647
Views
169
CrossRef citations to date
0
Altmetric
Reviews

Polymeric carriers: role of geometry in drug delivery

, &
Pages 1283-1300 | Published online: 01 Dec 2008

Bibliography

  • Lasic DD. Product review: doxorubicin in sterically stabilized liposomes. Nature 1996380(6574):561
  • Photos PJ, Bacakova L, Discher B, et al. Polymer vesicles in vivo: correlations with PEG molecular weight. J Control Rel 2003;90(3):323-34
  • Saad M, Garbuzenko OB, Ber E, et al. Receptor targeted polymers, dendrimers, liposomes: which nanocarrier is the most efficient for tumor-specific treatment and imaging? J Control Rel 2008;130(2):107-14
  • Predescu D, Palade GE. Plasmalemmal vesicles represent the large pore system of continuous microvascular endothelium. Am J Physiol 1993;265(2 Pt 2):H725-33
  • Vallet-Regi M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed Engl 2007;46(40):7548-58
  • Neumaier CE, Baio G, Ferrini S, et al. MR and iron magnetic nanoparticles. Imaging opportunities in preclinical and translational research. Tumori 2008;94(2):226-33
  • Misra RD. Quantum dots for tumor-targeted drug delivery and cell imaging. Nanomedicine 2008;3(3):271-4
  • Dziubla TD, Karim A, Muzykantov VR. Polymer nanocarriers protecting active enzyme cargo against proteolysis. J Control Rel 2005;102(2):427-39
  • Muro S, Cui X, Gajewski C, et al. Slow intracellular trafficking of catalase nanoparticles targeted to ICAM-1 protects endothelial cells from oxidative stress. Am J Physiol Cell Physiol 2003;285(5):C1339-47
  • Muro S, Gajewski C, Koval M, Muzykantov VR. ICAM-1 recycling in endothelial cells: a novel pathway for sustained intracellular delivery and prolonged effects of drugs. Blood 2005;105(2):650-8
  • Muro S, Garnacho C, Champion JA, et al. Control of Endothelial Targeting and Intracellular Delivery of Therapeutic Enzymes by Modulating the Size and Shape of ICAM-1-targeted Carriers. Mol Ther 2008. p. 1450-8
  • Chambers E, Mitragotri S. Long circulating nanoparticles via adhesion on red blood cells: mechanism and extended circulation. Exp Biol Med (Maywood) 2007;232(7):958-66
  • Inoue K, Suzuki K, Nojima S. Morphology of lipid micelles containing lysolecithin. J Biochem 1977;81(4):1097-106
  • Yager P, Schoen PE. Formation of Tubules by a Polymerizable Surfactant. Mol Crystals Liquid Crystals 1984;106:371-81
  • Lee KC, Carlson PA, Goldstein AS, et al. Protection of a decapeptide from proteolytic cleavage by lipidation and self-assembly into high-axial-ratio microstructures: a kinetic and structural study. Langmuir 1999;15(17):5500-8
  • Papahadjopoulos D, Vail WJ, Jacobson K, Poste G. Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochim Biophys Acta 1975;394(3):483-91
  • Janoff AS, Boni LT, Popescu MC, et al. Unusual lipid structures selectively reduce the toxicity of amphotericin B. Proc Natl Acad Sci USA 1988;85(16):6122-6
  • Hayes MA, Pysher MD, Chen K. Liposomes form nanotubules and long range networks in the presence of electric field. J Nanosci Nanotechnol 2007;7(7):2283-6
  • Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 2006;103(13):4930-4
  • Champion JA, Katare YK, Mitragotri S. Making polymeric micro- and nanoparticles of complex shapes. Proc Natl Acad Sci USA 2007;104(29):11901-4
  • Ho CC, Keller A, Odell JA, Ottewill RH. Preparation of monodisperse ellipsoidal polystyrene particles. Colloids Polym Sci 1993;271(5):469-79
  • Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 2007;121(1-2):3-9
  • Xu S, Nie Z, Seo M, et al. Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed Engl 2005;44(5):724-8
  • Dendukuri D, Pregibon DC, Collins J, et al. Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater 2006;5(5):365-9
