928
Views
176
CrossRef citations to date
0
Altmetric
Review

Ligand-based targeted therapy for cancer tissue

, & , PhD
Pages 285-304 | Published online: 28 Mar 2009

Bibliography

  • George P, Richard K. Site-specific (targeted) drug delivery in cancer therapy. Nat Biotechnol 1983;1:869-78
  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science 2004;303:1818-22
  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004;56:1649-59
  • Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002;54:631-51
  • Fahmy T, Fong P, Goyal A, et al. Targeted for drug delivery. Mater Today 2005;8:18-26
  • LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol 2003;21:1184-91
  • Sahoo S, Labhasetwar V. Nanotech approach to drug delivery and imaging. Drug discovery today 2003;8:1112-20
  • Vasir JK, Labhasetwar V. Targeted drug delivery in cancer therapy. Technol Cancer Res Treat 2005;4:363-74
  • Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008;8:592-603
  • Han B, Zhang JT. Multidrug resistance in cancer chemotherapy and xenobiotic protection mediated by the half ATP-binding cassette transporter ABCG2. Curr Med Chem Anticancer Agents 2004;4:31-42
  • Torchilin VP. Targeted pharmaceutical nanocarriers for cancer therapy and imaging. AAPS J 2007;9:E128-47
  • Sinha R, Kim GJ, Nie S, et al. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 2006;5:1909-17
  • Williams J, Lansdown R, Sweitzer R, et al. Nanoparticle drug delivery system for intravenous delivery of topoisomerase inhibitors. J Control Release 2003;91:167-72
  • Leroux JC, Allémann E, Jaeghere FD, et al. Biodegradable nanoparticles –From sustained release formulations to improved site specific drug delivery. J of Control Release 1996;39:339-50
  • Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. J Drug Target 2008;16:108-23
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4:145-60
  • Huwyler J, Cerletti A, Fricker G, et al. By-passing of P-glycoprotein using immunoliposomes. J Drug Target 2002;10:73-9
  • Mamot C, Drummond DC, Hong K, et al. Liposome-based approaches to overcome anticancer drug resistance. Drug Resist Updat 2003;6:271-9
  • Ferry DR, Traunecker H, Kerr DJ. Clinical trials of P-glycoprotein reversal in solid tumours. Eur J Cancer 1996;32A:1070-81
  • Kellen JA. The reversal of multidrug resistance: an update. J Exp Ther Oncol 2003;3:5-13
  • Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 2003;10:159-65
  • Khdair A, Handa H, Mao G, et al. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro. Eur J Pharm Biopharm 2009;71:214-22
  • Piche A, Rancourt C. Gene therapy to overcome drug resistance in cancer: targeting key regulators of the apoptotic pathway. Curr Gene Ther 2001;1:317-24
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46:3-26
  • Farokhzad OC. Nanotechnology for drug delivery: the perfect partnership. Expert Opin Drug Deliv 2008;5:927-29
  • Emerich DF, Thanos CG. Nanotechnology and medicine. Expert Opin Biol Ther 2003;3:655-63
  • Sahoo SK, Parveen S, Panda JJ. The present and future of nanotechnology in human health care. Nanomedicine 2007;3:20-31
  • Emerich D. Nanomedicine – prospective therapeutic and diagnostic applications. Expert Opin Biol Ther 2005;(5):1-5
  • Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. Faseb J 2005;19:311-30
  • Shaffer C. Nanomedicine transforms drug delivery. Drug Discov Today 2005;10:1581-2
  • Yoshikawa T, Tsutsumi Y, Nakagawa S. Development of nanomedicine using intracellular DDS. Nippon Rinsho 2006;64:247-52
  • Torchilin VP. Liposomes as targetable drug carriers. Crit Rev Ther Drug Carrier Syst 1985;2:65-115
  • Torchilin VP. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 2004;61:2549-59
