572
Views
63
CrossRef citations to date
0
Altmetric
Reviews

Controlled delivery of antisense oligonucleotides: a brief review of current strategies

, , , &
Pages 673-686 | Published online: 25 Jun 2009

Bibliography

  • Crooke ST. Progress in antisense technology. Annu Rev Med 2004;55:61-95
  • Sepp-Lorenzino L, Ruddy M. Challenges and opportunities for local and systemic delivery of siRNA and antisense oligonucleotides. Clin Pharmacol Ther 2008;84:628-32
  • Aboul-Fadl T. Antisense oligonucleotide technologies in drug discovery. Expert Opin Drug Discov 2006;1:285-8
  • Zamecnik PC, Stephenson ML. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 1978;75:280-4
  • Stephenson ML, Zamecnik PC. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci USA 1978;75:285-8
  • Toub N, Malvy C, Fattal E, Couvreur P. Innovative nanotechnologies for the delivery of oligonucleotides and siRNA. Biomed Pharmacother 2006;60:607-20
  • Dias N, Stein CA. Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther 2002;1:347-55
  • Hughes MD, Hussain M, Nawaz Q, et al. The cellular delivery of antisense oligonucleotides and ribozymes. Drug Discov Today 2001;6:303-15
  • Isaka Y, Imai E, Takahara S, Rakugi H. Oligonucleotidic therapeutics. Expert Opin Drug Discov 2008;3:991-6
  • Sundaram S, Viriyayuthakorn S, Roth CM. Oligonucleotide structure influences the interactions between cationic polymers and oligonucleotides. Biomacromolecules 2005;6:2961-8
  • Eckstein F. The versatility of oligonucleotides as potential therapeutics. Expert Opin Biol Ther 2007;7:1021-34
  • Walder RY, Walder JA. Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proc Natl Acad Sci USA 1988;85:5011-5
  • Read ML, Bremner KH. Antisense strategies and non-viral gene therapy for cancer. Expert Opin Ther Patents 2002;12:379-91
  • De-Rosa G, Quaglia F, Bochot A, et al. Long-term release and improved intracellular penetration of oligonucleotide-polyethylenimine complexes entrapped in biodegradable microspheres. Biomacromolecules 2003;4:529-36
  • Lee LK, Williams CL, Devore D, Roth CM. Poly(propylacrylic acid) enhances cationic lipid-mediated delivery of antisense oligonucleotides. Biomacromolecules 2006;7:1502-8
  • Malik R, Roy L. Design and development of antisense drugs. Expert Opin Drug Discov 2008;3:1189-207
  • Wang L, Kristensen J, Ruffner DE. Delivery of antisense oligonucleotides using HPMA polymer: synthesis of a thiol polymer and its conjugation to water-soluble molecules. Bioconjug Chem 1998;9:749-57
  • Leaman DW. Recent progress in oligonucleotide therapeutics: antisense to aptamers. Expert Opin Drug Discov 2008;3:997-1009
  • Opalinska J. Nucleic acid drugs in the clinic. Expert Opin Drug Discov 2007;2:321-33
  • Vasir JK, Labhasetwar V. Polymeric nanoparticles for gene delivery. Expert Opin Drug Deliv 2006;3:325-44
  • Segura T, Shea LD. Materials for non-viral gene delivery. Annu Rev Mater Res 2001;31:25-46
  • Good L. Antisense antibacterials. Expert Opin Ther Patents 2002;12:1173-9
  • El-Aneed A. An overview of current delivery systems in cancer gene therapy. J Control Release 2004;94:1-14
  • Karinaga R, Anada T, Minari J, et al. Galactose-PEG dual conjugation of b-(1-3)-D-glucan schizophyllan for antisense oligonucleotides delivery to enhance the cellular uptake. Biomaterials 2006;27:1626-35
  • Zuhorn IS, Engberts JBFN, Hoekstra D. Gene delivery by cationic lipid vectors: overcoming cellular barriers. Eur Biophys J 2007;36:349-62
  • Chirila TV, Rakoczy PE, Garrett KL, et al. The use of synthetic polymers for delivery of therapeutic antisense oligodeoxynucleotides. Biomaterials 2002;23:321-42
  • Goyal P, Goyal K, Kumar SGV, et al. Liposomal drug delivery systems – clinical applications. Acta Pharm 2005;55:1-25
