395
Views
88
CrossRef citations to date
0
Altmetric
Review

Photosensitiser delivery for photodynamic therapy. Part 2: systemic carrier platforms

, , &
Pages 1241-1254 | Published online: 01 Nov 2008

Bibliography

  • Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 2004;5:497-508
  • Buytaert E, Dewaele M, Agostinis P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta (BBA) Rev Cancer 2007;1776:86-107
  • Collaud S, Juzeniene A, Moan J, et al. On the selectivity of 5-aminolevulinic acid-induced protoporphyrin IX formation. Curr Med Chem Anticancer Agents 2004;4:301-16
  • Kessel D. The role of low-density lipoprotein in the biodistribution of photosensitising agents. J Photochem Photobiol B 1992;14:261-2
  • Redmond RW, Kochevar IE. Symposium-in-Print: singlet oxygen; invited review. Photochem Photobiol 2006;82:1178-86
  • Abels C. Targeting of the vascular system of solid tumours by photodynamic therapy (PDT). Photochem Photobiol Sci 2004;3:765-71
  • Wormald R, Evans J, Smeeth L, et al. Photodynamic therapy for neovascular age-related macular degeneration. Cochrane database syst rev (Online) 2007;3:CD002030
  • Donnelly RF, McCarron PA, Woolfson AD. Drug delivery for topical photodynamic therapy: difficulties and novel solutions. Trends Cancer Res 2006;2:1-20
  • Thompson MS, Andersson-Engels S, Svanberg S, et al. Photodynamic therapy of nodular basal cell carcinoma with multifiber contact light delivery. J Environ Pathol Toxicol Oncol 2006;25:411-24
  • Vesselov LM, Whittington W, Lilge L. Performance evaluation of cylindrical fiber optic light diffusers for biomedical applications. Lasers Surg Med 2004;34:348-51
  • Panjehpour M, Overholt BF, Haydek JM. Light sources and delivery devices for photodynamic therapy in the gastrointestinal tract. Gastrointest endosc clin N Am 2000;10:513-32
  • Ricchelli F. Photophysical properties of porphyrins in biological membranes. J Photochem Photobiol B 1995;29:109-18
  • Boyle RW, Dolphin D. Structure and biodistribution relationships of photodynamic sensitizers. Photochem Photobiol 1996;64:469-85
  • Moriwaki SI, Misawa J, Yoshinari Y, et al. Analysis of photosensitivity in Japanese cancer-bearing patients receiving photodynamic therapy with porfimer sodium (Photofrin®). Photodermatol Photoimmunol Photomed 2001;17:241-3
  • Wolinsky JB, Grinstaff MW. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 2008;10:1037-55
  • Lukyanov AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 2004;6:1273-89
  • Van Nostrum CF. Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv Drug Deliv Rev 2004;56:9-16
  • Derycke AS, De Witte PA. Liposomes for photodynamic therapy. Adv Drug Deliv Rev 2004;56:17-30
  • Chen B, Pogue BW, Hasan T. Liposomal delivery of photosensitising agents. Expert Opin Drug Deliv 2005;2:477-87
  • Koo YE, Fan W, Hah H, et al. Photonic explorers based on multifunctional nanoplatforms for biosensing and photodynamic therapy. Appl Opt 2007;46:1924-30
  • Iyer AK, Khaled G, Fang J, et al. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006;11:812-8
  • Van Dongen GAMS, Visser GWM, Vrouenraets MB. Photosensitizer-antibody conjugates for detection and therapy of cancer. Adv Drug Deliv Rev 2004;56:31-52
  • Schneider R, Tirand L, Frochot C, et al. Recent improvements in the use of synthetic peptides for a selective photodynamic therapy. Anticancer Agents Med Chem 2006;6:469-88
  • Verma S, Watt GM, Mai Z, et al. Strategies for enhanced photodynamic therapy effects. Photochem Photobiol 2007;83:996-1005
