672
Views
100
CrossRef citations to date
0
Altmetric
Reviews

Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases

&
Pages 211-225 | Published online: 16 Mar 2009

Bibliography

  • Federoff HJ. Novel targets for CNS gene therapy. Gene Ther 1999;6(12):1907-8
  • Pardridge WM. Why is the global CNS pharmaceutical market so under-penetrated? Drug Discov Today 2002;7(1):5-7
  • Tiwari SB, Amiji MM. A review of nanocarrier-based CNS delivery systems. Curr Drug Deliv 2006;3(2):219-32
  • Azzouz M, Ralph S, Wong LF, et al. Neuroprotection in a rat Parkinson model by GDNF gene therapy using EIAV vector. Neuroreport 2004;15(6):985-90
  • Bickel U, Yoshikawa T, Pardridge WM. Delivery of peptides and proteins through the blood–brain barrier. Adv Drug Deliv Rev 2001;46(1-3):247-79
  • Abdellatif AA, Pelt JL, Benton RL, et al. Gene delivery to the spinal cord: comparison between lentiviral, adenoviral, and retroviral vector delivery systems. J Neurosci Res 2006;84(3):553-67
  • Berry M, Barrett L, Seymour L, et al. Gene therapy for central nervous system repair. Curr Opin Mol Ther 2001;3(4):338-49
  • Costantini LC, Bakowska JC, Breakefield XO, Isacson O. Gene therapy in the CNS. Gene Ther 2000;7(2):93-109
  • Federoff HJ. CNS diseases amenable to gene therapy. Ernst Schering Res Found Workshop 2003;(43):117-58
  • Friedmann T. Gene therapy for disorders of the CNS. Gene Ther 1994;1(Suppl 1):S47-8
  • Taylor JP, Hardy J, Fischbeck KH. Toxic proteins in neurodegenerative disease. Science 2002;296:1991-5
  • Buckner RL, Snyder AZ, Shannon BJ, et al. Molecular, structural, and functional characterization of alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 2005;25:7709-17
  • Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. Drug metabolism and pharmacokinetics, the blood–brain barrier, and central nervous system drug discovery. NeuroRx 2005;2(4):554-71
  • Hebert LE, Scherr PA, Bienias JL, et al. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 2003;60:1119-22
  • Melnikova I. Therapies for Alzheimer's disease. Nat Rev Drug Discov 2007;6(5):341-2
  • Schneider LS, Tariot PN, Dagerman KS, et al. Effectiveness of atypical antipsychotic drugs in patients with Alzheimer's disease. N Engl J Med 2006;355(15):1525-38
  • Lim G. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 2001;21(21):8370-7
  • Lim GP, Calon F, Morihara T, et al. A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci 2005;25:3032-40
  • Tobinick E, Gross H. Rapid cognitive improvement in Alzheimer's disease following perispinal etanercept administration. J Neuroinflamm 2008;5(1):2
  • Tuszynski MH. Growth-factor gene therapy for neurodegenerative disorders. Lancet Neurology 2002;1(1):51-7
  • Tuszynski MH, Thal L, Pay M, et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 2005;11(5):551-5
  • Opar A. Mixed results for disease-modification strategies for Alzheimer's disease. Nat Rev Drug Discov 2008;7(9):717-8
  • Weintraub D, Comella CL, Horn S. Parkinson's disease – Part 1: Pathophysiology, symptoms, burden, diagnosis, and assessment. Am J Manag Care 2008;14:S40-8
  • Weintraub D, Comella CL, Horn S. Parkinson's disease – Part 2: Treatment of motor symptoms. Am J Manag Care 2008;14:S49-58
  • Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science 2000;290(5492):767-73
  • Manfredsson FP, Lewin AS, Mandel RJ. RNA knockdown as a potential therapeutic strategy in Parkinson's disease. Gene Ther 2005;13(6):517-24
  • Walker FO. Huntington's disease. Lancet 2007;369:218-28
