865
Views
196
CrossRef citations to date
0
Altmetric
Reviews

Self-ordered nanopore and nanotube platforms for drug delivery applications

&
Pages 1363-1381 | Published online: 27 Oct 2009

Bibliography

  • Drews J. Drug discovery: a hystorical perspective,. Science 2000;287:1960-4
  • Mainardes RM Silva LP. Drug delivery systems: past, present, and future. Curr Drug Targets 2004;5:449-55
  • Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv 2007;4:403-16
  • El-Aneed A. An overview of current delivery systems in cancer gene therapy. J Controlled Release 2004; 94;1-14
  • Amiji MM. Nanotechnology for targeted drug and gene delivery. Nanomed Nanotechnol Biol Med 2006;2:299-300
  • Kayser O, Lemke A, Trejo NH. The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol 2005;6:3-5
  • De Villiers MM, Aramwit P, Kwon GS. Eds. Nanotechnology in drug delivery. Springer, AAPS Press 2009
  • Van D, McGuire T, Langer R. Small scale systems for in vivo drug delivery. Nat Biotechnol 2003;21:1184-91
  • Wei C, Wei W, Moris M, Nanomedicine for drug delivery, Med. Clin N Am 2007;91:863-70
  • Hughes GA. Nanostructure-mediated drug delivery. Nanomedicine, Nanotechnology, Biology and Medicine 2005;1:22-30
  • Martin CR Kohli P. The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2003;2:29-37
  • Vallet-Regí M. Balas F. Arcos D Mesoporous Materials for Drug Delivery Angew Chem Int Ed 2007;46:7548-58
  • Wang S. Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater 2009;117:1-9
  • Son SJ, Bai X, Nan A, Template synthesis of multifunctional nanotubes for controlled release. J Controlled Release 2006;114:143-52
  • Anglin EJ, Cheng LY, Freeman WR, Sailor MJ. Porous silicon in drug delivery devices and materials. Adv Drug Delivery Rev 2008;60:1266-77
  • Salonen J, Kaukonen AM, Hirvonen J, Lehto V-P. Mesoporous silicon in drug delivery applications. J Pharm Sci 2008;97:632-53
  • Prestige CA, Barnes TJ, Lau C-H, et al. Mesoporous silicon: a platform for the delivery of therapeutics. Expert Opin Drug Deliv 2007;4:101-10
  • Schmid G. Materials in nanoporous alumina. J Mater Chem 2002;12:1231-8
  • Ghicov A, Schmuki P. Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem Commun 2009;20:2791-808
  • Grimes CA. Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem 2007;17:1451-7
  • Colfen H, Mann S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem Int Ed 2003;42:2350-64
  • Gomar-Nadal E, Puigmarti-Luis J, Amabilino DB. Asembly of functional molecular nanostructures on surface. Chem Soc Rev 2008;37:490-504
  • Gooding JJ, Mearns F, Yang W, Liu Jinguang. Self-assembeld monolayers into the 21st century: recent advances and applications. Electroanalyis 2003;15:83-96
  • Mor GK, Varghese OK, Paulose M, A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells 2006;90:2011-75
  • Macak JM, Tsuchiya H, Ghicov A, TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci 2007;11:3-18
  • Eftekhari A (ed) Nanostructured Materials in electrochemistry. Sulka GD. Highly ordered anodic porous alumina formation by self organized anodizing, Wiley-VCH2008
  • Li L, Koshizaki N, Li G, Nanotube arrays in porous alumina membranes. J Mater Sci Technol 2008;24:550-62
  • Thompson GE. Porous anodic alumina: Fabrication, characterization and applications. Thin Solid Films 1997;297:192-201
  • Digle JW, Downie TC, Goulding CW, Anodic oxide films on aluminium. Chem Rev 1969; 69:365-405
  • Lei Y, Cai WP, Wilde G. Highly ordered nanostructures with tunable size, shape and properties: A new way to surface nano-patterning using ultra-thin alumina masks. Prog Mater Sci 2007;52:465-539
  • Takmakov P, Vlassiouk I, Smirnov S. Application of anodized aluminum in fluorescence detection of biological species. Anal Bioanal Chem 2006;385:954-8
  • Steinhart M, Wehrspohn RB, Gosele U, Wendorff JH. Nanotubes by template wetting: A modular assembly system. Angew Chem Int Ed 2004;43:1334-44
  • Velleman L, Shapter JG, Losic D. Gold nanotube membranes functionalised with fluorinated thiols for selective molecular transport. J Membr Sci 2009;328:121-6
  • Losic D, Shapter JG, Mitchell JG, Voelcker NH. Fabrication of gold nanorod arrays by templating from porous alumina. Nanotechnology 2005;16:2275-81
  • Lillo M, Losic D. Ion-beam pore opening of porous anodic alumina: The formation of single nanopore and nanopore arrays. Mater Lett 2009;63:457-60
  • Ono S, Saito M, Asoh H. Self-ordering of anodic porous alumina formed in organic acid electrolytes. Electrochim Acta 2005;51:827-33
  • Jessensky O, Muller F, Gosele U. Self-organized formation of hexagonal pore arrays in anodic alumina. App Phys Lett 1998;72:1173-5
  • Choi J, Wehrspohn RB, Gosele U. Mechanism of guided self-organization producing quasi-monodomain porous alumina. Electrochim Acta 2005;50:2591-5
  • Masuda H, Hasegwa F, Ono S. Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J Electrochem Soc 1997;144:L127-30
  • Schneider JJ, Engstler N, Budna KP, Freestanding, highly flexible, large area, nanoporous alumina membranes with complete through-hole pore morphology. Eur J Inorg Chem 2005;12:2352-9