  • Stefflova K, Chen J, Zheng G. Killer beacons for combined cancer imaging and therapy. Curr Med Chem 2007;14:2110-25
  • Cló E, Snyder JW, Ogilby PR, et al. Control and selectivity of photosensitized singlet oxygen production: challenges in complex biological systems. Chembiochem 2007;8:475-81
  • Chen X, Drain CM. Photodynamic therapy using carbohydrate conjugated porphyrins. Drug Des Rev 2004;1:215-34
  • Lu ZR, Ye F, Vaidya A. Polymer platforms for drug delivery and biomedical imaging. Proceedings of the Thirteenth International Symposium on Recent Advances in Drug Delivery Systems; 2007;122:269-77
  • Solban N, Rizvi I, Hasan T. Targeted photodynamic therapy. Lasers Surg Med 2006;38:522-31
  • Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 2005;202:654-62
  • Lee PPS, Lo PC, Chan EYM, et al. Synthesis and in vitro photodynamic activity of novel galactose-containing phthalocyanines. Tetrahedron Lett 2005;46:1551-4
  • Hirohara S, Obata M, Salto A, et al. Cellular Uptake and Photocytotoxicity of Glycoconjugated Porphyrins in Hela Cells. Photochem Photobiol 2004;80:301-8
  • Hirohara S, Obata M, Ogata SI, et al. Sugar-dependent aggregation of glycoconjugated chlorins and its effect on photocytotoxicity in HeLa cells. J Photochem Photobiol B 2006;84:56-63
  • Chen X, Hui L, Foster DA, et al. Efficient synthesis and photodynamic activity of porphyrin-saccharide conjugates: targeting and incapacitating cancer cells. Biochem 2004;43:10918-29
  • Pushpan SK, Venkatraman S, Anand VG, et al. Porphyrins in photodynamic therapy – a search for ideal photosensitizers. Curr Med Chem Anticancer Agents 2002;2:187-207
  • Rahimipour S, Ben-Aroya N, Ziv K, et al. Receptor-mediated targeting of a photosensitizer by its conjugation to gonadotropin-releasing hormone analogues. J Med Chem 2003;46:3965-74
  • Frochot Cl, Di Stasio B, Vanderesse R, et al. Interest of RGD-containing linear or cyclic peptide targeted tetraphenylchlorin as novel photosensitizers for selective photodynamic activity. Bioorg Chem 2007;35:205-20
  • Choi Y, McCarthy JR, Weissleder R, et al. Conjugation of a photosensitizer to an oligoarginine-based cell-penetrating peptide increases the efficacy of photodynamic therapy. ChemMedChem 2006;1:458-63
  • Dixon MJ, Bourre L, MacRobert AJ, et al. Novel prodrug approach to photodynamic therapy: Fmoc solid-phase synthesis of a cell permeable peptide incorporating 5-aminolaevulinic acid. Bioorg Med Chem Lett 2007;17:4518-22
  • Sibrian-Vazquez M, Jensen TJ, Hammer RP, et al. Peptide-Mediated Cell Transport of Water Soluble Porphyrin Conjugates. J Med Chem 2006;49:1364-72
  • Conway CL, Walker I, Bell A, et al. In vivo and in vitro characterisation of a protoporphyrin IX-cyclic RGD peptide conjugate for use in photodynamic therapy. Photochem Photobiol Sci 2008;7:290-8
  • Sibrian-Vazquez M, Jensen TJ, Vicente MG. Synthesis, characterization and metabolic stability of porphyrin and peptide conjugates bearing bifunctional signaling sequences. J Med Chem 2008;51:2915-23
  • Stefflova K, Li H, Chen J, et al. Peptide-Based Pharmacomodulation of a Cancer-Targeted Optical Imaging and Photodynamic Therapy Agent. Bioconjug Chem 2007;18:379-88
  • Tirand L, Thomas N, Dodeller M, et al. Metabolic profile of a peptide-conjugated chlorin-type photosensitizer targeting neuropilin-1: An in vivo and in vitro study. Drug Metab Dispos 2007;35:806-13
  • Sharman WM, Van Lier JE, Allen CM. Targeted photodynamic therapy via receptor mediated delivery systems. Delivery of photosensitizers in photodynamic therapy. Adv Drug Deliv Rev 2004;56:53-76
