625
Views
31
CrossRef citations to date
0
Altmetric
Reviews

Cardiac safety pharmacology: from human ether-a-gogo related gene channel block towards induced pluripotent stem cell based disease models

, , , , , & show all
Pages 285-298 | Published online: 22 Nov 2011

Bibliography

  • Mitcheson JS, Chen J, Lin M, A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci USA 2000;97(22):12329
  • Goldenberg I, Moss AJ. Long QT syndrome. J Am Coll Cardiol 2008;51(24):2291-300
  • Marban E. Cardiac channelopathies. Nature 2002;415(6868):213-18
  • Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature 2006;440(7083):463-9
  • Corrias A, Jie X, Romero L, Arrhythmic risk biomarkers for the assessment of drug cardiotoxicity: from experiments to computer simulations. Philos Transact A Math Phys Eng Sci 2010;368(1921):3001-25
  • Furlanello F, Dal Forno P, Cozzi F, Bettini R. Arrhythmogenic effects of antiarrhythmic drugs. Cardiologia 1990;35(1 Suppl):73-8
  • Campbell RW, Furniss SS. Practical considerations in the use of sotalol for ventricular tachycardia and ventricular fibrillation. Am J Cardiol 1993;72(4):80A-5A-A
  • Fitton A, Sorkin EM. Sotalol. An updated review of its pharmacological properties and therapeutic use in cardiac arrhythmias. Drugs 1993;46(4):678-719
  • Hey JA, Del Prado M, Cuss FM, Antihistamine activity, central nervous system and cardiovascular profiles of histamine H1 antagonists: comparative studies with loratadine, terfenadine and sedating antihistamines in guinea-pigs. Clin Exp Allergy 1995;25(10):974-84
  • Yap YG, Camm AJ. Arrhythmogenic mechanisms of non-sedating antihistamines. Clin Exp Allergy 1999;29(Suppl 3):174-81
  • Monahan BP, Ferguson CL, Killeavy ES, Torsades de pointes occurring in association with terfenadine use. JAMA 1990;264(21):2788-90
  • Zimmermann K, Leffler A, Fischer MMJ, The TRPV1/2/3 activator 2-aminoethoxydiphenyl borate sensitizes native nociceptive neurons to heat in wildtype but not TRPV1 deficient mice. Neuroscience 2005;135(4):1277-84
  • Berul CI, Morad M. Regulation of potassium channels by nonsedating antihistamines. Circulation 1995;91(8):2220-5
  • Woosley RL. Cardiac actions of antihistamines. Annu Rev Pharmacol Toxicol 1996;36:233-52
  • E14: Note for guidance on the clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use; 2005.
  • Kongsamut S, Kang J, Chen X-L, A comparison of the receptor binding and HERG channel affinities for a series of antipsychotic drugs. Eur J Pharmacol 2002;450(1):37-41
  • Sanguinetti MC, Jurkiewicz NK. Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 1990;96(1):195-215
  • Dennis A, Wang L, Wan X, Ficker E. hERG channel trafficking: novel targets in drug-induced long QT syndrome. Biochem Soc Trans 2007;35:1060-3
  • Bains W, Basman A, White C. HERG binding specificity and binding site structure: evidence from a fragment-based evolutionary computing SAR study. Prog Biophys Mol Biol 2004;86(2):205-33
  • Daniel S, Malkowitz L, Wang HC, Screening for potassium channel modulators by a high through-put 86-rubidium efflux assay in a 96-well microtiter plate. J Pharmacol Methods 1991;25(3):185-93
  • Gill S, Gill R, Lee SS, Flux assays in high throughput screening of ion channels in drug discovery. Assay Drug Dev Technol 2003;1(5):709-17
  • Diaz GJ, Daniell K, Leitza ST, The [3H]dofetilide binding assay is a predictive screening tool for hERG blockade and proarrhythmia: Comparison of intact cell and membrane preparations and effects of altering [K+]o. J Pharmacol Toxicol Methods 2010;50(3):187-99
  • Finlayson K, Turnbull L, January CT, Sharkey J. Kelly JS. [3H]Dofetilide binding to HERG transfected membranes: a potential high throughput preclinical screen. Eur J Pharmacol 2001;430(1):147-8
  • S7A: Note for guidance on safety pharmacology studies for human pharmaceuticals. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use; 2001
  • S7B: The Nonclinical Evaluation of the Potential for Delayed Ventricular Repolarization (QT Interval Prolongation) By Human Pharmaceuticals. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use; 2005. p. 61133-4
  • Zhou Z, Gong Q, Ye B, Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys J 1998;74(1):230-41
  • Ly JQ, Shyy G, Misner DL. Assessing hERG channel inhibition using PatchXpress. Clin Lab Med 2007;27(1):201-8
  • Guo L, Guthrie H. Automated electrophysiology in the preclinical evaluation of drugs for potential QT prolongation. J Pharmacol Toxicol Methods 2005;52(1):123-35