  • Christian DA, Cai S, Bowen DM, et al. Polymersome carriers: from self-assembly to siRNA and protein therapeutics. Eur J Pharm Biopharm 2009;71:463-74
  • Garcia-Chaumont C, Seksek O, Grzybowska J, et al. Delivery systems for antisense oligonucleotides. Pharmacol Ther 2000;87:255-77
  • Abes S, Williams D, Prevot P, et al. Endosome trapping limits the efficiency of splicing correction by PNA-oligolysine conjugates. J Control Release 2006;2006:595-604
  • Horwich MD, Zamore PD. Design and delivery of antisense oligonucleotides to block microRNA function in cultured Drosophila and human cells. Nat Protocols 2008;3:1537-49
  • Rayburn ER, Wang H, Zhang R. Antisense-based cancer therapeutics: are we there yet? Expert Opin Emerg Drugs 2006;11:337-52
  • Chiarantini L, Ceras A, Fraternale A, et al. Comparison of novel delivery systems for antisense peptide nucleic acids. J Control Release 2005;109:24-36
  • Juliano R, Alam MR, Dixit V, Kang H. Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res 2008;36:4158-71
  • Shi F, Hoekstra D. Effective intracellular delivery of oligonucleotides in order to make sense of antisense. J Control Release 2004;97:189-209
  • Godfray J, Estibeiro P. The potential of antisense as a CNS therapeutic. Expert Opin Ther Targets 2003;7:363-76
  • Veldhoen S, Laufer SD, Restle T. Recent developments in peptide-based nucleic acid delivery. Int J Mol Sci 2008;9:1276-320
  • Deshayes S, Morris MC, Divita G, Heitz F. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. CMLS Cell Mol Life Sci 2005;62:1839-49
  • Maier MA, Esau CC, Siwkowski AM, et al. Evaluation of basic amphipathic peptides for cellular delivery of antisense peptide nucleic acids. J Med Chem 2006;49:2534-42
  • Bayele HK, Sakthivel T, O'Donell M, et al. Versatile peptide dendrimers for nucleic acid delivery. J Pharm Sci 2005;94:446-57
  • Martin VL, Roy S, Armitage BA. Recent advances in the development of peptide nucleic acid as gene-targeted drug. Expert Opin Biol Ther 2004;4:337-48
  • Kichler A. Gene transfer with modified polyethylenimines. J Gene Med 2004;6:S3-10
  • Jia N, Lian Q, Shen H, et al. Intracellular delivery of quantum dots tagged antisense oligodeoxynucleotides by functionalized multiwalled carbon nanotubes. Nano Lett 2007;7:2976-80
  • Gao S, Chen J, Dong L, et al. Targeting delivery of oligonucleotide and plasmid DNA to hepatocyte via galactosylated chitosan vector. Eur J Pharm Biopharm 2005;60:327-34
  • Hadaschik BA, Jackson J, Fazli L, et al. Intravesically administered antisense oligonucleotides targeting heat-shock protein-27 inhibit the growth of non-muscle-invasive bladder cancer. BJU Int 2008;102:610-6
  • Mehier-Humbert S, Guy RH. Physical methods for gene transfer: improving the kinetics of gene delivery into cells. Adv Drug Deliv Rev 2005;57:733-53
  • Zhao X, Pan F, Zhang Z, et al. Nanostructure of polyplexes formed between cationic diblock copolymer and antisense oligodeoxynucleotide and its influence on cell transfection efficiency. Biomacromolecules 2007;8:3493-502
  • Felgner PL, Gadek TR, Holm M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987;84:7413-7
  • Zhang S, Xu Y, Wang B, et al. Cationic compounds used in lipoplexes and polyplexes for gene delivery. J Control Release 2004;100:165-80
  • Rao NM, Gopal V. Cationic lipids for gene delivery in vitro and in vivo. Expert Opin Ther Patents 2006;16:825-44
  • Lindner LH, Brock R, Arndt-Jovin D, Eibl H. Structural variation of cationic lipids: Minimum requirement for improved oligonucleotide delivery into cells. J Control Release 2006;110:444-56
  • Farhood H, Serbina S, Huang L. The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer. Biochim Biophys Acta 1995;1235:289-95
  • Yamauchi M, Kusano H, Saito E, et al. Improved formulations of antisense oligodeoxynucleotides using wrapped liposomes. J Control Release 2006;114:268-75