  • Bhatti M, Yahioglu G, Milgrom LR, et al. Targeted photodynamic therapy with multiply-loaded recombinant antibody fragments. Int J Cancer 2008;122:1155-63
  • Fabbrini M, Trachsel E, Soldani P, et al. Selective occlusion of tumor blood vessels by targeted delivery of an antibody-photosensitizer conjugate. Int J Cancer 2006;118:1805-13
  • Kuimova MK, Bhatti M, Deonarain M, et al. Fluorescence characterisation of multiply-loaded anti-HER2 single chain Fv-photosensitizer conjugates suitable for photodynamic therapy. Photochem Photobiol Sci 2007;6:933-9
  • Linares R, Pacheco JR, Good TA. Efficacy of different targeting agents in the photolysis of interleukin-2 receptor bearing cells. J Photochem Photobiol B 2004;77:17-26
  • Savellano MD, Pogue BW, Hoopes PJ, et al. Multiepitope HER2 targeting enhances photoimmunotherapy of HER2-overexpressing cancer cells with pyropheophorbide-a immunoconjugates. Cancer Res 2005;65:6371-9
  • Savellano MD, Hasan T. Targeting cells that overexpress the epidermal growth factor receptor with polyethylene glycolated BPD verteporfin photosensitizer immunoconjugates. Photochem Photobiol 2003;77:431-9
  • Amessou M, Carrez D, Patin D, et al. Retrograde delivery of photosensitizer (TPPp-O-beta-GluOH)3 selectively potentiates its photodynamic activity. Bioconjug Chem 2008;19:532-8
  • Hudson R, Carcenac M, Smith K, et al. The development and characterisation of porphyrin isothiocyanate-monoclonal antibody conjugates for photoimmunotherapy. Br J Cancer 2005;92:1442-9
  • Malatesti N, Smith K, Savoie H, et al. Synthesis and in vitro investigation of cationic 5,15-diphenyl porphyrin-monoclonal antibody conjugates as targeted photodynamic sensitisers. Int J Oncol 2006;28:1561-9
  • Staneloudi C, Smith KA, Hudson R, et al. Development and characterization of novel photosensitizer: scFv conjugates for use in photodynamic therapy of cancer. Immunology 2007;120:512-7
  • Sutton JM, Clarke OJ, Fernandez N, et al. Porphyrin, chlorin, and bacteriochlorin isothiocyanates: useful reagents for the synthesis of photoactive bioconjugates. Bioconjug Chem 2002;13:249-63
  • Gariepy J. The use of Shiga-like toxin 1 in cancer therapy. Crit Rev Oncol Hematol 2001;39:99-106
  • Tarrago-Trani MT, Jiang S, Harich KC, et al. Shiga-like toxin subunit B (SLTB)-enhanced delivery of chlorin e6 (Ce6) improves cell killing. Photochem Photobiol 2006;82:527-37
  • Savellano MD, Hasan T. Photochemical targeting of epidermal growth factor receptor: a mechanistic study. Clin Cancer Res 2005;11:1658-68
  • Ermilov EA, Al-Omari S, Helmreich M, et al. Photophysical properties of fullerene-dendron-pyropheophorbide supramolecules. Chem Phys 2004;301:27-31
  • Ermilov EA, Hackbarth S, Al-Omari S, et al. Trap formation and energy transfer in the hexapyropheophorbide a – fullerene C60 hexaadduct molecular system. Opt Commun 2005;250:95-104
  • Rancan F, Helmreich M, Molich A, et al. Intracellular uptake and phototoxicity of 31,32-didehydrophytochlorin-fullerene hexaadducts. Photochem Photobiol 2007;83:1330-8
  • Rancan FH, Molich A, Ermilov EA, et al. Synthesis and in vitro testing of a pyropheophorbide-a-fullerene hexakis adduct immunoconjugate for photodynamic therapy. Bioconjug Chem 2007;18:1078-86
  • Fotinos N, Campo MA, Popowycz F, et al. 5-Aminolevulinic acid derivatives in photomedicine: characteristics, application and perspectives. Photochem Photobiol 2006;82:994-1015
  • Battah S, Balaratnam S, Casas A, et al. Macromolecular delivery of 5-aminolaevulinic acid for photodynamic therapy using dendrimer conjugates. Mol Cancer Ther 2007;6:876-85