  • Gratton SE, Pohlhaus PD, Lee J, et al. Nanofabricated particles for engineered drug therapies: a preliminary biodistribution study of PRINT nanoparticles. J Control Rel 2007;121(1-2):10-8
  • Gratton SE, Napier ME, Ropp PA, et al. Microfabricated Particles for Engineered Drug Therapies: Elucidation into the Mechanisms of Cellular Internalization of PRINT Particles. Pharm Res 2008
  • Discher DE, Eisenberg A. Polymer vesicles. Science 2002;297(5583):967-73
  • Jain S, Bates FS. On the origins of morphological complexity in block copolymer surfactants. Science 2003;300(5618):460-4
  • Lee JC, Bermudez H, Discher BM, et al. Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnol Bioeng 2001;73(2):135-45
  • Dalhaimer P, Bates FS, Discher DE. Single molecule visualization of stable, stiffness-tunable, flow-conforming worm micelles. Macromolecules 2003;36(18):6873-7
  • Bermudez H, Brannan AK, Hammer DA, et al. Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules 2002;35(21):8203-8
  • Ahmed F, Discher DE. Self-porating polymersomes of PEG–PLA and PEG–PCL: hydrolysis-triggered controlled release vesicles. J Control Release 2004;96(1):37-53
  • Geng Y, Dalhaimer P, Cai S, et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nano 2007;2(4):249-55
  • Simone EA, Dziubla TD, Colon-Gonzalez F, et al. Effect of polymer amphiphilicity on loading of a therapeutic enzyme into protective filamentous and spherical polymer nanocarriers. Biomacromolecules 2007;8(12):3914-21
  • Zheng LX, O'Connell MJ, Doorn SK, et al. Ultralong single-wall carbon nanotubes. Nature Materials 2004;3(10):673-6
  • Pampaloni F, Florin EL. Microtubule architecture: inspiration for novel carbon nanotube-based biomimetic materials. Trends Biotechnol 2008;26(6):302-10
  • Bianco A, Kostarelos K, Prato M. Opportunities and challenges of carbon-based nanomaterials for cancer therapy. Expert Opin Drug Deliv 2008;5(3):331-42
  • Zarif L. Drug delivery by lipid cochleates. Methods Enzymol 2005;391:314-29
  • Sharkey PK, Graybill JR, Johnson ES, et al. Amphotericin B lipid complex compared with amphotericin B in the treatment of cryptococcal meningitis in patients with AIDS. Clin Infect Dis 1996;22(2):315-21
  • Petros RA, Ropp PA, DeSimone JM. Reductively labile PRINT particles for the delivery of doxorubicin to HeLa cells. J Am Chem Soc 2008;130(15):5008-9
  • Kelly JY, DeSimone JM. Shape-specific, monodisperse nano-molding of protein particles. J Am Chem Soc 2008;130(16):5438-9
  • Liggins RT, Burt HM. Polyether–polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv Drug Deliv Rev 2002;54(2):191-202
  • Dalhaimer P, Engler AJ, Parthasarathy R, Discher DE. Targeted worm micelles. Biomacromolecules 2004;5(5):1714-9
  • Cai S, Vijayan K, Cheng D, et al. Micelles of Different Morphologies – Advantages of Worm-like Filomicelles of PEO–PCL in Paclitaxel Delivery. Pharm Res 2007;24(6):2099-109
  • Ahmed F, Pakunlu RI, Srinivas G, et al. Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Mol Pharm 2006;3(3):340-50
  • Accardo A, Tesauro D, Aloj L, et al. Peptide-containing aggregates as selective nanocarriers for therapeutics. ChemMedChem 2008;3(4):594-602
  • Hilder TA, Hill JM. Carbon nanotubes as drug delivery nanocapsules. Curr Appl Phys 2008;8(3-4):258-61
  • Popat KC, Eltgroth M, LaTempa TJ, et al. Titania nanotubes: a novel platform for drug-eluting coatings for medical implants? Small 2007;3(11):1878-81
  • Garnacho C, Dhami R, Simone EA, et al. Delivery of Acid Sphingomyelinase in Normal and Niemann-Pick Disease Mice Using Intercellular Adhesion Molecule-1-Targeted Polymer Nanocarriers. J Pharmacol Exp Ther 2008;325(2):400-8
  • Takagi A, Hirose A, Nishimura T, et al. Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 2008;33(1):105-16