  • Imarisio S, Carmichael J, Korolchuk V, et al. Huntington's disease: from pathology and genetics to potential therapies. Biochem J 2008;412:191-209
  • Adam OR, Jankovic J. Symptomatic treatment of Huntington Disease. Neurotherapeutics 2008;5:181-97
  • Machida Y, Okada T, Kurosawa M, et al. rAAV-mediated shRNA ameliorated neuropathology in Huntington disease model mouse. Biochem Biophys Res Commun 2006;343(1):190-7
  • Pardridge WM. The blood–brain barrier: bottleneck in brain drug development. NeuroRx 2005;2:3–14
  • Ehrlich P. Das Sauerstoff-Bedurfniss des Organismus, eine farbanalytische Studie. Hirschwald, Berlin, 1885
  • Hawkins BT, Davis TP. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005;57(2):173-85
  • Reese TS, Karnovsky MJ. Fine structural localization of a blood–brain barrier to exogenous peroxidase. J Cell Biol 1967;34(1):207-17
  • Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 2006;7:41-53
  • Zlokovic B. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 2008;57(2):178-201
  • Ghersi-Egea JF, Minn A, Siest G. A new aspect of the protective functions of the blood–brain barrier: activities of four drug-metabolizing enzymes in isolated rat brain microvessels. Life Sci 1988;42(24):2515-23
  • Minn A, Ghersi-Egea JF, Perrin R, et al. Drug metabolizing enzymes in the brain and cerebral microvessels. Brain Res Rev 1991;16(1):65-82
  • Pardridge WM. Drug and gene delivery to the brain: the vascular route. Neuron 2002;36:555-8
  • Pardridge WM. Recent developments in peptide drug delivery to the brain. Pharmacol Toxicol 1992;71(1):3-10
  • Strasser JF, Fung LK, Eller S, et al. Distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea and tracers in the rabbit brain after interstitial delivery by biodegradable polymer implants. J Pharmacol Exp Ther 1995;275(3):1647-55
  • Storm PB, Moriarity JL, Tyler B, et al. Polymer delivery of camptothecin against 9L gliosarcoma: release, distribution, and efficacy. J Neurooncol 2002;56(3):209-17
  • Ernerich DF, Plone M, Francis J, et al. Alleviation of behavioral deficits in aged rodents following implantation of encapsulated GDNF-producing fibroblasts. Brain Res 1996;736(1-2):99-110
  • Lang AE, Gill S, Patel NK, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 2006;59(3):459
  • Hovland DN, Boyd RB, Butt MT, et al. Six-month continuous intraputamenal infusion toxicity study of recombinant methionyl human glial cell line-derived neurotrophic factor (r-metHuGDNF) in Rhesus monkeys. Toxicol Pathol 2007;35(5):676
  • Bloch J, Bachoud-Levi AC, Deglon N, et al. Neuroprotective gene therapy for Huntington's disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a phase I study. Hum Gene Ther 2004;15(10):968-75
  • Zünkeler B, Carson RE, Olson J, et al. Quantification and pharmacokinetics of blood–brain barrier disruption in humans. J Neurosurg 1996;85(6):1056-65
  • Wennberg R. The blood–brain barrier and bilirubin encephalopathy. Cell Mol Neurobiol 2000;20(1):97-109
  • Hanig JP, Morrison JM Jr, Krop S. Ethanol enhancement of blood–brain barrier permeability to catecholamines in chicks. Eur J Pharmacol 1972;18(1):79-82
  • Broadwell RD, Salcman M, Kaplan RS. Morphologic effect of dimethyl sulfoxide on the blood–brain barrier. Science 1982;217(4555):164-6
  • Dudeja PK, Anderson KM, Harris JS, et al. Reversal of multidrug resistance phenotype by surfactants: relationship to membrane lipid fluidity. Arch Biochem Biophys 1995;319(1):309-15
  • Bogman K, Erne-Brand F, Alsenz J, Drewe J. The role of surfactants in the reversal of active transport mediated by multidrug resistance proteins. J Pharm Sci 2003;92(6):1250-61
  • Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-ß attenuates Alzheimer's disease-like pathology in the PDAPP mouse. Nature 1999;400(6740):173-7
  • Raymond SB, Treat LH, Dewey JD, et al. Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer's disease mouse models. PLoS ONE 2008;3(5):e2175
  • Ferrer I, Rovira MB, Guerra MLS, et al. Neuropathology and pathogenesis of encephalitis following amyloid ß Immunization in Alzheimer's disease. Brain Pathol 2004;14(1):11-20
  • NCBI. PubChem Compound. cited; Available from: http://pubchem.ncbi.nlm.nih.gov/
  • Standaert DG, Young AB. Treatment of central nervous system degenerative disorders. Eleventh editon. In: Brunton LL, editor, Goodman and Gillman's Pharmacologic basis of therapeutics. New York: McGraw-Hill; 2006. p. 527-45
  • Martel CL, Mackic JB, Adams JD, et al. Transport of Dopamine at the blood–brain barrier of the guinea pig: inhibition by psychotropic drugs and nicotine. Pharm Res 1996;13(2):290-5
  • Kageyama T, Nakamura M, Matsuo A, et al. The 4F2hc/LAT1 complex transports L-DOPA across the blood-brain barrier. Brain Res 2000;879(1-2):115-21
  • Tsuji A, Tamai I. Carrier-mediated or specialized transport of drugs across the blood–brain barrier. Adv Drug Deliv Rev 1999;36(2-3):277-90
  • Kumar P, Wu H, McBride JL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007;448:39-43
  • Pardridge WM. Molecular Trojan horses for blood–brain barrier drug delivery. Curr Opin Pharm 2006;6:494-500
  • Bendayan R, Lee G, Bendayan M. Functional expression and localization of P-glycoprotein at the blood brain barrier. Microsc Res Tech 2002;57(5):365-80
  • Sadeque AJ, Wandel C, He H, et al. Increased drug delivery to the brain by P-glycoprotein inhibition. Clin Pharm Ther 2000;68:231-7
  • Bodor N, Prokai L, Wu WM, et al. A strategy for delivering peptides into the central nervous system by sequential metabolism. Science 1992;257(5077):1698-700
  • Wu J, Yoon SH, Wu WM, Bodor N. Synthesis and biological evaluations of brain-targeted chemical delivery systems of [Nva2]-TRH. J Pharm Pharmacol 2002;54(7):945-50
  • Graff CL, Pollack GM. Nasal drug administration: potential for targeted central nervous system delivery. J Pharm Sci 2005;94:1187-95
  • Tirucherai GS, Yang C, Mitra AK. Prodrugs in nasal drug delivery. Expert Opin Biol Ther 2001;1(1):49-66
  • Bagger MA, Bechgaard E. The potential of nasal application for delivery to the central brain – a microdialysis study of fluorescein in rats. Eur J Pharm Sci 2004;21(2-3):235-42
  • De Rosa R, Garcia AA, Braschi C, et al. Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proc Natl Acad Sci USA 2005;102(10):3811-6
  • Laursen T, Grandjean B, Jorgensen JO, Christiansen JS. Bioavailability and bioactivity of three different doses of nasal growth hormone (GH) administered to GH-deficient patients: comparison with intravenous and subcutaneous administration. Eur J Endocrinol 1996;135(3):309-15
  • Liu XF, Fawcett JR, Thorne RG, et al. Intranasal administration of insulin-like growth factor-I bypasses the blood–brain barrier and protects against focal cerebral ischemic damage. J Neurol Sci 2001;187(1-2):91-7
  • Liu XF, Fawcett JR, Thorne RG, Frey WH 2nd. Non-invasive intranasal insulin-like growth factor-I reduces infarct volume and improves neurologic function in rats following middle cerebral artery occlusion. Neurosci Lett 2001;308(2):91-4
  • Vyas TK, Shahiwala A, Marathe S, Misra A. Intranasal drug delivery for brain targeting. Curr Drug Deliv 2005;2(2):165-75