  • Pakunlu RI, Wang Y, Saad M, et al. In vitro and in vivo intracellular liposomal delivery of antisense oligonucleotides and anticancer drug. J Control Release 2006;114:153-62
  • Wong FMP, Macadam SA, Kim A, et al. A lipid-based delivery system for antisense oligonucleotides derived from a hydrophobic complex. J Drug Target 2002;10:615-23
  • Wilson A, Zhou W, Champion HC, et al. Targeted delivery of oligodeoxynucleotides to mouse lung endothelial cells in vitro and in vivo. Mol Ther 2005;12:510-8
  • Chiu S-J, Liu S, Perrotti D, et al. Efficient delivery of a Bcl-2-specific antisense oligodeoxyribonucleotide (G3139) via transferrin receptor-targeted liposomes. J Control Release 2006;112:199-207
  • Zhang Y, Qi XR, Gao Y, et al. Mechanisms of co-modified liver-targeting liposomes as gene delivery carriers based on cellular uptake and antigens inhibition effect. J Control Release 2007;117:281-90
  • Lv H, Zhang S, Wang B, et al. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 2006;114:100-9
  • Weyermann J, Lochmann D, Zimmer A. Comparison of antisense oligonucleotide drug delivery systems. J Control Release 2004;100:411-23
  • Zhao X, Zhang Z, Pan F, et al. Plasmid DNA complexation with phosphorylcholine diblock copolymers and its effect on cell transfection. Langmuir 2008;24:6881-8
  • Merdan T, Kopecek J, Kissel T. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev 2002;54:715-58
  • Neu M, Fischer D, Kissel T. Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J Gene Med 2005;7:992-1009
  • Pack DW, Hoffman AS, Pun S, Stayton PS. Design and developement of polymers for gene delivery. Nat Rev Drug Discov 2005;4:581-93
  • Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine) and its role in gene delivery. J Control Release 1999;60:149-60
  • Dufès C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev 2005;57:2177-202
  • Nam HY, Hahn HJ, Nam K, et al. Evaluation of generations 2, 3 and 4 arginine modified PAMAM dendrimers for gene delivery. Int J Pharm 2008;363:199-205
  • Zhao XB, Lee RJ. Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor. Adv Drug Deliv Rev 2004;56:1193-204
  • Sarkar T, Conwell CC, Harvey LC, et al. Condensation of oligonucleotides assembled into nicked and gapped duplexes: potential structures for oligonucleotide delivery. Nucleic Acids Res 2005;33:143-51
  • Zhu J, Tang A, Law LP, et al. Amphiphilic core-shell nanoparticles with poly(ethylenimine) shells as potential gene delivery carriers. Bioconjug Chem 2005;16:139-46
  • Carlisle RC, Etrych T, Briggs SS, et al. Polymer-coated polyethylenimine/DNA complexes designed for triggered activation by intracellular reduction. J Gene Med 2004;6:337-44
  • Dailey LA, Kleemann E, Merdan T, et al. Modified polyethylenimines as non viral gene delivery systems for aerosol therapy: effects of nebulization on cellular uptake and transfection efficiency. J Control Release 2004;100:425-36
  • Williams JH, Schray RC, Sirsi SR, Lutz GJ. Nanopolymers improve delivery of exon skipping oligonucleotides and concomitant dystrophin expression in skeletal muscle of mdx mice. BMC Biotechnol 2008;8:35
  • Sirsi SR, Williams JH, Lutz GJ. Poly(ethylene imine)–poly(ethylene glycol) copolymers facilitate efficient delivery of antisense oligonucleotides to nuclei of mature muscle cells of mdx mice. Hum Gene Ther 2005;16:1307-17
  • Kim SH, Mok H, Jeong JH, et al. Comparative evaluation of target-specific GFP gene silencing efficiencies for antisense ODN, synthetic siRNA, and siRNA plasmid complexed with PEI-PEG-FOL conjugate. Bioconjug Chem 2006;17:241-4
  • Vinogradov SV, Batrakova EV, Li S, Kabanov AV. Mixed polymer micelles of amphiphilic and cationic copolymers for delivery of antisense oligonucleotides. J Drug Target 2004;12:517-26
