1,176
Views
166
CrossRef citations to date
0
Altmetric
Reviews

The potential for nanoparticle-based drug delivery to the brain: overcoming the blood–brain barrier

, , &
Pages 553-565 | Published online: 12 May 2009

Bibliography

  • Jonssen B. Cost of disorders of the brain in Europe. Eur J Neurol 2005;12:8-9
  • Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. NEURON CAMBRIDGE MA 2008;57:178-201
  • Silberberg D. Neurological disease on the global agenda. Ann Neurol 2008;64:475-6
  • Pardridge WM. Drug targeting to the brain. Pharm Res 2007;24:1733-44
  • Pardridge WM. Blood-brain barrier delivery. Drug Discov Today 2007;12:54-61
  • Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release 2008;127:97-109
  • Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006;7:41-53
  • Deli MA, Abraham CS, Kataoka Y, Niwa M. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 2005;25:59-127
  • Butt AM, Jones HC, Abbott NJ. Electrical-resistance across the blood-brain-barrier in anesthetized rats – a developmental-study. J Physiol Lond 1990;429:47-62
  • Garcia-Garcia E, Andrieux K, Gil S, Couvreur P. Colloidal carriers and Blood-Brain Barrier (Bbb) translocation: a way to deliver drugs to the brain? Int J Pharm 2005;298:274-92
  • Tosi G, Constantino L, Ruozi B, et al. Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opin Drug Deliv 2008;5:155-74
  • Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vascu Pharmacol 2002;38:323-37
  • Ricci M, Blasi P, Giovagnoli S, Rossi C. Delivering drugs to the central nervous system: a medicinal chemistry or a pharmaceutical technology issue? Curr Med Chem 2006;13:1757-75
  • Ohtsuki S, Terasaki T. Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for Cns drug discovery and development. Pharm Res 2007;24:1745-58
  • Bickel U, Yoshikawa T, Pardridge WM. Delivery of peptides and proteins through the blood-brain barrier. Adv Drug Deliv Rev 2001;46:247-79
  • Smith MW, Gumbleton M. Endocytosis at the blood-brain barrier: from basic understanding to drug delivery strategies. J Drug Target 2006;14:191-214
  • Miller DS, Bauer B, Hartz AMS. Modulation of P-Glycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev 2008;60:196-209
  • Pardridge WM. Crossing the blood-brain barrier: are we getting it right? Drug Discov Today 2001;6:1-2
  • Kreuter J, Gelperina S. Use of nanoparticles for cerebral cancer. Tumori 2008;94:271-7
  • Prokop A, Davidson JM. Nanovehicular intracellular delivery systems. J Pharm Sci 2008;97:3518-90
  • Govender T, Ojewole E, Naidoo P, Mackraj I. Polymeric nanoparticles for enhancing antiretroviral drug therapy. Drug Deliv 2008;15:493-501
  • Juillerat-Jeanneret L. The targeted delivery of cancer drugs across the blood-brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today 2008;13:1099-106
  • Vauthier C, Labarre D, Ponchel G. Design aspects of poly(Alkylcyanoacrylate) nanoparticles for drug delivery. J Drug Target 2007;15:641-63
  • Micahelis K, Hoffmann MM, Dreis S, et al. Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther 2006;317:1246-53
  • Kreuter J. Influence of the surface properties on nanoparticle-mediated transport of drugs to the brain. J Nanosci Nanotechnol 2004;4:484-8
  • Olivier JC. Drug transport to brain with targeted nanoparticles. NeuroRX 2005;2:108-19
  • Wilson B, Samanta MK, Santhi K, et al. Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(N-Butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm 2008;70:75-84
  • Wilson B, Samanta MK, Santhi K, et al. Poly(N-Butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer's disease. Brain Res 2008;1200:159-68
  • Weiss CK, Kohnle MV, Landfester K, et al. The first step into the brain: uptake of Nio-Pbca nanoparticles by endothelial cells in vitro and in vivo, and direct evidence for their blood-brain barrier permeation. ChemMedchem 2008;3:1395-403