  • Gref R, Minamitake Y, Peracchia MT, et al. Biodegradable long-circulating polymeric nanospheres. Science 1994;263:1600-3
  • Hans M, Lowman A. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 2002;6:319-27
  • Garnett MC. Targeted drug conjugates: principles and progress. Adv Drug Deliv Rev 2001;53:171-216
  • Au JL, Jang SH, Wientjes MG. Clinical aspects of drug delivery to tumors. J Control Release 2002;78:81-95
  • Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001;41:189-207
  • Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000;65:271-84
  • Kaul G, Lee-Parsons C, Amiji M. Poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharma Eng–J Int Soc Pharm Eng 2003;23:108-14
  • Monsky WL, Fukumura D, Gohongi T, et al. Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res 1999;59:4129-35
  • Dellian M, Witwer BP, Salehi HA, et al. Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. Am J Pathol 1996;149:59-71
  • Muggia FM. Doxorubicin-polymer conjugates: further demonstration of the concept of enhanced permeability and retention. Clin Cancer Res 1999;5:7-8
  • Gu F, Zhang L, Teply B, et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. PNAS 2008;105:2586-91
  • Nishioka Y, Yoshino H. Lymphatic targeting with nanoparticulate system. Adv Drug Deliv Rev 2001;47:55-64
  • Kummer U, Thierfelder S, Mysliwietz J. Antigen density on target cells determines the immunosuppressive potential of rat IgG2b monoclonal antibodies. Eur J Immunol 1990;20:107-12
  • Yousaf N, Howard JC, Williams BD. Targeting behavior of rat monoclonal IgG antibodies in vivo: role of antibody isotype, specificity and the target cell antigen density. Eur J Immunol 1991;21:943-50
  • Lanza GM, Yu X, Winter PM, et al. Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis. Circulation 2002;106:2842-7
  • Murphy EA, Majeti BK, Barnes LA, et al. Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc Natl Acad Sci USA 2008;105:9343-8
  • Yukio K, Takeshi S, Takashi K, et al. Kinetic analysis of receptor-mediated endocytosis (RME) of proteins and peptides: use of RME as a drug delivery system. J of Control Release 1996;39:191-200
  • Eniola AO, Hammer DA. Artificial polymeric cells for targeted drug delivery. J Control Release 2003;87:15-22
  • Keegan M, Falcone J, Leung T, et al. Biodegradable microspheres with enhanced capacity for covalently bound surface ligands. Macromol 2004;37:9779-84
  • Pun SH, Tack F, Bellocq NC, et al. Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol Ther 2004;3:641-50
  • Anabousi S, Bakowsky U, Schneider M, et al. In vitro assessment of transferrin-conjugated liposomes as drug delivery systems for inhalation therapy of lung cancer. Eur J Pharm Sci 2006;29:367-74
  • Vandewalle B, Granier AM, Peyrat JP, et al. Transferrin receptors in cultured breast cancer cells. J Cancer Res Clin Oncol 1985;110:71-6
  • Dowlati A, Loo M, Bury T, et al. Soluble and cell-associated transferrin receptor in lung cancer. Br J Cancer 1997;75:1802-6
  • Agarwal A, Saraf S, Asthana A, et al. Ligand based dendritic systems for tumor targeting. Int J Pharm 2008;350:3-13
  • Enns CA, Shindelman JE, Tonik SE, et al. Radioimmunochemical measurement of the transferrin receptor in human trophoblast and reticulocyte membranes with a specific anti-receptor antibody. Proc Natl Acad Sci USA 1981;78:4222-25
  • Daniels T, Delgado T, Helguera G, et al. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol 2006;121:159-76
  • Sahoo SK, Labhasetwar V. Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Mol Pharm 2005;2:373-83
  • Sahoo SK, Ma W, Labhasetwar V. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 2004;112:335-40