  • Nishiyama N, Stapert HR, Zhang GD, et al. Light-harvesting ionic dendrimer porphyrins as new photosensitizers for photodynamic therapy. Bioconjug Chem 2003;14:58-66
  • Tran N, Krueger T, Pan Y, et al. Correlation of photodynamic activity and fluorescence signaling for free and pegylated mTHPC in mesothelioma xenografts. Lasers Surg Med 2007;39:237-44
  • Nakamura E, Isobe H. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc Chem Res 2003;36:807-15
  • Iwamoto Y, Yamakoshi Y. A highly water-soluble C60-NVP copolymer: a potential material for photodynamic therapy. Chem Commun 2006;46:4805-7
  • Nuno Silva J, Haigle J, Tome JP, et al. Enhancement of the photodynamic activity of tri-cationic porphyrins towards proliferating keratinocytes by conjugation to poly-S-lysine. Photochem Photobiol Sci 2006;5:126-33
  • Ogura S, Yazaki K, Yamaguchi K, et al. Localization of poly-L-lysine-photosensitizer conjugate in nucleus. J Control Release 2005;103:1-6
  • Tijerina M, Kopeckova P, Kopecek J. Correlation of subcellular compartmentalization of HPMA copolymer-Mce6 conjugates with chemotherapeutic activity in human ovarian carcinoma cells. Pharm Res 2003;20:728-37
  • Vaidya A, Sun Y, Ke T, et al. Contrast enhanced MRI-guided photodynamic therapy for site-specific cancer treatment. Magn Reson Med 2006;56:761-7
  • Liu J, Ohta SI, Sonoda A, et al. Preparation of PEG-conjugated fullerene containing Gd3+ ions for photodynamic therapy. J Control Release 2007;117:104-10
  • Choi Y, Weissleder R, Tung CH. Selective antitumor effect of novel protease-mediated photodynamic agent. Cancer Res 2006;66:7225-9
  • Campo MA, Gabriel D, Kucera P, et al. Polymeric Photosensitizer Prodrugs for Photodynamic Therapy. Photochem Photobiol 2007;83:958-65
  • Gabriel D, Campo MA, Gurny R, et al. Tailoring protease-sensitive photodynamic agents to specific disease-associated enzymes. Bioconjug Chem 2007;18:1070-7
  • Renno RZ, Terada Y, Haddadin MJ, et al. Selective photodynamic therapy by targeted verteporfin delivery to experimental choroidal neovascularization mediated by a homing peptide to vascular endothelial growth factor receptor-2. Arch Ophthalmol 2004;122:1002-11
  • Sezgin Z, Yuksel N, Baykara T. Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. Eur J Pharm Biopharm 2006;64:261-8
  • Sibata MN, Tedesco AC, Marchetti JM. Photophysical and photochemical studies of zinc(II) phthalocyanine in long time circulation micelles for Photodynamic Therapy use. Eur J Pharm Sci 2004;23:131-8
  • Zhang JX, Hansen CB, Allen TM, et al. Lipid-derivatized poly(ethylene glycol) micellar formulations of benzoporphyrin derivatives. J Control Release 2003;86:323-38
  • Iyer AK, Greish K, Fang J, et al. High-loading nanosized micelles of copoly(styrene-maleic acid)-zinc protoporphyrin for targeted delivery of a potent heme oxygenase inhibitor. Biomaterials 2007;28:1871-81
  • Chowdhary RK, Sharif I, Chansarkar N, et al. Correlation of photosensitizer delivery to lipoproteins and efficacy in tumor and arthritis mouse models; comparison of lipid-based and Pluronic P123 formulations. J Pharm Pharm Sci 2003;6:198-204
  • Regehly M, Greish K, Rancan F, et al. Water-soluble polymer conjugates of ZnPP for photodynamic tumor therapy. Bioconjug Chem 2007;18:494-9
  • Li B, Moriyama EH, Li F, et al. Diblock copolymer micelles deliver hydrophobic protoporphyrin IX for photodynamic therapy. Photochem Photobiol 2007;83:1505-12
  • Akiyama M, Ikeda A, Shintani T, et al. Solubilisation of [60] fullerenes using block copolymers and evaluation of their photodynamic activities. Org Biomol Chem 2008;6:1015-9
