343
Views
6
CrossRef citations to date
0
Altmetric
Review

Insulin encapsulation

Pages 1335-1355 | Published online: 01 Dec 2008

Bibliography

  • Mayer JP, Zhang F, Di Marchi RD. Insulin Structure and Function. Biopolymers Pept Sci 2007;88(5):687-713
  • Khafagy E, Morishita M, Onuki Y, Takayama K. Current challenges in Non-Invasive Insulin Delivery Systems: A comparative review. Adv Drug Deliv Rev 2007;59:1521-46
  • Varshosaz J. Insulin delivery systems for controlling diabetes. Recent Patents Endocr Metab Immune Drug Discov 2007;1:25-40
  • Sadrzadeh N, Glembourt MJ, Stevenson CL. Peptide drug delivery strategies for the treatment of diabetes. J Pharm Sci 2007;96(8):1925-54
  • Carino GP, Mathiowitz E. Oral insulin delivery. Adv Drug Deliv Rev 1999;35:249-57
  • Des Rieux A, Fievez V, Garinot M, et al. Nanoparticles as Potential Oral Delivery Systems for proteins and vaccines: A Mechanistic Approach. J Control Rel 2006;116:1-27
  • Silva GA, Ducheyne P, Reis RL. Materials in particulate form for tissue engineering. J Tissue Eng Regen Med 2007;1:4-24
  • Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J Control Release 2003;90:261-80
  • Couvreur P, Barratt G, Fattal E, Legrand P, et al. Nanpcapsule Technology: A Review. Crit Rev Ther Drug Carrier Syst 2002;19(2):99-134
  • Pitaksuteepong T, Davies NM, Tucker IG, Rades T. Factors influencing the entrapment of hydrophilic compounds In nanocapsules prepared by interfacial polymerisation of Water-In-Oil microemulsions. Eur J Pharm Biopharm 2002;53:335-42
  • Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of Drug-Loaded polymeric nanoparticles. Nanomedicine: Nanotechnol Biol Med 2006;2(1):8-21
  • Ghosh SK. Functional coatings and microencapsulation: a general perspective. In: Ghosh SK, editor, Functional coatings: by polymer microencapsulation; Wiley; 2006
  • Freitas S, Merkle HP, Gander B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Control Rel 2005;102:313-32
  • Ghaderi R. A Supercritical fluids extraction process for the production of drug loaded biodegradable microparticles. UPPSALA: Uppsala University; 2000
  • Hinds KD, Campbell KM, Holland KM, et al. PEGylated insulin in PLGA microparticles. In vivo and in vitro analysis. J Control Release 2005;104:447-60
  • Trotta M, Cavalli R, Carlotti ME, et al. Solid lipid micro-particles carrying insulin formed by solvent-in-water Emulsion–diffusion technique. Int J Pharm 2005;288:281-8
  • Takenaga M, Yamaguchi Y, Kitagawa A, et al. A Novel sustained-release formulation of insulin with dramatic reduction in initial rapid release. J Control Rel 2002;79:81-91
  • Reithmeier H, Herrmann J, Gopferich A. Lipid microparticles as a parental controlled release device for peptides. J Control Rel 2001;73:339-50
  • Kang F, Singh J. Preparation, in vitro release, in vivo absorption and biocompatibility studies of insulin-loaded microspheres in rabbits. AAPS PharmSciTech 2005;6(3):E487-94
  • Pal R. Rheology of double emulsions. J Colloid Interface Sci 2006;307:509-15
  • Teply BA, Tong R, Jeong SY, et al. The use of charge-coupled polymeric microparticles and micromagnets for modulating the bioavailability of orally delivered macromolecules. Biomaterials 2008;29:1216-23
  • Jain D, Panda AK, Majumdar DK. Eudragit S100 entrapped insulin microspheres for oral delivery. AAPS PharmSciTech 2005;6(1):E100-7
  • Damgé C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release 2007;117(2):163-170
  • Liu J, Zhang SM, Chen PP, et al. Controlled release of insulin from PLGA nanoparticles embedded within PVA hydrogels. J Mater Sci Mater Med 2007;18:2205-10