  • Pulkkinen M, Pikkarainen J, Wirth T, et al. Three-step tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin–biotin technology: formulation development and in vitro anticancer activity. Eur J Pharm Biopharm 2008;70:66-74
  • Jiang Y, Tang G, Hong M, et al. Active tumor-targeted delivery of PEG-protein via transferrin-transferrin-receptor system. J Drug Target 2007;15:672-83
  • Hou J, Wang D, Zhang R, et al. Experimental therapy of hepatoma with artemisinin and its derivatives: in vitro and in vivo activity, chemosensitization, and mechanisms of action. Clin Cancer Res 2008;14:5519-30
  • Nam W, Tak J, Ryu JK, et al. Effects of artemisinin and its derivatives on growth inhibition and apoptosis of oral cancer cells. Head Neck 2007;29:335-40
  • Nakase I, Lai H, Singh NP, et al. Anticancer properties of artemisinin derivatives and their targeted delivery by transferrin conjugation. Int J Pharm 2008;354:28-33
  • Li JL, Liu XY. Fabrication and biofunctionalization of selenium-polypyrrole core-shell nanoparticles for targeting and imaging of cancer cells. J Nanosci Nanotechnol 2008;8:2488-91
  • Kukowska-Latallo JF, Candido KA, Cao Z, et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 2005;65:5317-24
  • Kukowska-Latallo J, Candido K, Cao Z, et al. Nanoparticle Targeting of Anticancer Drug Improves Therapeutic Response in Animal Model of Human Epithelial Cancer. Cancer Res 2005;65:5317-5324
  • Low PS, Antony AC. Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv Drug Deliv Rev 2004;56:1055-8
  • Shmeeda H, Mak L, Tzemach D, et al. Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Mol Cancer Ther 2006;5:818-24
  • Stella B, Arpicco S, Peracchia MT, et al. Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci 2000;89:1452-64
  • Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 2000;41:147-62
  • Pasut G, Canal F, Dalla Via L, et al. Antitumoral activity of PEG-gemcitabine prodrugs targeted by folic acid. J Control Release 2008;127:239-48
  • Esmaeili F, Ghahremani M, Ostad S, et al. Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J Drug Target 2008;16:415-23
  • Chalasani K, Russell-jones G, Jain A, et al. Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles. J Control Release 2007;122:141-50
  • Chalasani KB, Russell-Jones GJ, Yandrapu SK, et al. A novel vitamin B12-nanosphere conjugate carrier system for peroral delivery of insulin. J Control Release 2007;117:421-9
  • Gabor F, Bogner E, Weissenboeck A, et al. The lectin–cell interaction and its implications to intestinal lectin-mediated drug delivery. Advanced Drug Delivery Reviews 2004;56:459-80
  • De Mejia V, Prisecaru V. Lectins as bioactive plant proteins: a potential in cancer treatment. Crit Rev Food Sci Nutr 2005;45:425-45
  • Banks W, Kastin A. Characterization of lectin-mediated brain uptake of HIV-1 GP120. J Neurosci Res 1998;54:522-9
  • Fischer D, Kissel T. Histochemical characterization of primary capillary endothelial cells from porcine brains using monoclonal antibodies and fluorescein isothiocyanate-labelled lectins: implications for drug delivery. Eur J Pharm Biopharm 2001;52:1-11
  • Bies C, Lehr C, Woodley J. Lectin-mediated drug targeting: history and applications. Adv Drug Deliv Rev 2004;56:425-35
  • Yin Y, Chen D, Qiao M, et al. Preparation and evaluation of lectin-conjugated PLGA nanoparticles for oral delivery of thymopentin. J Control Release 2006;116:337-45
  • Gao X, Tao W, Lu W, et al. Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomater 2006;27:3482-90
  • Mo Y, Lim LY. Preparation and in vitro anticancer activity of wheat germ agglutinin (WGA)-conjugated PLGA nanoparticles loaded with paclitaxel and isopropyl myristate. J Control Release 2005;107:30-42