  • Sezgin Z, Yuksel N, Baykara T. Investigation of pluronic and PEG-PE micelles as carriers of meso-tetraphenyl porphine for oral administration. Int J Pharm 2007;332:161-7
  • Chowdhary RK, Chansarkar N, Sharif I, et al. Formulation of benzoporphyrin derivatives in pluronics. Photochem Photobiol 2003;77:299-303
  • Torchilin VP, Levchenko TS, Lukyanov AN, et al. p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim Biophys Acta Biomembr 2001;1511:397-411
  • Roby A, Erdogan S, Torchilin VP. Solubilization of poorly soluble PDT agent, meso-tetraphenylporphin, in plain or immunotargeted PEG-PE micelles results in dramatically improved cancer cell killing in vitro Eur J Pharm Biopharm 2006;62:235-40
  • Roby A, Erdogan S, Torchilin VP. Enhanced in vivo antitumor efficacy of poorly soluble PDT Agent, meso-tetraphenylporphine, in PEG-PE-based tumor-targeted immunomicelles. Cancer Biol Ther 2007;6:1136-42
  • Zheng G, Chen J, Li H, et al. Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents. Proc Natl Acad Sci USA 2005;102:17757-62
  • Cinteza LO, Ohulchanskyy TY, Sahoo Y, et al. Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy. Mol Pharm 2006;3:415-23
  • Jang WD, Nishiyama N, Zhang GD, et al. Supramolecular nanocarrier of anionic dendrimer porphyrins with cationic block copolymers modified with polyethylene glycol to enhance intracellular photodynamic efficacy. Angew Chem Intl Ed Eng 2005;44:419-23
  • Ikeda A, Doi Y, Nishiguchi K, et al. Induction of cell death by photodynamic therapy with water-soluble lipid-membrane-incorporated [60] fullerene. Org Biomol Chem 2007;5:1158-60
  • Delanaye L, Bahri MA, Tfibel F, et al. Physical and chemical properties of pyropheophorbide-a methyl ester in ethanol, phosphate buffer and aqueous dispersion of small unilamellar dimyristoyl-L-alpha-phosphatidylcholine vesicles. Photochem Photobiol Sci 2006;5:317-25
  • Kosobe T, Moriyama E, Tokuoka Y, et al. Size and surface charge effect of 5-aminolevulinic acid-containing liposomes on photodynamic therapy for cultivated cancer cells. Drug Dev Ind Pharm 2005;31:623-9
  • Buchholz J, Kaser-Hotz B, Khan T, et al. Optimizing photodynamic therapy: in vivo pharmacokinetics of liposomal meta-(tetrahydroxyphenyl) chlorin in feline squamous cell carcinoma. Clin Cancer Res 2005;11:7538-44
  • Erdogan S, Medarova ZO, Roby A, et al. Enhanced tumor MR imaging with gadolinium-loaded polychelating polymer-containing tumor-targeted liposomes. J Magn Reson Imaging 2008;27:574-80
  • Namiki Y, Namiki T, Date M, et al. Enhanced photodynamic antitumor effect on gastric cancer by a novel photosensitive stealth liposome. Pharm Res 2004;50:65-76
  • Kepczynski M, Nawalany K, Jachimska B, et al. Pegylated tetraarylporphyrin entrapped in liposomal membranes: a possible novel drug-carrier system for photodynamic therapy. Colloids Surf B Biointerfaces 2006;49:22-30
  • Buchholz J, Wergin M, Walt H, et al. Photodynamic therapy of feline cutaneous squamous cell carcinoma using a newly developed liposomal photosensitizer: preliminary results concerning drug safety and efficacy. J Vet Intern Med 2007;21:770-5
  • Takeuchi Y, Kurohane K, Ichikawa K, et al. Polycation liposome enhances the endocytic uptake of photosensitizer into cells in the presence of serum. Bioconjug Chem 2003;14:790-6
  • Takeuchi Y, Ichikawa K, Yonezawa S, et al. Intracellular target for photosensitization in cancer antiangiogenic photodynamic therapy mediated by polycation liposome. J Control Release 2004;97:231-40