  • Ungaro F, De Rosa G, Miro A, et al. Cyclodextrins in the production of large porous particles: development of dry powders for the sustained release of insulin to the lungs. Eur J Pharm Sci 2006;28:423-32
  • Cournarie F, Savelli MP, Rosilio V, et al. Insulin-Loaded W/O/W multiple emulsions: comparison of the performances of systems prepared with medium-chain-triglycerides and fish oil. Eur J Pharm Biopharm 2004;58:477-82
  • Choi SH, Kwon JH, Kim CW. Microencapsulation of insulin microcrystals. Biosci Biotechnol Biochem 2004;68(3):749-52
  • Cournarie F, Rosilio V, Cheron M, et al. Improved Formulation of W/O/W multiple emulsion for insulin encapsulation. Influence of the chemical structure of insulin. Colloid Polym Sci 2004;282:562-8
  • De Rosa G, Iommelli R, La Rotonda MI, et al. Influence of the Co-encapsulation of different non-ionic surfactants on the properties of PLGA insulin-loaded microspheres. J Control Rel 2000;69:283-95
  • Ma J, Feng P, Ye C, et al. An improved interfacial coacervation technique to fabricate biodegradable nanocapsules of an aqueous peptide solution from polylactide and its block copolymers with poly(Ethylene Glycol). Colloid Polym Sci 2001;279:387-92
  • Ibrahim MA, Ismaila A, Fetouh MI, Gopferich A. Stability of insulin during the erosion of poly(Lactic Acid) and poly(Lactic-Co-Glycolic Acid) microspheres. J Control Rel 2005;106:241-52
  • Yamaguchi Y, Takenaga M, Kitagawa A, et al. Insulin-loaded biodegradable PLGA microcapsules: initial burst release controlled by hydrophilic additives. J Control Release 2002;81:235-49
  • Manoharan C, Singh J. Insulin loaded PLGA microspheres: effects of zinc salts on encapsulation, release, and stability. J Pharm Sci 2008
  • Wang Y. Development of supercritical fluid processes for particle coating/encapsulation with Polymers. Newark: The state university of New Jersey; 2004
  • Yeo Y, Park K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharm Res 2004;27(1):1-12
  • Kim KK, Pack DW. Microspheres for drug delivery. In: Ferrari M, Lee AP, Lee LJ, editors, biomems and biomedical technology. Volume I. Biological and biomedical nanotechnology. Springer; 2006
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Boidegradable polymeric nanoparticles as drug delivery devices. J Control Rel 2001;70:1-20
  • Uskoković V, Drofenik M. Reverse micelles: inert nano-reactors or physico-chemically active guides of the capped reactions. Adv Colloid Interface Sci 2007;133:23-34
  • Paul BK, Moulik SP. Uses and applications of microemulsions. Curr Sci 2001;80(25):990-1001
  • Heuschkel S, Goebel A, Neubert RHH. Microemulsions – modern colloidal carrier for dermal and transdermal drug delivery. J Pharm Sci 2008;97(2):603-31
  • Kim H, Cho M, Sah H. Development of new reverse micellar microencapsulation technique to load water-soluble drug into PLGA microspheres. Arch Pharm Res 2005;28(3):370-5
  • Stubenrauch C, Wielputz T, Sottmann T, et al. Microemulsions as templates for the synthesis of metallic nanoparticles. Colloids Surf A Physicochem Eng Aspects 2008;317:328-38
  • Spernath A, Aserin A. Microemulsions as carriers for drugs And nutraceuticals. Adv Colloid Interface Sci 2006;128-30:47-64
  • Eastoe J, Hollamby MJ, Hudson L. Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interface Sci 2007;128-30:5-15
  • Jones MC, Gao H, Leroux JC. Reverse polymeric micelles for pharmaceutical applications. J Control Rel 2008
  • Cui F, Shi K, Zhang L, et al. Biodegradable nanoparticles loaded with insulin–phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J Control Release 2006;114(2):242-50
