat. J Nucl Med 1985;25:72-6
  • Hirohashi T, Suzuki H, Takikawa H, Sugiyama Y. ATP-dependent transport of bile salts by rat multidrug resistance-associated protein 3 (Mrp3). J Biol Chem 2000;275(4):2905-10
  • Mosbach EH. Hepatic synthesis of bile acids. Biochemical steps and mechanisms of rate control. Arch Intern Med 1972;130(4):478-87
  • Uchida K, Okuno I, Takase H, et al. Distribution of bile acids in rats. Lipids 1978;13(1):42-8
  • Fiorucci S, Clerici C, Antonelli E, et al. Protective effects of 6-ethyl chenodeoxycholic acid, a farnesoid X receptor. ligand, in estrogen-induced cholestasis. J Pharmacol Exp Ther 2005;313(2):604-12
  • Crocenzi FA, Pellegrino JM, Catania VA, et al. Galactosamine prevents ethinylestradiol-induced cholestasis. Drug Metab Dispos 2006;34(6):993-7
  • Uchida K, Nomura Y, Kadowaki M, et al. Age-related changes in cholesterol and bile acid metabolism in rats. J Lipid Res 1978;19:544-52
  • Colman R. Biochemistry of bile secretion. Biochem J 1987;244:249-61
  • Kuipers F, Enserink M, Havinga R, et al. Separate transport systems for biliary secretion of sulfated and unsulfated bile acids in the rat. J Clin Invest 1988;81(5):1593-9
  • Barnes S, Gollan JL, Billing BH. The role of tubular reabsorption in the renal excretion of bile acids. Biochem J 1977;166(1):65-73
  • Schlattjan JH, Winter C, Greven J. Regulation of renal tubular bile acid transport in the early phase of an obstructive cholestasis in the rat. Nephron Physiol 2003;95(3):49-56
  • Jobin J, Bonjour JP. Measurement of glomerular filtration rate in conscious unrestrained rats with inulin infused by implanted osmotic pumps. Am J Physiol Renal Physiol 1985;248:F734-8
  • Goldschmidt-Clermont PJ, Furman MI, Safer D, et al. The control of actin nucleotide exchange by thymosin beta 4 and profilin. A potential regulatory mechanism for actin polymerization in cells. Mol Bio Cell 1992;3:1015-24
  • Pollard TD. Rate constants for the reactions of ATP and ADP actin with the ends of actin filaments. J Cell Biol 1986;103:2747-54
  • Lukas TJ. A signal transduction pathway model prototype I: from agonist to cellular endpoint. Biophys J 2004;87:1406-16
  • Fajmut A, Brumen M, Schuster S. Theoretical model of the interactions between Ca2+, calmodulin and myosin light chain kinase. FEBS Lett 2005;579(20):4361-6
  • Lukas, TJ. A signal transduction pathway model prototype II: application to Ca2+-calmodulin signaling and myosin light chain phosphorylation. Biophys J 2004;87:1417-25
  • Bhalla US. Database of Quantitative Cellular Signalling. Available at http://doqcs.ncbs.res.in/template.php?&y=search
  • Mishra J, Bhalla US. Simulations of inositol phosphate metabolism and Its Interaction with InsP3-mediated calcium release. Biophys J 2002;83(3):1298-316
  • Ontko JA. Metabolism of free fatty acids in isolated liver cells. J Biol Chem 1972;247:1788-800
  • Williamson DH, Lund P, Krebs HA. The redox state of free nicotinamide adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J 1967;103:514-27
  • Guynn RW, Veloso D, Veech RL. The concentration of malonyl coenzyme A and the control of fatty acid synthesis in vivo. J Biol Chem 1972;247:7325-31
  • Herrera E, Freinkel N. Internal standards in the estimation of acetyl CoA in liver extracts. J Lipid Res 1967;8:515-8
  • Wahllander A, Soboll S, Sies H, et al. Hepatic mitochondrial and cytosolic glutathione content and the subcellular distribution of GSH-S- transferases. FEBS Lett 1979;97:138-40
  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979;59:527-605
  • Akerboom TP, Bookelman H, Zuurendonk PF, et al. Intramitochondrial and extramitochondrial concentrations of adenine nucleotides and inorganic phosphate in isolated hepatocytes from fasted rats. Eur J Biochem 1978;84:413-20
  • Griffith, OW. Mechanism of action, metabolism and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J Biol Chem 1982;257(22):13704-12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.