  • Wood C, Williams C, Waldron GJ. Patch clamping by numbers. Drug Discov Today 2004;9(10):434-41
  • Langendorff O. Untersuchungen am uberlebenden Saugethierherzen. Pflugers Arch 1895;61(6):291-332
  • Alanis J, Benitez D. Changes in the magnitude and in the rate of depolarization of transmembrane potentials of the Purkinje fibers. Acta Physiol Lat Am 1963;13:201-7
  • Weidmann S. Electrical properties of the Purkinje fiber. Helv Physiol Pharmacol Acta 1952;10(3):C 30-1
  • Yan G-X, Antzelevitch C. Cellular basis for the electrocardiographic J Wave. Circulation 1996;93(2):372-9
  • Burnashev NA, Edwards FA, Verkhratskii AN. The use of thin slices of myocardium for recording the currents across single ion channels. Fiziol Zh 1991;37(2):119-22
  • Pillekamp F, Halbach M, Reppel M, Neonatal murine heart slices. A robust model to study ventricular isometric contractions. Cell Physiol Biochem 2007;20(6):837-46
  • Downing GJ, Battey JF Jr. Technical Assessment of the first 20 years of research using mouse embryonic stem cell lines. Stem Cells 2004;22(7):1168-80
  • Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292(5819):154-6
  • Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981;78(12):7634-8
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Embryonic stem cell lines derived from human blastocysts. Science (New York, NY) 1998;282(5391):1145-7
  • Reubinoff BE, Pera MF, Fong CY, Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000;18(4):399-404
  • Kehat I, Kenyagin-Karsenti D, Snir M, Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 2001;108(3):407-14
  • Mummery C, Ward-van Oostwaard D, Doevendans P, Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 2003;107(21):2733-40
  • Yu J, Vodyanik MA, Smuga-Otto K, Induced pluripotent stem cell lines derived from human somatic cells. Science (New York, NY) 2007;318(5858):1917-20
  • Takahashi K, Tanabe K, Ohnuki M, Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131(5):861-72
  • Mandenius C-F, Steel D, Noor F, Cardiotoxicity testing using pluripotent stem cell-derived human cardiomyocytes and state-of-the-art bioanalytics: a review. J Appl Toxicol 2011;31(3):191-205
  • Siu C-W, Liao S-Y, Liu Y, Stem cells for myocardial repair. Thromb Haemost 2010;104(1):6-12
  • Zhang F, Pasumarthi KBS. Embryonic stem cell transplantation: promise and progress in the treatment of heart disease. BioDrugs 2008;22(6):361-74
  • Itescu S, Schuster MD, Kocher AA. New directions in strategies using cell therapy for heart disease. J Mol Med 2003;81(5):288-96
  • Kattman SJ, Koonce CH, Swanson BJ, Anson BD. Stem cells and their derivatives: a renaissance in cardiovascular translational research. J Cardiovasc Transl Res 2011;4(1):66-72
  • Asai Y, Tada M, Otsuji TG, Nakatsuji N. Combination of functional cardiomyocytes derived from human stem cells and a highly-efficient microelectrode array system: an ideal hybrid model assay for drug development. Curr Stem Cell Res Ther 2010;5(3):227-32
  • Vidarsson H, Hyllner J, Sartipy P. Differentiation of human embryonic stem cells to cardiomyocytes for in vitro and in vivo applications. Stem Cell Rev 2010;6(1):108-20
  • Passier R, Mummery C. Cardiomyocyte differentiation from embryonic and adult stem cells. Curr Opin Biotechnol 2005;16(5):498-502
  • Kehat I, Gepstein A, Spira A, High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a Novel In Vitro Model for the Study of Conduction. Circ Res 2002;91(8):659-61
  • Xu C, Police S, Rao N, Carpenter MK. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 2002;91(6):501-8
  • Harding SE, Ali NN, Brito-Martins M, Gorelik J. The human embryonic stem cell-derived cardiomyocyte as a pharmacological model. Pharmacol Ther 2007;113(2):341-53
  • Cezar GG. Can human embryonic stem cells contribute to the discovery of safer and more effective drugs? Curr Opin Chem Biol 2007;11(4):405-9
  • Braam SR, Tertoolen L, van de Stolpe A, Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res 2010;4(2):107-16
  • Mauritz C, Schwanke K, Reppel M, Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 2008;118(5):507-17
  • Meyer T, Boven K-H, Guenther E, Fejtl M. Micro-electrode arrays in cardiac safety pharmacology: a novel tool to study QT interval prolongation. Drug Saf 2004;27(11):763-72