  • Glodde M, Sirsi SR, Lutz GJ. Physiochemical properties of low and high molecular weight poly(ethylene glycol)-grafted poly(ethylene imine) copolymers and their complexes with oligonucleotides. Biomacromolecules 2006;7:347-56
  • Lomas H, Marzia Massignani, Abdullah KA, et al. Non-cytotoxic polymer vesicles for rapid and efficient intracellular delivery. Faraday Discuss 2008;139:143-59
  • Lomas H, Canton I, MacNeil S, et al. Biomimetic pH sensitive polymersomes for efficient DNA encapsulation and delivery. Adv Mater 2007;19:4238-43
  • Nafee N, Taetz S, Schneider M, et al. Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedicine 2007;3:173-83
  • Pan B, Cui D, Sheng Y, et al. Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res 2007;67:8156-63
  • Wernig K, Griesbacher M, Andreae F, et al. Depot formulation of vasoactive intestinal peptide by protamine-based biodegradable nanoparticles. J Control Release 2008;130:192-8
  • Tahara K, Sakai T, Yamamoto H, et al. Establishing chitosan coated PLGA nanosphere platform loaded with wide variety of nucleic acid by complexation with cationic compound for gene delivery. Int J Pharm 2008;354:210-6
  • Giljohann DA, Seferos DS, Patel PC, et al. Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 2007;7:3818-21
  • Rosi NL, Giljohann DA, Thaxton CS, et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006;312:1027-30
  • Patel PC, Giljohann DA, Seferos DS, Mirkin CA. Peptide antisense nanoparticles. Proc Natl Acad Sci USA 2008;105:17222-6
  • Zhu S-G, Xiang J-J, Li X-L, et al. Poly(L-lysine)-modified silica nanoparticles for the delivery of antisense oligonucleotides. Biotechnol Appl Biochem 2004;39:179-87
  • Wartlick H, Spänkuch-Schmitt B, Strebhardt K, et al. Tumour cell delivery of antisense oligonucleotides by human serum albumin nanoparticles. J Control Release 2004;96:483-95
  • Steinhauser IM, Langer K, Strebhardt KM, Spänkuch B. Effect of trastuzumab modified antisense oligonucleotide-loaded human serum albumin nanoparticles prepared by heat denaturation. Biomaterials 2008;29:4022-8
  • Santos ALGD, Bochot A, Doyle A, et al. Sustained release of nanosized complexes of polyethylenimine and anti-TGF-β2 oligonucleotide improves the outcome of glaucoma surgery. J Control Release 2006;112:369-81
  • Kovacs JR, Zheng Y, Shen H, Meng WS. Polymeric microspheres as stabilizing anchors for oligonucleotide delivery to dendritic cells. Biomaterials 2005;26:6754-61
  • Akhtar S, Lewis KJ. Antisense oligonucleotide delivery to cultured macrophages is improved by incorporation into sustained-release biodegradable polymer microspheres. Int J Pharm 1997;151:57-67
  • Phull H, Lien Y-HH, Salkini MW, et al. Delivery of intercellular adhesion molecule-1 antisense oligonucleotides using a topical hydrogel tissue sealant in a murine partial nephrectomy/ischemia model. Urology 2008;72:690-5
  • Vinogradov SV, Batrakova EV, Kabanov AV. Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem 2004;15:50-60
  • Khan A, Sommer W, Fuxe K, Akhtar S. Site-specific administration of antisense oligonucleotides using biodegradable polymer microspheres provides sustained delivery and improved subcellular biodistribution in the neostriatum of the rat brain. J Drug Target 2000;8:319-34
  • Nyce JW. Antisense oligonucleotides: local delivery enhances their therapeutic potential. Expert Opin Ther Patents 1999;9:263-7
  • Takahashi H, Letourneur D, Grainger DW. Delivery of large biopharmaceuticals from cardiovascular stents: a review. Biomacromolecules 2007;8:3281-93
  • Zhang Z, Cao X, Zhao X, et al. Controlled delivery of antisense oligodeoxynucleotide from cationically modified phosphorylcholine polymer films. Biomacromolecules 2006;7:784-91