  • Agarwal V, Khan MA. Current status of the oral delivery of insulin. Pharm Technol 2001;76-90
  • Liu J, Tao Gong, Changguang Wang, et al. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization. Pharm Nanotechnol 2007;340(1-2):153-62
  • Cournarie F, Cheron M, Besnard M, Vauthier C. Evidence for restrictive parameters in formulation of insulin-loaded nanocapsules. Eur J Pharm Biopharm 2004;57:171-9
  • Pinto-Alphandary H, Aboubakar M, Jaillard D, et al. Visualization of insulin-loaded nanocapsules: in vitro and in vivo studies after oral administration. Pharm Res 2003;20(7):1071-83
  • Cournarie F, Auchere D, Chevenne D, et al. Absorption and efficiency of insulin after oral administration of insulin-loaded nanocapsules in diabetic rats. Int J Pharm 2002;242:325-8
  • Aboubakar M, Couvreur P, Pinto-Alphandary H, et al. Insulin-loaded nanocapsules for oral administration:in vitro and in vivo investigation. Drug Dev Res 2000;49:109-17
  • Aboubakar M, Puisieux F, Couvreur P, Vauthier C. Physico-chemical characterization of insulin-loaded poly(Isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. Int J Pharm 1999;183:63-6
  • Aboubakar M, Puisieux F, Couvreur P, et al. Study of the mechanism of insulin encapsulation in poly (Isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. J Biomed Mater Res 1999;47:568-76
  • Sullivan CO, Birkinshaw C. In Vitro degradation of insulin-loaded poly (n-Butylcyanoacrylate) nanoparticles. Biomater 2004;25:4375-82
  • Watnasirichaikul S, Davies NM, Rades T, Tucker IG. Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions. Pharm Res 2000;17(6):684-9
  • Xiong XY, Li YP, Li ZL, et al. Vesicles from pluronic/poly(Lactic Acid) block copolymers as new carriers for oral insulin delivery. J Control Release 2007;120:11-17
  • Leobandung W, Ichikawa H, Fukumori Y, Peppas NA. Preparation of stable insulin-loaded nanospheres of poly (Ethylene Glycol) macromers and N-isopropyl acrylamide. J Control Rel 2002;80:357-63
  • Morishita M, Goto T, Nakamaura K, et al. Novel oral insulin delivery systems based on complexation polymer hydrogels: single and multiple administration studies in type 1 and 2 diabetic rats. J Control Rel 2006;110:587-94
  • Sajeesh S, Sharma CP. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int J Pharm 2006
  • Varshosaz J, Sadrai H, Alinagari R. Nasal delivery of insulin using chitosan microspheres. J Microencapsul 2004;21(7):761-74
  • Jiang G, Qiu W, De Luca PP. Preparation and in vitro/in vivo evaluation of insulin-loaded poly (Acryloyl-Hydroxyethyl Starch)-PLGA composite microspheres. Pharm Res 2003;20(3):452-9
  • Carino GP, Jacob JS, Mathiowitz E. Nanosphere based oral insulin delivery. J Control Release 2000;65:261-9
  • Furtado S, Abramson D, Simhkay L, et al. Subcoutaneous delivery of insulin loaded poly (Fumaric-Co-Sebacic Anhydride) microspheres to type 1 diabetic rats. Eur J Pharm Biopharm 2006;63:229-36
  • Huang YY, Wang CH. Pulmonary delivery of insulin by liposomal carriers. J Control Rel 2006;113:9-14
  • Zhenqing H, Zhenxi Z, Chumanxin Z, Mei H. Use of natural plant extrudates (Sanguis Draxonis) for sustained oral insulin delivery with dramatic reduction of glycemic effects in DIABETIC rats. J Control Rel 2004;97:467-75
  • Mehnert W, Mader K. Solid Lipid nanoparticles production, characterization and applications. Adv Drug Deliv Rev 2001;47:165-96
  • Barichello JM, Morishita M, Takayama K, Nagai T. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 1999;25(4):471-6
  • Wang W, Liu X, Xie Y, et al. Microencapsulation using natural polysaccharides for drug delivery and cell implantation. J Mater Chem 2006;16:3252-67
