811
Views
78
CrossRef citations to date
0
Altmetric
Review

Multifunctional coprocessed excipients for improved tabletting performance

& , PhD
Pages 197-208 | Published online: 24 Feb 2009

Bibliography

  • Freeman T. Powder Characterization for Formulation and Processing. Pharm Technol 2008
  • Shangraw RF. Compressed tablets by direct compression. In: Leiberman HA, Lachman L, Schwatz JB, editors, Pharmaceutical dosage forms: tablets. Volume 1. New York: Marcel Dekker. Inc., 1990. p. 195-246
  • Steinberg M, Blecher L, Mercill A. From inactive ingredients to pharmaceutical excipients. Pharm Technol 2001;25(7):62-4
  • Nachaegari SK, Bansal AK. Coprocessed excipients for solid dosage form. Pharm Technol 2004;28:52-65
  • Moreton RC. Tablet Excipients to the Year 2001: A Look into the Crystal Ball. Drug Dev Ind Pharm 1996;22(1):11-23
  • Modleszewski JJ, Ballard DA. FMC Corporation (Philadelphia, PA) assignee Coprocessed Galactomannan – Glucomannan. US5498436; 1996
  • Mehra DK, West KP, Wiggins JD. FMC Coporation (Philadelphia), assignee Coprocessed microcrystaline cellulose and calcium carbonate and its preparation. US4744987; 1988
  • Bolhius GK, Chowhan ZT. Materials for direct compaction. In: Alderborn G, Nystrom C, editors, Pharmaceutical powder compaction technology. Volume 7. New York: Marcel Dekker Inc., 1996. p. 419-500
  • Reimerds D. The Near Future of Tablet Excipients. Manufacturing chemist 1993;64(7):14-5
  • Compressol S. Available from: http://www.spipharma.com/downloads/Products/Excipients/Compressol_S/CompressolSTech.pdf.
  • Armstrong NA, Roscheisen G, Al-Aghbar MR. Cellactose As a Tablet Diluent. Manuf Chem 1996;67:25-6
  • Sherwood BE, Becker JW. A New Class of High Functionality Excipients: Silicified Microcrystalline Cellulose. Pharm Technol 1998;20:78-88
  • Morris LE, Moore JC, Schwartz JB. Characterization and performance of a new direct compression excipient for chewable tablets : Xylitab. Drug Dev Ind Pharm 1996;22(9-10):925-32
  • Flores LE, Arellano RL, Esquivel JJD. Study of Load Capacity of Avicel PH-200 and cellactose, Two Direct-Compression Excipients, Using Experimental Design. Drug Dev Ind Pharm 2000;26(4):465-9
  • Felton LA, Garcia DI, Farmer R. Weight and Weight Uniformity of Hard Gelatin Capsules Filled with Microcrystalline Cellulose and Silicified Microcrystalline Cellulose. Drug Dev Ind Pharm 2002;28(4):467-72
  • Veen BV, Bolhuis GK, Wu YS, et al. Compaction mechanism and tablet strength of unlubricated and lubricated (silicified) microcrystalline cellulose. Eur J Pharm Biopharm 2005;59(1):133-8
  • Avicel CE 15: Microcrystalline Cellulose and Guar Gum. Available from: http://www.fmcbiopolymer.com/Portals/bio/Content/Docs/Pharmaceuticals/Avicel%20CE-15.pdf
  • Parrott EL. Compression. In: Lieberman HA, Lachman L, Schwartz JB, editors, Pharmaceutical Dosage Forms: Tablets. Volume 2. Marcel Dekker Inc: New York, NY; 1990. p. 153-82