  • Weissenboeck A, Bogner E, Wirth M, et al. Binding and uptake of wheat germ agglutinin-grafted PLGA-nanospheres by caco-2 monolayers. Pharm Res 2004;21:1917-23
  • Naisbett B, Woodley J. The potential use of tomato lectin for oral drug delivery: 4. Immunol consequences Int J of Pharm 1995;120:247-54
  • Woodley JF. Lectins for gastrointestinal targeting – 15 years on. J Drug Target 2000;7:325-33
  • Lavelle EC, Grant G, Pusztai A, et al. Mucosal immunogenicity of plant lectins in mice. Immunol 2000;99:30-7
  • Salomon DS, Brandt R, Ciardiello F, et al. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995;19:183-232
  • Schwechheimer K, Huang S, Cavenee WK. EGFR gene amplification-rearrangement in human glioblastomas. Int J Cancer 1995;62:145-8
  • Zwick E, Bange J, Ullrich A. Receptor tyrosine kinase signalling as a target for cancer intervention strategies. Endocr-Relat Cancer 2001;8:161–73
  • Bohl Kullberg E, Bergstrand N, Carlsson J, et al. Development of EGF-conjugated liposomes for targeted delivery of boronated DNA-binding agents. Bioconjug Chem 2002;13:737-43
  • Bohl Kullberg E, Carlsson J, Edwards K, et al. Introductory experiments on ligand liposomes as delivery agents for boron neutron capture therapy. Int J Oncol 2003;23:461-7
  • Carlsson J, Kullberg EB, Capala J, et al. Ligand liposomes and boron neutron capture therapy. J Neurooncol 2003;62:47-59
  • Kullberg EB, Nestor M, Gedda L. Tumor-cell targeted epidermal growth factor liposomes loaded with boronated acridine: uptake and processing. Pharm Res 2003;20:229-36
  • Wang Y, Pennock S, Chen X, et al. Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol Cell Biol 2002;22:7279-90
  • Wang Z, Zhang L, Yeung TK, et al. Endocytosis deficiency of epidermal growth factor (EGF) receptor-ErbB2 heterodimers in response to EGF stimulation. Mol Biol Cell 1999;10:1621-36
  • Wang J, Chen P, Su ZF, et al. Amplified delivery of indium-111 to EGFR-positive human breast cancer cells. Nucl Med Biol 2001;28:895-902
  • Lin SY, Makino K, Xia W, et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 2001;3:802-8
  • Torrisi MR, Lotti LV, Belleudi F, et al. Eps15 is recruited to the plasma membrane upon epidermal growth factor receptor activation and localizes to components of the endocytic pathway during receptor internalization. Mol Biol Cell 1999;10:417-34
  • Fan Z, Lu Y, Wu X, et al. Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells. J Biol Chem 1994;269:27595-602
  • Zeng F, Lee H, Allen C. Epidermal growth factor-conjugated poly(ethylene glycol)-block-poly(delta-valerolactone) copolymer micelles for targeted delivery of chemotherapeutics. Bioconjug Chem 2006;17:399-409
  • Tseng CL, Wu SY, Wang WH, et al. Targeting efficiency and biodistribution of biotinylated-EGF-conjugated gelatin nanoparticles administered via aerosol delivery in nude mice with lung cancer. Biomater 2008;29:3014-22
  • Tseng CL, Wang TW, Dong GC, et al. Development of gelatin nanoparticles with biotinylated EGF conjugation for lung cancer targeting. Biomater 2007;28:3996-4005
  • Muller D, Kohler G, Ohlinger R. Staging procedures in primary breast cancer. Anticancer Res 2008;28:2397-400
  • Reiter Y. Recombinant immunotoxins in targeted cancer cell therapy. Adv Cancer Res 2001;81:93-124
  • Chen L, Liu J, Yu X, et al. The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis. Biomater 2008;29:4170-6
  • Bozec A, Gros F, Penault-Llorca F, et al. Vertical VEGF targeting: A combination of ligand blockade with receptor tyrosine kinase inhibition. Eur J Cancer 2008;44:1922-30