  • Reimold I, Domke D, Bender J, et al. Delivery of nanoparticles to the brain detected by fluorescence microscopy. Eur J Pharm Biopharm 2008;70:627-32
  • Schneider T, Becker A, Ringe K, et al. Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol 2008;195:21-7
  • O'Sullivan C, Birkinshaw C. Hydrolysis of poly (n-butylcyanoacrylate) nanoparticles using esterase. Polym Degradation Stability 2002;78:7-15
  • Kisich KO, Gelperina S, Higgins MP, et al. Encapsulation of moxifloxacin within poly(butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular mycobacterium tuberculosis. Int J Pharm 2007;345:154-162
  • Lherm C, Müller RH, Puisieux F, Couvreur P. Alkylcyanoacrylate drug carriers: II. Cytotoxicity of cyanoacrylate nanoparticles with different alkyl chain length. Int J Pharm 1992;84:13-22
  • Vauthier C, Dubernet C, Fattal E, et al. Poly(Alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev 2003;55:519-48
  • Beduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers. Biomaterials 2007;28:4947-67
  • Wang HF, Hu Y, Guo T, et al. Inhibition of tissue factor expression in brain microvascular endothelial cells by nanoparticles loading Nf-kappa B decoy oligonucleotides. Int J Mol Sci 2008;9:1851-62
  • Cheng QY, Feng J, Li FZ. Brain delivery of neurotoxin-I-loaded nanoparticles through intranasal administration. Yao Xue Xue Bao 2008;43:431-4
  • Liu MX, Li HF, Luo G, et al. Pharmacokinetics and biodistribution of surface modification polymeric nanoparticles. Arch Pharmacol Res 2008;31:547-54
  • Rao KS, Reddy MK, Horning JL, Labhasetwar V. Tat-conjugated nanoparticles for the Cns delivery of Anti-Hiv drugs. Biomaterials 2008;29:4429-38
  • Halder KK, Mandal B, Debnath MC, et al. Chloramphenicol-incorporated poly lactide-co-glycolide (Plga) nanoparticles: formulation, characterization, technetium-99m labeling and biodistribution studies. J Drug Target 2008;16:311-20
  • Pan J, Feng SS. Targeted delivery of paclitaxel using folate-decorated poly(Lactide) – vitamin E Tpgs nanoparticles. Biomaterials 2008;29:2663-72
  • Intra J, Salem AK. Characterization of the transgene expression generated by branched and linear polyethylenimine-plasmid Dna nanoparticles in vitro and after intraperitoneal injection in vivo. J Control Release 2008;130:129-38
  • Lavigne MD, Yates L, Coxhead P, Górecki DC. Nuclear-targeted chimeric vector enhancing nonviral gene transfer into skeletal muscle of fabry mice in vivo. FASEB J 2008;22:2097-107
  • Lavigne MD, Pennadam SS, Ellis J, et al. Enhanced gene expression through temperature profile-induced variations in molecular architecture of thermoresponsive polymer vectors. J Gene Med 2007;9:44-54
  • Pennadam SS, Ellis JS, Lavigne MD, et al. Synthesis and characterization of variable-architecture thermosensitive polymers for complexation With DNA. Langmuir 2007;23:41-9
  • Lavigne MD, Pohlschmidt M, Novo JF, et al. Promoter dependence of plasmid-pluronics targeted alpha galactosidase a expression in skeletal muscle of fabry mice. Mol Ther 2005;12:985-90
  • Ljubimova JY, Fujita M, Ljubimov AV, et al. Poly(Malic Acid) nanoconjugates containing various antibodies and oligo nucleotides for multitargeting drug delivery. Nanomed 2008;3:247-65
  • Ljubimova JY, Fujita M, Khazenzon NM, et al. Nanoconjugate based on polymalic acid for tumor targeting. Chemico Biol Interact 2008;171:195-203
  • Gilmore JL, Yi X, Quan L, Kabanov AV. Novel nanomaterials for clinical neuroscience. J Neuroimmune Pharmacol 2008;3:83-94
  • Wang XM, Chi N, Tang X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm 2008;70:735-40