  • Lawrence D. Intranasal delivery could be used to administer drugs directly to the brain. Lancet 2002;359(9318):1674
  • Vyas TK, Babbar AK, Sharma RK, et al. Preliminary brain-targeting studies on intranasal mucoadhesive microemulsions of sumatriptan. AAPS PharmSciTech 2006;7(1):E8
  • Illum L. Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol 2004;56(1):3-17
  • Invitti C, Fatti L, Camboni MG, et al. Effect of chronic treatment with octreotide nasal powder on serum levels of growth hormone, insulin-like growth factor I, insulin-like growth factor binding proteins 1 and 3 in acromegalic patients. J Endocrinol Invest 1996;19(8):548-55
  • Fehm HL, Perras B, Smolnik R, et al. Manipulating neuropeptidergic pathways in humans: a novel approach to neuropharmacology? Eur J Pharmacol 2000;405(1-3):43-54
  • Haruta S, Hanafusa T, Fukase H, et al. An effective absorption behavior of insulin for diabetic treatment following intranasal delivery using porous spherical calcium carbonate in monkeys and healthy human volunteers. Diabetes Technol Ther 2003;5(1):1-9
  • Gozes I, Giladi E, Pinhasov A, et al. Activity-dependent neurotrophic factor: intranasal administration of femtomolar-acting peptides improve performance in a water maze. J Pharmacol Exp Ther 2000;293(3):1091-8
  • Zhao HM, Liu XF, Mao XW, Chen CF. Intranasal delivery of nerve growth factor to protect the central nervous system against acute cerebral infarction. Chin Med Sci J 2004;19(4):257-61
  • Shi J, Perry G, Berridge MS, et al. Labeling of cerebral amyloid beta deposits in vivo using intranasal basic fibroblast growth factor and serum amyloid P component in mice. J Nucl Med 2002;43(8):1044-51
  • Merkus FWHM, van den Berg MP. Can nasal drug delivery bypass the blood–brain barrier? Drugs R D 2007;8(3):133-44
  • Vyas TK, Tiwari SB, Amiji MM. Formulation and physiological factors influencing CNS delivery upon intranasal administration. Crit Rev Ther Drug Carrier Syst 2006;23(4):319-47
  • Devalapally H, Chakilam A, Amiji MM. Role of nanotechnology in pharmaceutical product development. J Pharm Sci 2007;96(10):2547-65
  • Tiwari SB, Amiji MM. A review of nanocarrier-based CNS delivery systems. Curr Drug Deliv 2006;3:219-32
  • Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci 1996;93:14164-9
  • Zhang Y, Zhu C, Pardridge WM. Antisense gene therapy of brain cancer with an artificial virus gene delivery system. Mol Ther 2002;6(1):67-72
  • Pardridge WM. Drug and gene targeting to the brain with molecular Trojan horses. Nat Rev Drug Discov 2002;1(2):131-9
  • McClements DJ, Decker EA, Weiss J. Emulsion-based delivery systems for lipophilic bioactive components. J Food Sci 2007;72:R109-24
  • Vyas TK, Shahiwala A, Amiji MM. Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. Int J Pharm 2008;347:93-101
  • Bernoud N, Fenart L, Benistant C, et al. Astrocytes are mainly responsible for the polyunsaturated fatty acid enrichment in blood-brain barrier endothelial cells in vitro. J Lipid Res 1998;39:1816-24
  • Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 2000;50(1):161-77
  • Zara GP, Cavalli R, Bargoni A, et al. Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. J Drug Target 2002;10(4):327-35
  • Lockman PR, Oyewumi MO, Koziara JM, et al. Brain uptake of thiamine-coated nanoparticles. J Control Release 2003;93(3):271-82
  • Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. Passage of peptides through the blood–brain barrier with colloidal polymer particles (nanoparticles). Brain Res 1995;674(1):171-4
  • Sun W, Xie C, Wang H, Hu Y. Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain. Biomaterials 2004;25(15):3065-71