  • Martinez-Fernandez A, Nelson TJ, Ikeda Y, Terzic A. c-MYC independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells. J Cardiovasc Transl Res 2010;3(1):13-23
  • Piotrovsky V. Pharmacokinetic-pharmacodynamic modeling in the data analysis and interpretation of drug-induced QT/QTc prolongation. AAPS J 2010;7(3):E609-E24-E-E24.
  • Hofmann B, Maybeck V, Eick S, Light induced stimulation and delay of cardiac activity. Lab Chip 2010;10(19):2588-96
  • Arrenberg AB, Stainier DYR, Baier H, Huisken J. Optogenetic control of cardiac function. Science (New York, NY) 2010;330(6006):971-4
  • Anson B, Nuwaysir E, Wang WB, Swanson B. Industrialized production of human iPSC-Derived cardiomyocytes for use in drug discovery and toxicity testing. 2011. Available from: http://biopharminternational.findpharma.com/biopharm/Process+Development-Upstream+Processes+Articles/Industrialized-Production-of-Human-iPSC-Derived-Ca/ArticleStandard/Article/detail/711064
  • Laugwitz K-L, Moretti A, Caron L, Islet1 cardiovascular progenitors: a single source for heart lineages? Development 2008;135(2):193-205
  • Itzhaki I, Maizels L, Huber I, Modelling the long QT syndrome with induced pluripotent stem cells. 2011;471(7337):225-9
  • Krikler DM, Curry PV. Torsade De pointes, an atypical ventricular tachycardia. Br Heart J 1976;38(2):117-20
  • Dessertenne F. Ventricular tachycardia with 2 variable opposing foci. Arch Mal Coeur Vaiss 1966;59(2):263-72
  • Nakajima T, Furukawa T, Tanaka T, Novel mechanism of HERG current suppression in LQT2: shift in voltage dependence of HERG inactivation. Circ Res 1998;83(4):415-22
  • Arena JP, Kass RS. Activation of ATP-sensitive K channels in heart cells by pinacidil: dependence on ATP. Am J Physiol 1989;257(6 Pt 2):H2092-6
  • Chi L, Uprichard AC, Lucchesi BR. Profibrillatory actions of pinacidil in a conscious canine model of sudden coronary death. J Cardiovasc Pharmacol 1990;15(3):452-64
  • Matsa E, Rajamohan D, Dick E, Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation. Eur Heart J 2011;32(8):952-62
  • Kamp TJ. An electrifying iPSC disease model: long QT syndrome type 2 and heart cells in a dish. Cell Stem Cell 2011;8(2):130-1
  • Dambrot C, Passier R, Atsma D, Mummery CL. Cardiomyocyte differentiation of pluripotent stem cells and their use as cardiac disease models. Biochem J 2011;434(1):25-35
  • Josowitz R, Carvajal-Vergara X, Lemischka IR, Gelb BD. Induced pluripotent stem cell-derived cardiomyocytes as models for genetic cardiovascular disorders. Curr Opin Cardiol 2011;26(3):223-9
  • Sanguinetti MC, Jiang C, Curran ME, Keating MT. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 1995;81(2):299-307
  • Kettenhofen R, Stoelzle S. Cor. At cardiomyocytes: primary-like cardiomyocytes for manual and automated electrophysiological screening. Lonza 2011;9-10
  • Connolly P, Clark P, Curtis AS, An extracellular microelectrode array for monitoring electrogenic cells in culture. Biosens Bioelectron 1990;5(3):223-34
  • Halbach M, Egert U, Hescheler JR, Banach K. Estimation of action potential changes from field potential recordings in multicellular mouse cardiac myocyte cultures. Cell Physiol Biochem 2003;13(5):271-84
  • Pfannkuche K, Liang H, Hannes T, Cardiac myocytes derived from murine reprogrammed fibroblasts: intact hormonal regulation, cardiac ion channel expression and development of contractility. Cell Physiol Biochem 2009;24(1-2):73-86
  • PijnappelsDlA, Schalij MJ, van Tuyn J, Progressive increase in conduction velocity across human mesenchymal stem cells is mediated by enhanced electrical coupling. Cardiovasc Res 2006;72(2):282-91
  • PijnappelsDlA, van Tuyn J, de Vries AAF, Resynchronization of separated rat cardiomyocyte fields with genetically modified human ventricular scar fibroblasts. Circulation 2007;116(18):2018-28
  • Liang H, Matzkies M, Schunkert H, Human and murine embryonic stem cell-derived cardiomyocytes serve together as a valuable model for drug safety screening. Cell Physiol Biochem 2010;25(4-5):459-66
  • Beeres SLMA, Atsma DE, van der Laarse A, Human adult bone marrow mesenchymal stem cells repair experimental conduction block in rat cardiomyocyte cultures. J Am Coll Cardiol 2005;46(10):1943-52
  • Moretti A, Bellin M, Welling A, Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 2010;363(15):1397-409
  • Ieda M, Fu J-D, Delgado-Olguin P, Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010;142(3):375-86

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.