  • Ramakrishnan M, Wengenack TM, Kandimalla KK, et al. Selective contrast enhancement of individual Alzheimer's disease amyloid plaques using a polyamine and Gd-Dota conjugated antibody fragment against fibrillar a beta 42 for magnetic resonance molecular imaging. Pharm Res 2008;25:1861-72
  • Agyare EK, Curran GL, Ramakrishnan M, et al. Development of a smart nano-vehicle to target cerebrovascular amyloid deposits and brain parenchymal plaques observed in Alzheimer's disease and cerebral amyloid angiopathy. Pharm Res 2008;25:2674-84
  • Jallouli Y, Paillard A, Chang J, et al. Influence of surface charge and inner composition of porous nanoparticles to cross blood-brain barrier in vitro. Int J Pharm 2007;344:103-09
  • Kaur A, Jain S, Tiwary AK. Mannan-coated gelatin nanoparticles for sustained and targeted delivery of didanosine: in vitro and in vivo evaluation. Acta Pharmaceutica 2008;58:61-74
  • Kabanov AV, Gendelman HE. Nanomedicine in the diagnosis and therapy of neuro degenerative disorders. Prog Polym Sci 2007;32:1054-82
  • Gillies ER, Frechet JMJ. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 2005;10:35-43
  • Hughes GA. Nanostructure-mediated drug delivery. Dis Mon 2005;51:342-61
  • Dhanikula RS, Hammady T, Hildgen P, et al. On the mechanism and dynamics of uptake and permeation of polyether-copolyester dendrimers across an in vitro blood-brain barrier model. J Pharm Sci 2009;PMID:19156840. DOI: 10.1002/jps.21669.
  • Blasi P, Giovagnoli S, Schoubben A, et al. Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev 2007;59:454-77
  • Muller RH, Rainer H, Keck CM, Cornelia M. Drug delivery to the brain–realization by novel drug carriers. J Nanosci Nanotechnol 2004;4:471-83
  • Wang D, Wang X, Li X, Ye L. Preparation and characterization of solid lipid nanoparticles loaded with alpha-asarone. J Pharm Sci Technol 2008;62:56-65
  • Esposito E, Fantin M, Marti M, et al. Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm Res 2008;25:1521-30
  • Li XW, Lin XH, Zheng LQ, et al. Preparation, characterization, and in vitro release of chloramphenicol loaded solid lipid nanoparticles. J Dispersion Sci Technol 2008;29:1214-21
  • Huang GH, Zhang N, Bi XL, Dou MJ. Solid lipid nanoparticles of temozolomide: potential reduction of cardial and nephric toxicity. Int J Pharm 2008;355:314-20
  • Doijad RC, Manvi FV, Godhwani DM, et al. Formulation and targeting efficiency of cisplatin engineered solid lipid nanoparticles. Indian J Pharm Sci 2008;70:203-7
  • Chattopadhyay N, Zastre J, Wong HL, et al. Solid lipid nanoparticles enhance the delivery of the Hiv protease inhibitor, atazanavir, by a human brain endothelial cell line. Pharm Res 2008;25:2262-71
  • Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomed 2005;1:193-212
  • Linazasoro G. Potential applications of nanotechnologies to Parkinson's disease therapy. Parkinsonism Relat Disord 2008;14:383-92
  • Roy I, Stachowiak MK, Bergey EJ. Nonviral gene transfection nanoparticles: function and applications in the Brain. Nanomed 2008;4:89-97
  • Baoukina S, Monticelli L, Risselada HJ, et al. The molecular mechanism of lipid monolayer collapse. Proc Natl Acad Sci USA 2008;105:10803-8
  • Czeisler BM, Janigro D. Reading and writing the blood-brain barrier: relevance to therapeutics. Rec Patents Cns Drug Discov 2006;1:157-73
  • Su Y, Sinko PJ. Drug delivery across the blood-brain barrier: why is it difficult? how to measure and improve it? Expert Opin Drug Deliv 2006;3:419-35
  • Batrakova EV, Li S, Vinogradov SV, et al. Mechanism of pluronic effect on P-glycoprotein efflux system in blood-brain barrier: contributions of energy depletion and membrane fluidization. J Pharmacol Exp Ther 2001;299:483-93
  • Batrakova EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 2008;130:98-106
  • Vinogradov SV, Batrakova EV, Kabanov AV. Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem 2004;15:50-60