  • Jain S. Mechanical properties of powders for compaction and tableting: an overview. Pharm Sci Technol Today 1999;2(1):20-31
  • Shangraw RF. Compressed tablets by direct compression. In: Leiberman HA, Lachman L, Schwatz JB, editors, Pharmaceutical dosage forms: Tablets. Volume 2. New York: Marcel Dekker; 1990. p. 201-41
  • Casahoursat L, Lemagen G, Larrouture D. The use stress relaxation trials to characterize tablet capping. Drug Dev Ind Pharm 1988;14(15-17):2179-99
  • Picker KM. A new theoretical model to characterize the densification behavior of tableting materials. Eur J Pharm Biopharm 2000;49(3):267-73
  • Picker KM. The 3-D Model: Does Time Plasticity Represent the Influence of Tableting Speed? AAPS PharmSciTech 2003;4(4):E66
  • Picker KM. The 3-D Model: Comparison of Parameters Obtained From and by Simulating Different Tableting Machines. AAPS PharmSciTech 2003;4(3):E35
  • Picker KM. The 3D model: explaining densification and deformation mechanisms by using 3D parameter plots. Drug Dev Ind Pharm 2004;30(4):413-25
  • Nokhodchi A, Rubinstein MH, Ford JL. The effect of particle size and viscosity grade on the compaction properties of hydroxypropylmethylcellulose 2208. Int J Pharm 1995;126(1-2):189-97
  • Nokhodchi A, Ford JL, Rowe PH, Rubinstein MH. The effects of compression rate and force on the compaction properties of different viscosity grades of hydroxypropylmethylcellulose 2208. Int J Pharm 1996;129(1-2):21-31
  • Gupta P, Nachaegari SK, Bansal AK. Improved excipients functionality by coproceesing In: Katdare A, Chaubal MV, editors, Excipient Development for Pharmaceutical, Biotechnology, and Drug Delivery Systems: CRC Press, 2006. p. 109-24
  • Sherwood BE, Staniforth JH, Hunter EA, J Rettenmaier & Soehne GmbH + Co. KG (Rosenberg DE), assignee. Pharmaceutical excipient having improved compressibility. US6858231; 2005
  • McGinley EJ, Tuason DC. FMC Corporation (Philadephia, PA), assignee. Fat-like bulking agent for aqueous foods comprising microcrystalline cellulose and a galactomannan gum. US5192569; 1993
  • Modliszewski JJ, Ballard AD. FMC Corporation (Philadelphia, PA), assignee Coprocessed galactomannan-glucomannan. US5498436; 1996
  • Pharmatose DCL 11. Product specification bulletin. Available from: http://signetchem.com/pdf/pharmatosedcl11.pdf.
  • Pharmatose DCL 21. Product specification bulletin. Available from: http://www.signetchem.com/pdf/pharmatosedcl21.pdf.
  • Microcrystalline cellulose. In: Wade A, Waller PJ, editors, Handbook of Pharmaeutical excipients: The Pharmaceutical Press, London; 1994
  • Ludipress. Technical information. Available from: http://www.makeni.com.br/Portals/Makeni/prod/boletim/Ludipress.pdf. [Accessed 2001]
  • Cellactose 80. Available from: http://www.meggle-pharma.de/en/products/uebersicht/cellactose80/
  • Cellulose, Silicified Microcrystalline Cellulose. In: Rowe RC, Sheskey PJ, Owen SC, editors, Pharmaceutical excipients, 2005. p. 359-63
  • Starlac. Available from: www.meggle-pharma.de/en/product/uebersicht/starlac.