  • Coviello T, Matricardi C, Alhaique F. Polysaccharide hydrogels for modified release formulations. J Control Rel 2007;119:5-24
  • Gouin S. Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 2004;15:330-47
  • Harish Prashanth KV, Tharanathan RN. Chitin/Chitosan: Modifications and their unlimited application potential – an overview. Trends Food Sci Technol 2007;18:117-31
  • Thanou M, Verhoef JC, Junginger HE. Chitosan and its derivatives as intestinal absorption enhancers. Adv Drug Deliv Rev 2001;50:S91-101
  • Martins S, Sarmento B, Souto EB, Ferreira D. Insulin-loaded alginate microspheres for oral delivery-effect of polysaccharide reinforcement on physicochemical properties and release profile. Carbohydr Polymers 2007;68(4):725-31
  • Onal S, Zihnioglu F. Encapsulation of insulin in chitosan-coated alginate beads: oral therapeutic peptide delivery. Art Cells Blood Subs Immob Biotech 2002;30(3):229-37
  • Yoshioka S, Stella VJ. Stability of drugs and dosage forms: Springer; 2000
  • Frömming K-H, Szejtli J. Cyclodextrins in pharmacy Springer; 1993
  • Moses LR, Dileep KJ, Sharma CP. Beta cyclodextrin-insulin-encapsulated chitosan/alginate matrix: oral delivery system. J Appl Polymer Sci 2000;75:1089-96
  • Nilsson CL. Lectins: Analytical technologies: Elsevier;2007
  • Pusztai A, Bardocz S, Ewn SWB. Plant lectins for oral drug delivery to different parts of gastrointestinal tract. In: mathiowitz E, chickering DE, chickering III DE, lehr C-M, editors, Bioadhesive drug delivery systems: fundamentals, novel approaches, and development. CRC Press; 1999
  • Lee ER. Microdrop generation: CRC Press; 2002
  • Kim BY, Jeong SY, Park K, Kim JD. Bioadhesive interaction and hypoglycemic effect Of insulin-loaded lectin-microparticle conjugates in oral insulin delivery system. J Control Rel 2005;102:525-38
  • Sarmento B, Ribeiro A, Veiga F, Sampaio P, et al. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res 2007;24(12):2198-206
  • Sarmento B, Ribeiro A, Veiga F, et al. Insulin-Loaded Nanoparticles are Prepared By Alginate Ionotropic Pre-Gelation Followed By Chitosan Polyelectrolyte Complexation. J Nanosci Nanotechnol 2007;7:2833-41
  • Sarmento B, Ribeiro A, Veiga F, et al. Insulin-loaded alginate/chitosan nanoparticles produced by Ionotropic pre-gelation. Rev Por Farm 2005;LII 2:139-140
  • Sarmento B, Ferreira D, Veiga F, Ribeiro A. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr Polymers 2006;66(1):1-7
  • Sarmento B, Ferreira D, Jorgensen L, Van De Weert M. Probing Insulin's Secondary Structure After Entrapment Into Alginate/Chitosan Nanoparticles. Eur J Pharm Biopharm 2007;65:10-17
  • Poncelet D, Babak V, Dulieu C, Picot A. A Physico-chemical approach to production of alginate beads by emulsification-internal ionotropic gelation. Colloids Surf A Physicochem Eng Aspects 1999;155:171-6
  • Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Alginate microparticles as novel carrier for oral insulin. Deliv Biotechnol Bioeng 2007;96(5):977-89
  • Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Design of insulin-loaded alginate nanoparticles: influence of The calcium ion on polymer gel matrix properties. Chemical industry and chemical engineering quarterly (CI&CEQ) 2006;12(1):47-52
  • Silva CM, Ribeiro AJ, Figueiredo IV, Goncalves AR, et al. Alginate microspheres prepared by internal gelation: development and effect on insulin stability. Int J Pharm 2006;311:1-10
  • Liu X, Xue W, Liu Q, et al. Swelling behaviour of alginate–chitosan microcapsules prepared by external gelation or internal gelation technology. Carbohydr Polymers 2004;56:459-64