  • Pulkkinen M, Pikkarainen J, Wirth T, et al. Three-step tumor targeting of paclitaxel using biotinylated Pla-Peg nanoparticles and avidin-biotin technology: formulation development and in vitro anticancer activity. Eur J Pharm Biopharm 2008;70:66-74
  • Teixido M, Giralt E. The role of peptides in blood-brain barrier nanotechnology. J Pept Sci 2008;14:163-73
  • Aktas Y, Yemisci M, Andrieux K, et al. Development and brain delivery of chitosan-peg nanoparticles functionalized with the monoclonal antibody Ox26. Bioconjug Chem 2005;16:1503-11
  • Mazza M, Uchegbu IF, Schatzlein AG. Cancer and the blood-brain barrier: ‘trojan horses’ for courses? Br J Pharmacol 2008;155:149-51
  • Karkan D, Pfeifer C, Vitalis TZ, et al. A unique carrier for delivery of therapeutic compounds beyond the blood-brain barrier. Plos One 2008;3:e2469
  • Regina A, Demeule M, Che C, et al. Antitumour activity of Ang1005, a conjugate between paclitaxel and the new brain delivery vector angiopep-2. Br J Pharmacol 2008;155:185-97
  • Solaro R. Targeted delivery of proteins by nanosized carriers. J Polym Sci A Polym Chem 2008;46:1-11
  • Huang RQ, Pei YY, Jiang C. Enhanced gene transfer into brain capillary endothelial cells using Antp-modified Dna-loaded nanoparticles. J Biomed Sci 2007;14:595-605
  • Sun C, Fang C, Stephen Z, et al. Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles. Nanomed 2008;3:495-505
  • Lewis AL. PC technology as a platform for drug delivery: from combination to conjugation. Expert Opin Drug Deliv 2006;3:289-98
  • Xu G, Yong KT, Royi I, et al. Bioconjugated quantum rods as targeted probes for efficient transmigration across an in vitro blood-brain barrier. Bioconjug Chem 2008;19:1179-85
  • Gao XL, Wang T, Wu BX, et al. Quantum dots for tracking cellular transport of lectin-functionalized nanoparticles. Biochem Biophys Res Commun 2008;377:35-40
  • Sun C, Lee JSH, Zhang MQ. Magnetic nanoparticles in Mr imaging and drug delivery. Adv Drug Deliv Rev 2008;60:1252-65
  • Mccarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 2008;60:1241-51
  • De Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 2008;3:133-49
  • Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007;2:17-71
  • Politis M, Pilinis C, Lekkas TD. Ultrafine Particles (Ufp) and health effects. Dangerous. Like no other pm? Rev Anal Global Nest J 2008;10:439-52
  • Maccormack TJ, Goss GG. Identifying and predicting biological risks associated with manufactured nanoparticles in aquatic ecosystems. J Ind Ecol 2008;12:286-96
  • Prosie F, Lesage FX, Deschamps F. Nanoparticles: structures, utilizations and health impacts. Presse Med 2008;37:1431-37
  • Chen L, Yokel RA, Hennig B, Toborek M. Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature. J Neuroimmune Pharmacol 2008;3:286-95
  • Tang JL, Xiong L, Wang S, et al. Influence of silver nanoparticles on neurons and blood-brain barrier via subcutaneous injection in rats. Appl Surface Sci 2008;255:502-4
  • Wu WH, Sun X, Yu YP, et al. Tio2 nanoparticles promote beta-amyloid fibrillation in vitro. Biochem Biophys Res Commun 2008;373:315-8
  • Lopez T, Recillas S, Guevara P, et al. Pt/Tio2 brain biocompatible nanoparticles: gbm treatment using the C6 model in wistar rats. Acta Biomaterialia 2008;4:2037-44
  • Kuo YC, Kuo CY. Electromagnetic interference in the permeability of saquinavir across the blood-brain barrier using nanoparticulate carriers. Int J Pharm 2008;351:271-81
  • Lynch I, Dawson KA. Protein-nanoparticle interactions. Nano Today 2008;3:40-7
  • Faunce TA, White J, Matthael KI. Integrated research into the nanoparticle-protein corona: a new focus for safe, sustainable and equitable development of nanomedicines. Nanomed 2008;3:859-66

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.