  • Tazawa H, Tatemichi M, Sawa T, et al. Oxidative and nitrative stress caused by subcutaneous implantation of a foreign body accelerates sarcoma development in Trp53+/- mice. Carcinogenesis 2007;28(1):191-8
  • Kumar N, Ravikumar MN, Domb AJ. Biodegradable block copolymers. Adv Drug Deliv Rev 2001;53(1):23-44
  • Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 1997;28(1):5-24
  • Siepmann J, Gopferich A. Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv Drug Deliv Rev 2001;48(2-3):229-47
  • Hanes J, Chiba M, Langer R. Synthesis and Characterization of Degradable Anhydride-co-imide Terpolymers Containing Trimellitylimido-L-Tyrosine: Novel Polym Drug Deliv Macromol 1996;29(16):5279-87
  • Leong KW, Brott BC, Langer R. Bioerodible polyanhydrides as drug-carrier matrices. I: Characterization, degradation, and release characteristics. J Biomed Mater Res 1985;19(8):941-55
  • Tabata Y, Gutta S, Langer R. Controlled delivery systems for proteins using polyanhydride microspheres. Pharm Res 1993;10(4):487-96
  • Jiang HL, Zhu KJ. Preparation, characterization and degradation characteristics of polyanhydrides containing poly(ethylene glycol). Polym Int 1999;48(1):47-52
  • Carino GP, Jacob JS, Mathiowitz E. Nanosphere based oral insulin delivery. J Control Release 2000;65(1-2):261-9
  • Fu J, Wu, Chi. Laser Light Scattering of the Degradation of Poly(sebacic anhydride) Nanoparticles. Journal of Polymer Science : Part B: Polymer Physics 2001;39(6):703-8
  • Pfeifer BA, Burdick JA, Langer R. Formulation and surface modification of poly(ester-anhydride) micro- and nanospheres. Biomaterials 2005;26(2):117-24
  • Li S, Garreau H, Vert M. Structure–property relationships in the case of the degradation of solid aliphatic poly-(α-hydroxy acids) in aqueous media part 3: influence of the morphology of poly(L-lactic acid). J Matter Sci Mater Med 1990;1(4):198-206
  • Li S, Garreau H, Vert M. Structure–property relationships in the case of the degradation of solid aliphatic poly-(α-hydroxy acids) in aqueous media. Part 1 Poly(DL-lactic acid). J Matter Sci Mater Med 1990;1(3):123
  • Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003;2(5):347-60
  • Geng Y, Discher DE. Hydrolytic degradation of poly(ethylene oxide)-block-polycaprolactone worm micelles. J Am Chem Soc 2005;127(37):12780-1
  • Shih C. A graphical method for the determination of the mode of hydrolysis of biodegradable polymers. Pharm Res 1995;12(12):2036-60
  • Gopferich A. Mechanisms of polymer degradation and erosion. Biomaterials 1996;17(2):103-14
  • Li S, Molina I, Martinez MB, Vert M. Hydrolytic and enzymatic degradations of physically crosslinked hydrogels prepared from PLA/PEO/PLA triblock copolymers. J Mater Sci Mater Med 2002;13(1):81-6
  • MacDonald RT, McCarthy SP, Gross RA. Enzymatic degradability of poly(lactide): effects of chain stereochemistry and material crystallinity. Macromolecules 1996;29(23):7356-61
  • Tokiwa Y, Jarerat A. Biodegradation of poly(L-lactide). Biotechnol Lett 2004;26(10):771-7
  • Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 1990;268(1):235-7
  • Lee JC, Wong DT, Discher DE. Direct measures of large, anisotropic strains in deformation of the erythrocyte cytoskeleton. Biophys J 1999;77(2):853-64
  • Moghimi SM, Porter CJ, Muir IS, et al. Non-phagocytic uptake of intravenously injected microspheres in rat spleen: influence of particle size and hydrophilic coating. Biochem Biophys Res Commun 1991;177(2):861-6
  • Singh R, Pantarotto D, Lacerda L, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 2006;103(9):3357-62
  • Liu Z, Davis C, Cai W, et al. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci USA 2008;105(5):1410-5