  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Rel 2004;100:5-28
  • Pan Y, Zheng JM, Zhao HY, et al. Relationship between drug effects and particle size of insulin-loaded bioadhesive microspheres. Acta Pharmacol Sin 2002;23(11):1051-6
  • Boonsongrit Y, Mitrevej A, Mueller BW. Chitosan drug binding by ionic interaction. Eur J Pharm Biopharm 2006;62:267-74
  • Berger J, Reist M, Mayer JM, et al. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 2004;57:19-34
  • Wang LY, Ma GH, Su ZG. Preparation of uniform sized chitosan microspheres by membrane emulsification technique and application as a carrier of protein drug. J Control Release 2005;106:62-75
  • Charcosset C, Fessi H. Membrane emulsification and microchannel emulsification processes. Rev Chem Eng 2005;21(1):1-32
  • Van Der Graaf S, Schroen CGPH, Boom RM. Preparation of double emulsions by membrane emulsification. J Membr Science 2005;251:7-15
  • Vladisavljevic GT, Williams RA. Recent developments in manufacturing emulsions and particulate products using membranes. Adv Colloid Interfaces Sci 2005;113:1-20
  • Lambrich U. Emulsification using microporous systems. J Membr Sci 2005;257:76-84
  • Liu R, Huanga SS, Wan YH, et al. Preparation of insulin-loaded PLA/PLGA microcapsules by a novel membrane emulsification method and its release in vitro. Colloids Surf B Biointerfaces 2006;51:30-38
  • Liu R, Ma GH, Wan YH, Su ZG. Influence of process parameters on the size distribution of PLA microcapsules prepared by combining membrane emulsification technique and Double Emulsion-Solvent Evaporation Method. Colloids Surf B Biointerfaces 2005;45:144-53
  • Wang LY, Gu YH, Zhou QZ, et al. Preparation and characterization of uniform-sized chitosan microspheres containing insulin by membrane emulsification and a two-step solidification process. Colloids Surf B Biointerfaces 2006;50:126-35
  • Thomasin C, Merkle HP, Gander B. Physico-chemical parameters governing protein microencapsulation into biodegradable polyesters By coacervation. Int J Pharm 1997;147:173-86
  • Wang G, Uludag H. Recent developments in nanoparticle-based drug delivery and targeting systems WITH emphasis on protein-based nanoparticles. Expert Opin Drug Deliv 2008;5(5):1-17
  • Graves RL, Makoid MC, Jonnalagadda S. The effect of coencapsulation of bovine insulin with cyclodextrins in ethylcellulose microcapsule. J Microencapsul 2005;22(6):661-70
  • Sarmento B, Ribeiro A, Veiga F, Ferreira D. Development and characterization of new insulin containing polysaccharide nanoparticles. Colloids Surf B Biointerfaces 2006;53:193-202
  • Maheshwari VC. Large area electro-optical tactile sensor: characterization and design of a polymer, nanoparticle based tunneling device; 2006
  • Ye S, Wang C, Liu X, et al. New loading process and release properties of insulin from polysaccharide microcapsules fabricated through layer-by-layer assembly. J Control Release 2006;112:79-87
  • Fan YF, Wan YN, Fan YG, Ma JB. Preparation of insulin nanoparticles and their encapsulation with biodegradable polyelectrolytes via the layer-by-layer adsorption. Int J Pharm 2006;324:158-67
  • Raffin RP, Jonada DS, Ines REM, et al. Sodium pantoprazole-loaded enteric microparticles prepared by spray drying: effect of the scale of production and process validation. Int J Pharm 2006;324:10-18
  • Quaglia F, De Rosa G, Granata E, et al. Feeding liquid, non-ionic surfactant and cyclodextrine affect the properties of insulin-loaded poly(Lactide-Co-Glycolide) microspheres prepared by spray-drying. J Control Release 2003;86:267-78