  • Dressler JA, Wagner KG. A corn starch/[alpha]-lactose monohydrate compound as a directly compressible excipient. Pharm Technol Eur 2003
  • Whiteman M, Yarwood RJ. Evaluaton of six lactose- based materials as direct compression tablet excipients. Drug Dev Ind Pharm 1988;14:1023-40
  • Ashrafi M, Chowdhury JA, Reza MS. Controlled Release of Metformin Hydrochloride I. In vitro Release from Physical Mixture Containing Xanthan Gum as Hydrophilic Rate Retarding Polymer. Dhaka University. J Pharm Sci 2005;4(1)
  • Munoz-Ruiz MA, Borrero-Rubio JM, Jimenez-Castellanos MR. Rheology of a New Excipient for Direct Compression: Ludipress. Pharm Acta Helv 1992;67:223-6
  • Munoz-Ruiz MA, Perales CM, Antequeva VV, Villar T. Rheology and Compression Characteristics of Lactose Based Direct Compression Excipients. Int J Pharm 1993;95:201-7
  • Schmidt PC, Rubensdorfer CJW. Evaluation of Ludipress as a “Multipurpose Excipient” for Direct Compression: Part I: Powder Characteristics and Tableting Properties. Drug Dev Ind Pharm 1994;20(18):2899-925
  • Schmidt PC, Rubensdorfer CJW. Evaluation of Ludipress as a “Multipurpose Excipient” for Direct Compression: Part II: Interactive blending and tableting with micronized Glibenclamide. Drug Dev Ind Pharm 1994;20(18):2927-52
  • Baykara T, Duman G, Ozesener KS, et al. Comparing the compressibility of using Acetaminophen as an active ingredient. Drug Dev Ind Pharm 1991;17:2359-71
  • Heinz R, Wolf H, Schuchmann H, et al. Formulation and development of tablets based on Ludipress and scale-up from laboratory to production scale. Drug Dev Ind Pharm 2000;26(5):513-21
  • Microcelac 100. Available from: http://www.meggle-pharma.de/en/products/uebersicht/microcelac100. [Accessed]
  • Garr JS, Rubinstein MH. Compaction Properties of a Cellulose-Lactose Direct Compression Excipient. Pharm Tech Int 1991;3:24-7
  • Belda PM, Mielck JB. The tabletting behaviour of Cellactose® compared with mixtures of celluloses with lactoses. Eur J Pharm Biopharm 1996;42(5):325-30
  • Arida Adi I, Al-Tabakha MM. Cellactose® a Co-processed Excipient: A Comparison Study. Pharm Dev Technol 2008;13:165-75
  • Gohel MC, Jogani PD. Exploration of Melt Granulation Technique for the Development of Coprocessed Directly Compressible Adjuvant Containing Lactose and Microcrystalline Cellulose. Pharm Dev Technol 2003;8(2 ):175-85
  • Michoel A, Rombaut P, Verhoye A. Comparative evaluation of co-processed lactose and microcrystalline cellulose with their physical mixtures in the formulation of folic acid tablets. Pharm Dev Technol 2002;7(1):79-87
  • Muzíková J, Zvolánková J. A study of the properties of tablets from coprocessed dry binders composed of alpha-lactose monohydrate and different types of cellulose. Ceska Slov Farm 2007;56(6):269-75
  • Hauschild K, Picker KM. Evaluation of a new co-processed compound based on lactose and maize starch for tablet formulation. AAPS PharmSci 2004;6:27-38
  • Gohel MC, Jogani PD. An Investigation in Direct Compression Characteristics of Co-processed Lactose-Starch using Experimental Design. Indian J Pharm Sci 2003;65:31-8
  • Luukkonen P, Schaefer T, Hellén L, et al. Rheological characterization of microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a mixer torque rheometer. Int J Pharm 1999;188(2):181-92
  • Fraser SD, Michael T, Stephan E, et al. Physicochemical comparison between microcrystalline cellulose and silicified microcrystalline cellulose. Int J pharm 1998;169:183-94
  • Buckton G, Yonemochi E, Yoonb WL, Moffatb AC. Water sorption and near IR spectroscopy to study the differences between microcrystalline cellulose and silicified microcrystalline cellulose before and after wet granulation. Int J Pharm 1999;181(1):41-7
  • Muzíková J, Nováková P. A Study of the Properties of Compacts from Silicified Microcrystalline Celluloses. Drug Dev Ind Pharm 2007;33(7):775 - 81
  • Edge S, Steele DF, Chen A, et al. The mechanical properties of compacts of microcrystalline cellulose and silicified microcrystalline cellulose. Int J Pharm 2000;200(1):67-72