  • Lu J, Jackson JK, Gleave ME, et al. The preparation and characterization of anti-VEGFR2 conjugated, paclitaxel-loaded PLLA or PLGA microspheres for the systemic targeting of human prostate tumors. Cancer Chemother Pharmacol 2008;61:997-1005
  • Fischgrabe J, Wulfing P. Targeted therapies in breast cancer: established drugs and recent developments. Curr Clin Pharmacol 2008;3:85-98
  • Liu J, Li J, Rosol TJ, et al. Biodegradable nanoparticles for targeted ultrasound imaging of breast cancer cells in vitro. Phys Med Biol 2007;52:4739-47
  • Bernier J. Drug Insight: cetuximab in the treatment of recurrent and metastatic squamous cell carcinoma of the head and neck. Nat Clin Pract Oncol 2008;
  • Nakashima K, Yamazaki K, Boku N. Molecular target therapy and chemotherapy for advanced colorectal cancer. Gan To Kagaku Ryoho 2008;35:725-30
  • Patra CR, Bhattacharya R, Wang E, et al. Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res 2008;68:1970-8
  • Nobs L, Buchegger F, Gurny R, et al. Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjug Chem 2006;17:139-45
  • Elbayoumi T, VP T. Enhanced accumulation of long-circulating liposomes modified with the nucleosome-specific monoclonal antibody 2C5 in various tumours in mice: gamma-imaging studies. Eur J Nucl Med Mol Imaging 2006;33:1196-205
  • Sawant RM, Cohen MB, Torchilin VP, et al. Prostate cancer-specific monoclonal antibody 5D4 significantly enhances the cytotoxicity of doxorubicin-loaded liposomes against target cells in vitro. J Drug Target 2008;16:601-4
  • Wang X, Yang L, Chen ZG, et al. Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 2008;58:97-110
  • Kou G, Gao J, Wang H, et al. Preparation and Characterization of Paclitaxel-loaded PLGA nanoparticles coated with cationic SM5-1 single-chain antibody. J Biochem Mol Biol 2007;40:731-9
  • Sanz L, Qiao J, Vile RG, et al. Antibody engineering, virus retargeting and cellular immunotherapy: one ring to rule them all? Curr Gene Ther 2005;5:63-70
  • Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 2006;14:316-27
  • Thorsen F, Afione S, Huszthy PC, et al. Adeno-associated virus (AAV) serotypes 2, 4 and 5 display similar transduction profiles and penetrate solid tumor tissue in models of human glioma. J Gene Med 2006;8:1131-40
  • Hoffmann D, Wildner O. Efficient generation of double heterologous promoter controlled oncolytic adenovirus vectors by a single homologous recombination step in Escherichia coli. BMC Biotechnol 2006;6:36
  • Pestourie C, Tavitian B, Duconge F. Aptamers against extracellular targets for in vivo applications. Biochimie 2005;87:921-30
  • Smith JE, Medley CD, Tang Z, et al. Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Anal Chem 2007;79:3075-82
  • Burgstaller P, Jenne A, Blind M. Aptamers and aptazymes: accelerating small molecule drug discovery. Curr Opin Drug Discov Devel 2002;5:690-700
  • Drolet DW, Nelson J, Tucker CE, et al. Pharmacokinetics and safety of an anti-vascular endothelial growth factor aptamer (NX1838) following injection into the vitreous humor of rhesus monkeys. Pharm Res 2000;17:1503-10
  • Hicke BJ, Stephens AW. Escort aptamers: a delivery service for diagnosis and therapy. J Clin Invest 2000;106:923-8
  • Kompella UB. Drug delivery to the back of the eye. Arch Soc Esp Oftalmol 2007;82:667-8;69-70
  • Ulrich H, Martins AH, Pesquero JB. RNA and DNA aptamers in cytomics analysis. Curr Protoc Cytom 2005; Chapter 7: Unit 7 28
  • Farokhzad O, Jon S, Khademhosseini A, et al. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 2004;64:7668-72
  • Farokhzad OC, Karp JM, Langer R. Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv 2006;3:311-24