  • Zhang Z, Cao X, Zhao X, et al. Controlled delivery of anti-sense oligodeoxynucleotide from multilayered biocompatible phosphorylcholine polymer films. J Control Release 2008;130:69-76
  • Lewis AL. Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surf B Biointerfaces 2000;18:261-75
  • Lewis AL, Freeman RNT, Redman RP, et al. Wettable phosphorylcholine-containing polymers useful in blood filtration. J Mater Sci Mater Med 2003;14:39-45
  • Lewis AL, Hughes PD, Kirkwood LC, et al. Synthesis and characterisation of phosphorylcholine-based polymers useful for coating blood filtration devices. Biomaterials 2000;21:1847-59
  • Lewis AL, Tolhurst LA, Stratford PW. Analysis of a phosphorylcholine-based polymer coating on a coronary stent pre- and post-implantation. Biomaterials 2002;23:1697-706
  • Willis SL, Court JL, Redman RP, et al. A novel phosphorylcholine-coated contact lens for extended wear use. Biomaterials 2001;22:3261-72
  • Rose SF, Lewis AL, Hanlon GW, Lloyd AW. Biological responses to cationically charged phosphorylcholine-based materials in vitro. Biomaterials 2004;25:5125-35
  • Zhao X, Pan F, Coffey P, Lu JR. Cationic copolymer-mediated DNA immobilization: interfacial structure and composition as determined by ellipsometry, dual polarization interferometry, and neutron reflection. Langmuir 2008;24:13556-64
  • Zhao X, Zhang Z, Pan F, et al. Solution pH regulated interfacial adsorption of diblock phosphorylcholine copolymers. Langmuir 2005;21:9597-603
  • Zhao X, Zhang Z, Pan F, et al. DNA immobilization using biocompatible diblock phosphorylcholine copolymers. Surf Interface Anal 2006;38:548-51
  • Chim YTA, Lam JKW, Ma Y, et al. Structural study of DNA condensation induced by novel phosphorylcholine-based copolymers for gene delivery and relevance to DNA protection. Langmuir 2005;21:3591-8
  • Lam JKW, Ma Y, Armes SP, et al. Phosphorylcholine–polycation diblock copolymers as synthetic vectors for gene delivery. J Control Release 2004;100:293-312
  • Salvage JP, Rose SF, Phillips GJ, et al. Novel biocompatible phosphorylcholine-based self-assembled nanoparticles for drug delivery. J Control Release 2005;104:259-70
  • Palmer RR, Lewis AL, Kirkwood LC, et al. Biological evaluation and drug delivery application of cationically modified phospholipid polymers. Biomaterials 2004;25:4785-96
  • Xu J-P, Ji J, Chen W-D, Shen J-C. Novel biomimetic polymersomes as polymer therapeutics for drug delivery. J Control Release 2005;107:502-12
  • Giacomelli C, Men LL, Borsali R, et al. Phosphorylcholine-based pH-responsive diblock copolymer micelles as drug delivery vehicles: light scattering, electron microscopy, and fluorescence experiments. Biomacromolecules 2006;7:817-28
  • Lewis AL, Vick TA, Collias ACM, et al. phosphorylcholine-based polymer coatings for stent drug delivery. J Mater Sci Mater Med 2001;12:865-70
  • Lewis AL, Furze JD, Small S, et al. Long-term stability of a coronary stent coating post-implantation. J Biomed Mater Res (Appl Biomater) 2002;63:699-705
  • Zhao X, Pan F, Lu JR. Interfacial immobilization of DNA molecules. Annu Rep Prog Chem Sect C Phys Chem 2007;103:261-86
  • Chan KH, Armstrong J, Withers S, et al. Vascular delivery of c-myc antisense from cationically modified phosphorylcholine coated stents. Biomaterials 2007;28:1218-24
  • Lewis A, Berwick J, Davies MC, et al. Synthesis and characterisation of cationically modified phospholipid polymers. Biomaterials 2004;25:3099-108
  • Branco MC, Schneider JP. Self-assembling materials for therapeutic delivery. Acta Biomaterialia 2009;5:817-31
  • Nagai Y, Unsworth LD, Koutsopoulos S, Zhang S. Slow release of molecules in self-assembling peptide nanofiber scaffold. J Control Release 2006;115:18-25

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.