  • Gijsens A, Derycke A, Missiaen L, et al. Targeting of the photocytotoxic compound AlPcS4 to Hela cells by transferrin conjugated PEG-liposomes. Int J Cancer 2002;101:78-85
  • Ichikawa K, Hikita T, Maeda N, et al. PEGylation of liposome decreases the susceptibility of liposomal drug in cancer photodynamic therapy. Biol Pharm Bull 2004;27:443-4
  • Elbayoumi TA, Pabba S, Roby A, et al. Antinucleosome antibody-modified liposomes and lipid-core micelles for tumor-targeted delivery of therapeutic and diagnostic agents. J Liposome Res 2007;17:1-14
  • Ricci-Júnior E, Marchetti JM. Zinc(II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use. Int J Pharm 2006;310:187-95
  • Zeisser-Labouèbe M, Lange N, Gurny R, et al. Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer. Int J Pharm 2006;326:174-81
  • Vargas A, Pegaz B, Debefve E, et al. Improved photodynamic activity of porphyrin loaded into nanoparticles: an in vivo evaluation using chick embryos. Int J Pharm 2004;286:131-45
  • Gao D, Agayan RR, Xu H, et al. Nanoparticles for two-photon photodynamic therapy in living cells. Nano Lett 2006;6:2383-6
  • Kim S, Ohulchanskyy TY, Pudavar HE, et al. Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two-photon photodynamic therapy. J Am Chem Soc 2007;129:2669-75
  • Kopelman R, Lee Koo YE, Philbert M, et al. Multifunctional nanoparticle platforms for in vivo MRI enhancement and photodynamic therapy of a rat brain cancer. J Magn Magn Mater 2005;293:404-10
  • Reddy GR, Bhojani MS, McConville P, et al. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 2006;12:6677-86
  • Tada DB, Vono LR, Duarte EL, et al. Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy. Langmuir 2007;23:8194-9
  • Tang W, Xu H, Kopelman R, et al. Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms. Photochem Photobiol 2005;81:242-9
  • Tang W, Xu H, Park EJ, et al. Encapsulation of methylene blue in polyacrylamide nanoparticle platforms protects its photodynamic effectiveness. Biochem Biophys Res Commun 2008;369:579-83
  • Ohulchanskyy TY, Roy I, Goswami LN, et al. Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano Lett 2007;7:2835-42
  • Roy I, Ohulchanskyy TY, Pudavar HE, et al. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc 2003;125:7860-5
  • Wieder ME, Hone DC, Cook MJ, et al. Intracellular photodynamic therapy with photosensitizer–nanoparticle conjugates: cancer therapy using a ‘Trojan horse’. Photochem Photobiol Sci 2006;5:727-34
  • Chatterjee DK, Yong Z. Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. Nanomedicine 2008;3:73-82
  • Wainwright M. Photodynamic therapy: the development of new photosensitisers. Anticancer Agents Med Chem 2008;8:280-91
  • Baba K, Pudavar HE, Roy I, et al. New method for delivering a hydrophobic drug for photodynamic therapy using pure nanocrystal form of the drug. Mol Pharm 2007;4:289-97
  • Sako Y, Goto Y, Murakami H, et al. Ribosomal synthesis of peptidase-resistant peptides closed by a nonreducible inter-side-chain bond. ACS Chem Biol 2008;3:241-9
  • Brocchini S, Godwin A, Balan S, et al. Disulfide bridge based PEGylation of proteins. Adv Drug Deliv Rev 2008;60:3-12
  • Uchida T. STX-liposome conjugates as candidate vaccines. Drugs Today 2003;39:673-93
  • Georgens C, Weyermann J, Zimmer A. Recombinant virus like particles as drug delivery system. Curr Pharm Biotechnol 2005;6:49-55
  • Lee LA, Wang Q. Adaptations of nanoscale viruses and other protein cages for medical applications. Nanomedicine 2006;2:137-49
  • Portney N, Gozkan M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 2006;384:620-30

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.