  • Ireson CR, Kelland LR. Discovery and development of anticancer aptamers. Mol Cancer Ther 2006;5:2957-62
  • Soundararajan S, Chen W, Spicer EK, et al. The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res 2008;68:2358-65
  • Santulli-Marotto S, Nair SK, Rusconi C, et al. Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Cancer Res 2003;63:7483-9
  • Huang Y, Chang H, Tan W. Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem 2008;80:567-72
  • Xing Y, So MK, Koh AL, et al. Improved QD-BRET conjugates for detection and imaging. Biochem Biophys Res Commun 2008;372:388-94
  • Bagalkot V, Zhang L, Levy-Nissenbaum E, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 2007;7:3065 -70
  • Javier DJ, Nitin N, Levy M, et al. Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging. Bioconjug Chem 2008;19:1309-12
  • Li G, Wong AJ. EGF receptor variant III as a target antigen for tumor immunotherapy. Expert Rev Vaccines 2008;7:977-85
  • Minko T, Dharap SS, Pakunlu RI, et al. Molecular targeting of drug delivery systems to cancer. Curr Drug Targets 2004;5:389-406
  • Gu FX, Karnik R, Wang AZ, et al. Targeted nanoparticles for cancer therapy. nano today 2007;2:14-21
  • Curnis F, Sacchi A, Gasparri A, et al. Isoaspartate-glycine-arginine: a new tumor vasculature-targeting motif. Cancer Res 2008;68:7073-82
  • Dijkgraaf I, Rijnders AY, Soede A, et al. Synthesis of DOTA-conjugated multivalent cyclic-RGD peptide dendrimers via 1,3-dipolar cycloaddition and their biological evaluation: implications for tumor targeting and tumor imaging purposes. Org Biomol Chem 2007;5:935-44
  • Rubinstein I SI, Onyuksel H. Intracellular delivery of VIP-grafted sterically stabilized phospholipid mixed nanomicelles in human breast cancer cells. Chem Biol Interact 2008;171:190-4
  • Tkachenko AG, Xie H, Liu Y, et al. Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem 2004;15:482-90
  • Kakar SS, Jin H, Hong B, et al. LHRH receptor targeted therapy for breast cancer. Adv Exp Med Biol 2008;614:285-96
  • Graff A, Tropel D, Raman S, et al. Peptidic nanoparticles: for cancer diagnosis and therapy. NanoBioTechnol 2005;1:293-94
  • Surti N, Naik S, Bagchi T, et al. Intracellular delivery of nanoparticles of an antiasthmatic drug. AAPS PharmSciTech 2008;9:217-23
  • Montet X, Weissleder R, Josephson L. Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjug Chem 2006;17:905-11
  • Reimold I, Domke D, Bender J, et al. Delivery of nanoparticles to the brain detected by fluorescence microscopy. Eur J Pharm Biopharm 2008;70:627-32
  • Tosi G, Costantino L, Rivasi F, et al. Targeting the central nervous system: in vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. J Control Release 2007;122:1-9
  • Liu Y, Steiniger SC, Kim Y, et al. Mechanistic studies of a peptidic GRP78 ligand for cancer cell-specific drug delivery. Mol Pharm 2007;4:435-47
  • Brumlik M, Daniel B, Waehler R, et al. Trends in immunoconjugate and ligand-receptor based targeting development for cancer therapy. Expert Opin Drug Deliv 2008;5:87-103
  • Hultdin J, Van Guelpen B, Bergh A, et al. Plasma folate, vitamin B12, and homocysteine and prostate cancer risk: a prospective study. Int J Cancer 2005;113:819-24
  • Stern ST, McNeil SE. Nanotechnology safety concerns revisited. Toxicol Sci 2008;101:4-21
  • Harichand-Herdt S, Ramalingam SS. Targeted therapy for the treatment of non-small cell lung cancer: focus on inhibition of epidermal growth factor receptor. Semin Thorac Cardiovasc Surg 2008;20:217-23
  • Li SD, Chono S, Huang L. Efficient gene silencing in metastatic tumor by siRNA formulated in surface-modified nanoparticles. J Control Release 2008;126:77-84

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.