  • Lahdenpää E, Antikainen O, Yliruusi J. Direct compression with silicified and non-silicified microcrystalline cellulose : study of some properties of powders and tablets. STP Pharma Sciences 2001;11(2):129-35
  • Kachrimanis K, Nikolakakis I, Malamataris S. Tensile strength and disintegration of tableted silicified microcrystalline cellulose: Influences of interparticle bonding. J Pharm Sci 2003;92(7):1489-501
  • Steele DF, Edge S, Tobyn MJ, et al. Adsorption of an Amine Drug onto Microcrystalline Cellulose and Silicified Microcrystalline Cellulose Samples. Drug Dev Ind Pharm 2003;29(4):475-87
  • Avicel CE15. In: Rowe RC, Sheskey PJ, Owen SC, editors, Pharmaceutical excipients, 2005. p. 348-49
  • Mehara DK, West KP, Wiggins JD, inventors; FMC Corporation, assignee. Coprocessed microcrystaline cellulose and calcium carbonate and its preparation. US; 1988
  • Limwong V, Sutanthavibul N, Kulvanich P. Spherical composite particles of rice starch and microcrystalline cellulose: A new co-processed excipient for direct compression. AAPS PharmSciTech 2004;5(2):E30
  • Li J, Carlin B, Ruszkay T. FMC Corporation (Philadelphia) assignee. Co-processed microcrystalline cellulose and sugar alcohol as an excipient for tablet formulations. Patent 20080131505; 2008
  • Jacob S, Shirwaikar AA, Joseph A, Srinivasan KK. Novel co-processed excipients of mannitol and microcrystalline cellulose for preparing fast dissolving tablets for Glipizide. Indian J Pharm Sci 2007;69(5):633-9
  • Harris D, Amin A. Compressol S – A Novel Direct Compression Excipient for the Nutraceutical Market. AAPS Annual Meeting and Exposition. T2262; 2006
  • Norman GT, Nuguru KS, Amin AF, Chandar S. SPI Pharma, Inc., assignee. Co-processed carbohydrate system as a quick-dissolve matrix for solid dosage forms. Patent 20060251716; 2006
  • Koivurinta JH. Suomen Sokeri Oy (Finnish Sugar Company Ltd.) (FI), assignee Binder-diluent composition and method. US4698101; 1987
  • Advantose FS 95. Available from: http://www.spipharma.com/downloads/Products/Excipients/Advantose_FS95/103AdvantoseFructose-tech.pdf.
  • Bhargava HN, Mendes RW. Lozenges. In: Swarbrick, Swarbrick J, Boylan JC, editors, Encyclopedia of Pharmaceutical Technology: Liposomes as Pharmaceutical Dosage Forms to Microencapsulation. Volume 9. New York London: Informa Health Care, 1994. p. 65-86
  • Xylitab. Available from: http://abstracts.aapspharmaceutica.com/expoaaps06/ec/forms/attendee/index.aspx?content=vbooth&id=195
  • Formaxx. Available from: http://www.rona.biz/lifescience/literature/Formaxx%20Co-processed%20Calcium%20Carbonate.pdf
  • Freitag F, Runge J, Kleinebudde P. Coprocessing of Powdered Cellulose and Magnesium Carbonate: Direct Tableting Versus Tableting After Roll Compaction/Dry Granulation. Pharm Dev Technol 2005;10(3):353-62
  • Adeagbo AA, Alebiowu G. Evaluation of Cocoa Butter as Potential Lubricant for Coprocessing in Pharmaceutical Tablets. Pharm Dev Technol 2008;13(3):197-204
  • Gohel MC, Parikh RK, Brahmbhatt BK, Shah AR. Preparation and Assessment of Novel Coprocessed Superdisintegrant Consisting of Crospovidone and Sodium Starch Glycolate: A Technical Note. AAPS PharmSciTech 2007;8(1):E1-7
  • Gohel MC, Parikh RK, Brahmbhatt BK, Shah AR. Improving the Tablet Characteristics and Dissolution Profile of Ibuprofen by Using a Novel Coprocessed Superdisintegrant: A Technical Note. AAPS PharmSciTech 2007;8(1):E1-6
  • Casalderrey M, Souto C, Concheiro A, et al. A comparison of drug loading capacity of cellactose with two ad hoc processed lactose-cellulose direct compression excipients. Chem Pharm Bull (Tokyo) 2004;52(4):398-401
  • Guidance for industry; Nonclinical studies for the safety evaluation of Pharmaceutical Excipients: published by US Department of Health and Human resources, FDA, CDER, and CBER; 2005
  • Pico RG, Sullivan TM. Regulation of Pharmaceutical Excipients. In: Katdare A, Chaubal M, editors, Excipient Development for Pharmaceutical, Biotechnology, and Drug Delivery Systems: CRC Press, 2006. p. 37-50

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.