  • De Rosa G, Domenico L, La Rotonda MI, et al. How cyclodextrin incorporation affects the properties of protein-loaded PLGA-based microspheres: the case of insulin/hydroxypropyl-β-cyclodextrin system. J Control Release 2005;102:71-83
  • Whitaker MJ, Hao J, Davies OR, et al. The production of protein-loaded microparticles by supercritical fluid enhanced mixing and spraying. J Control Rel 2005;101:85-92
  • Maschke A, Becker C, Eyrich D, et al. Development of a spray congealing process for the preparation of insulin-loaded lipid microparticles and characterization thereof. Eur J Pharm Biopharm 2007;65:175-87
  • Jaworek A. Micro- and nanoparticle production by electrospraying. Powder Technology 2007;176:18-35
  • Gomez A, Bingham D, De Juan L, Tang K. Production of protein nanoparticles by electrospray drying. J Aerosol Sci 1998;29(5/6):561-74
  • Hu J, Johnston KP, Williams III RO. Spray Freezing Into Liquid (SFL) particle engineering technology to enhance dissolution of poorly water soluble drugs: organic solvent versus organic/aqueous co-solvent systems. Eur J Pharm Sci 2003;20:295-303
  • Yu Z, Rogers TL, Hu J, et al. Preparation and characterization of microparticles containing peptide produced by a novel process: spray freezing into liquid. Eur J Pharm Biopharm 2002;54:221-8
  • Barron MK, Young TJ, Johnston KP, Williams III RO. Investigation of processing parameters of spray freezing into liquid to prepare polyethylene glycol polymeric particles for drug delivery. AAPS PharmSciTech 2003;4(2):1-13
  • Yeo SD, Kirana E. Formation of polymer particles with supercritical fluids: a review. J Supercritical Fluids 2005;34:287-308
  • Elvassore N, Bertucco A, Caliceti P. Production of Insulin-Loaded Poly(Ethylene Glycol)/Poly(l-Lactide)(PEG/PLA) Nanoparticles by Gas Antisolvent Techniques. J Pharm Sci 2001;90(10):1628-36
  • Alvarez M, Friend J, Yeo L, Arifin D. Microaerosol and nanoparticle synthesis for drug delivery via surface acoustic wave atomization. 16th Australasian Fluid Mechanics Conference; 2 – 7 December 2007; Crown Plaza, Gold Coast, Austarlia; 2007. p. 621-4
  • Merisko-Liversidge E, McGurk SL, Liversidge GG. Insulin nanoparticles: a novel formulation approach for poorly water soluble zn-insulin. Pharm Res 2004;21(9):1545-53
  • Robertson RP, Davis C, Larsen J, et al. Pancreas and islet transplantation for patients with diabetes. Diabetes Care 2000;23(112-116)
  • Gunasekaran S. Human pancreatic islet transplantation. Int J Diab Dev Countries 2003;23:55-57
  • Ricordi C, Strom TB. Clinical islet transplantation: advances and immunological challenges. Nature 2004;4:259-69
  • Morishita M, Goto T, Peppas NA, Joseph JI, et al. Mucosal insulin delivery systems based on complexation polymer hydrogels: effect of particle size on insulin enteral absorption. J Control Release 2004;97:115-24
  • Morishita M, Lowman AM, Takayama K, et al. Elucidation of the mechanism of incorporation of insulin in controlled release systems based on complexation polymers. J Control Release 2002;81:25-32
  • Zhang Y, Zhu W, Wang B, Ding J. A novel microgel and associated post-fabrication encapsulation technique of proteins. J Control Rel 2005;105:260-8
  • Sariri R, Ghannadzadeh A. The use of polyglycol succinates for the microencapsulation of insulin. Iran Polymer J 2002;11(1):47-55
  • Chalasani KB, Russell-Jones GJ, Jain AK, et al. Effective oral delivery of insulin in animal models using vitamin b12-coated dextran nanoparticles. J Control Rel 2007;122:141-50

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.