  • Pardridge WM. The blood–brain barrier: bottleneck in brain drug development. NeuroRx 2005;2(1):3-14
  • Hanson LR, Frey WH 2nd. Strategies for intranasal delivery of therapeutics for the prevention and treatment of neuroAIDS. J Neuroimmune Pharmacol 2007;2(1):81-6
  • Thorne RG, Frey WH 2nd. Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet 2001;40(12):907-46
  • Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 2004;127(2):481-96
  • Dorsey ER, Constantinescu R, Thompson JP, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 2007;68(5):384-6
  • Steinman MDL. Multiple Sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 1996;85(3):299-302
  • Preux PM, Druet-Cabanac M, Couratier P, et al. Estimation of the amyotrophic lateral sclerosis incidence by capture–recapture method in the Limousin region of France. J Clin Epidemiol 2000;53(10):1025-9
  • Sun M, Kong L, Wang X, et al. Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson's disease. Brain Res 2005;1052(2):119-29
  • Aebischer P, Ridet JL. Recombinant proteins for neurodegenerative diseases: the delivery issue. Trends Neurosci 2001;24(9):533-40
  • Kordower JH, Isacson O, Emerich DF. Cellular delivery of trophic factors for the treatment of Huntington's disease: is neuroprotection possible? Exp Neurol 1999;159:4-20
  • Shibata S, Ochi A, Mori K. Liposomes as carriers of cisplatin into the central nervous system–experiments with 9L gliomas in rats. Neurol Med Chir (Tokyo) 1990;30(4):242-5
  • Yamada K, Moriguchi A, Morishita R, et al. Efficient oligonucleotide delivery using the HVJ-liposome method in the central nervous system. Am J Physiol Regul Integr Comp Physiol 1996;271(5):R1212-20
  • Teresa Girão da Cruz M, Cardoso ALC, de Almeida LP, et al. Tf-lipoplex-mediated NGF gene transfer to the CNS: neuronal protection and recovery in an excitotoxic model of brain injury. Gene Ther 2005;12(16):1242-52
  • Krauze MT, Noble CO, Kawaguchi T, et al. Convection-enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts. Neurooncol 2007;9(4):393-403
  • Koziara JM, Lockman PR, Allen DD, Mumper RJ. Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release 2004;99(2):259-69
  • Reddy L, Sharma R, Chuttani K, et al. Etoposide-incorporated tripalmitin nanoparticles with different surface charge: formulation, characterization, radiolabeling, and biodistribution studies. AAPS Journal 2004;6(3):55-64
  • Yang SC, Lu LF, Cai Y, et al. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release 1999;59(3):299-307
  • Rao KS, Reddy MK, Horning JL, Labhasetwar V. TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials 2008;29(33):4429-38
  • Kuo YC, Chen HH. Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in vitro blood–brain barrier. Int J Pharm 2006;327:160-9
  • Ambruosi A, Khalansky AS, Yamamoto H, et al. Biodistribution of polysorbate 80-coated doxorubicin-loaded [14 C]-poly(butyl cyanoacrylate) nanoparticles after intravenous administration to glioblastoma-bearing rats. J Drug Target 2006;14(2):97-105
  • Tosi G, Costantino L, Rivasi F, et al. Targeting the central nervous system: In vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. J Control Release 2007;122(1):1-9
  • Costantino L, Gandolfi F, Tosi G, et al. Peptide-derivatized biodegradable nanoparticles able to cross the blood–brain barrier. J Control Release 2005;108(1):84-96
  • Huang RQ, Qu YH, Ke WL, et al. Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. FASEB J 2007;21(4):1117-25

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.