  • Lacerda L, Ali-Boucetta H, Herrero MA, et al. Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine 2008;3(2):149-61
  • Bedu-Addo FK, Tang P, Xu Y, Huang L. Interaction of polyethyleneglycol–phospholipid conjugates with cholesterol–phosphatidylcholine mixtures: sterically stabilized liposome formulations. Pharm Res 1996;13(5):718-24
  • Cato MH, D'Annibale F, Mills DM, et al. Cell-type specific and cytoplasmic targeting of PEGylated carbon nanotube-based nanoassemblies. J Nanosci Nanotechnol 2008;8(5):2259-69
  • McDevitt MR, Chattopadhyay D, Kappel BJ, et al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 2007;48(7):1180-9
  • Garnacho C, Albelda SM, Muzykantov VR, Muro S. Differential intra-endothelial delivery of polymer nanocarriers targeted to distinct PECAM-1 epitopes. J Control Release 2008;130(3):226-33
  • Muzykantov VR. Targeting pulmonary endothelium. In: Muzykantov VRaT V, editor, Biomedical aspects of drug targeting. Boston: Kluwer Academic Publishers; 2003. p. 129-48
  • Lamaze C, Schmid SL. The emergence of clathrin-independent pinocytic pathways. Curr Opin Cell Biol 1995;7(4):573-80
  • Hewlett LJ, Prescott AR, Watts C. The coated pit and macropinocytic pathways serve distinct endosome populations. J Cell Biol 1994;124(5):689-703
  • Koval M, Preiter K, Adles C, et al. Size of IgG-opsonized particles determines macrophage response during internalization. Exp Cell Res 1998;242(1):265-73
  • Storrie B, Desjardins M. The biogenesis of lysosomes: is it a kiss and run, continuous fusion and fission process? Bioessays 1996;18(11):895-903
  • Brewer JM, Tetley L, Richmond J, et al. Lipid vesicle size determines the Th1 or Th2 response to entrapped antigen. J Immunol 1998;161(8):4000-7
  • Romero EL, Morilla MJ, Regts J, et al. On the mechanism of hepatic transendothelial passage of large liposomes. FEBS Lett 1999;448(1):193-6
  • Champion JA, Mitragotri S. Shape Induced Inhibition of Phagocytosis of Polymer Particles. Pharm Res 2008 [Epub ahead of print]
  • Caron E, Hall A. Phagocytosis: Oxford University Press, 2001
  • Sahagian GG, Steer CJ. Transmembrane orientation of the mannose 6-phosphate receptor in isolated clathrin-coated vesicles. J Biol Chem 1985;260(17):9838-42
  • Muro S, Wiewrodt R, Thomas A, et al. A novel endocytic pathway induced by clustering endothelial ICAM-1 or PECAM-1. J Cell Sci 2003;116(Pt 8):1599-609
  • Kok RJ, Everts M, Asgeirsdottir SA, et al. Cellular handling of a dexamethasone-anti-E-selectin immunoconjugate by activated endothelial cells: comparison with free dexamethasone. Pharm Res 2002;19(11):1730-5
  • Ricard I, Payet MD, Dupuis G. VCAM-1 is internalized by a clathrin-related pathway in human endothelial cells but its alpha 4 beta 1 integrin counter-receptor remains associated with the plasma membrane in human T lymphocytes. Eur J Immunol 1998;28(5):1708-18
  • Tsourkas A, Shinde-Patil VR, Kelly KA, et al. In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. Bioconjug Chem 2005;16(3):576-81
  • Fingar VH, Taber SW, Buschemeyer WC, et al. Constitutive and stimulated expression of ICAM-1 protein on pulmonary endothelial cells in vivo Microvasc Res 1997;54(2):135-44
  • Kam NW, Liu Z, Dai H. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed Engl 2006;45(4):577-81
  • Jin H, Heller DA, Strano MS. Single-Particle Tracking of Endocytosis and Exocytosis of Single-Walled Carbon Nanotubes in NIH-3T3 Cells. Nano Lett 2008;8(6):1577-85
  • Kostarelos K, Lacerda L, Pastorin G, et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2007;2(2):108-13
  • Beningo KA, Wang YL. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J Cell Sci 2002;115(Pt 4):849-56

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.