  • Vrublevsky I, Parkoun V, Schreckenbach J. Analysis of porous oxide film growth on aluminum in phosphoric acid using re-anodizing technique. App Surf Sci 2005;242:333-8
  • Masuda H, Fukuda K. Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina. Science 1995;268:1466-8
  • Masuda H, Asoh H, Watanabe M, Square and triangular nanohole array architectures in anodic alumina. Adv Mater 2001;13:189-92
  • Lee W, Ji R, Gosele U, Nielsch K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat Mater 2006;5:741-7
  • Chu SZ, Wada K, Inoue S, Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization. Adv Mater 2005;17:2115-21
  • Meng G, Jung YJ, Cao A, Vajtai R, Ajayan PM. Controlled fabrication of hierarchically branched nanopres, nanotubes and nanowires PNAS 2005;102:7074-7078
  • Ho AYY, Gao H, Lam YC, Rodriguez I. Controlled fabrication of multitiered three-dimensional nanostructures in porous alumina. Adv Funct Mater 2008;18:2057-63
  • Zakeri R, Watts C, Wang HB, Kohli P. Synthesis and characterization of nonlinear nanopores in alumina films. Chem Mater 2007;19:1954-63
  • Losic D, Lillo M, Losic . Porous alumina with shaped pore geometries and complex pore architectures fabricated by cyclic anodization. Small 2009;5:1392-7
  • Losic D. Losic DJr. Preparation of porous anodic alumina with periodically perforated pores. Langmuir 2009;25:5426-31
  • Popat KC, Mor G, Grimes CA, Desai TA. Surface modification of nanoporous alumina surfaces with poly(ethylene glycol). Langmuir 2004;20:8035-41
  • Losic D, Cole MA, Dollmann B, Surface modification of nanoporous alumina membranes by plasma polymerization. Nanotechnology 2008;19: 245704 (7 pg)
  • Cameron MA, Gartland IP, Smith JA, Atomic layer deposition of SiO2 and TiO2 in alumina tubular membranes: Pore reduction and effect of surface species on gas transport. Langmuir 2000;16:7435-44
  • Bruening ML, Dotzauer DM, Jain P, Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. Langmuir 2008;24:7663-73
  • Velleman L, Triani G, Evans PJ, Published online 12 june 2009. Microporous Mesoporous Mater 2009; DOI[SW2]:10.1016/j.micromeso.2009.05.024
  • Thormann A, Teuscher N, Pfannmoller M, Nanoporous aluminum oxide membranes for filtration and biofunctionalization. Small 2007;3:1032-40
  • Chang CS, Suen SY. Modification of porous alumina membranes with n-alkanoic acids and their application in protein adsorption. J Membr Sci 2006;275:70-81
  • Bruening ML, Dotzauer DM, Jain P, Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. Langmuir 2008;24:7663-73
  • Darder M, Aranda P, Hernandez-Velez M, Encapsulation of enzymes in alumina membranes of controlled pore size. Thin Solid Films 2006;495:321-6
  • Dai JH, Baker GL, Bruening ML. Use of porous membranes modified with polyelectrolyte multilayers as substrates for protein arrays with low nonspecific adsorption. Anal Chem 2006;78:135-40
  • Schmitt EK, Nurnabi M, Bushby RJ, Steinem C. Electrically insulating pore-suspending membranes on highly ordered porous alumina obtained from vesicle spreading. Soft Matter 2008;4:250-3
  • Jani AMM, Anglin EJ, McInnes SJP, Nanoporous anodic aluminium oxide membranes with layered surface chemistry. Chem Commun 2009;21:3062-4
  • Kipke S, Schmid G. Nanoporous alumina membranes as diffusion controlling systems. Adv Funct Mater 2004;14:1184-8
  • Sedel L. Evolution of alumina-on-alumina implants. Clinical orthopaedic and related research 2000;379:48-54
  • Popat KC, Swan EEL, Mukhatyar V, Influence of nanoporous alumina membranes on long-term osteoblast response. Biomaterials 2005;26:4516-22
  • Swan EEL, Popat KC, Grimes CA, Desai TA. Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. J Biomed Mater Res. Part A 2005;72A:288-95
  • La Flamme KE, Popat KC, Leoni L, Biocompatibility of nanoporous alumina membranes for immunoisolation. Biomaterials 2007;28:2638-45
  • Popat KC, Chatvanichkul KI, Barnes GL, Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces. J Biomed Mater Res Part A 2007;80A:955-64
  • Swan EEL, Popat KC, Desai TA. Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion. Biomaterials 2005;26:1969-197
  • Karlsson M, Palsgard E, Wilshaw PR, Di Silvio L. Initial in vitro interaction of osteoblasts with nano-porous alumina. Biomaterials 2003;24:3039-46
  • Karlsson M, Johansson A, Tang L, Boman M. Nanoporous aluminum oxide affects neutrophil behaviour. Microsc Research Technique 2004;63:259-65
  • Karlsson M, Tang L. Surface morphology and adsorbed proteins affect phagocyte responses to nano-porous alumina. J Mater Sci Mater Med 2006;17:1101-11
  • Ferraz N, Carlson J, Hong J, Ott MK. Influence of nanopore size on platelet adhesion and activation. J Mater Sci Mater Med 2008;19:3115-21
  • Jens D, Bose S, Hosick HL, Bandyopadhyay A. From CT scan to ceramic bone graft. J Am Ceram Soc 2003;86:1076-108
  • Karoussos IA, Wieneke H, Sawitowski T, Inorganic materials as drug delivery systems in coronary artery stenting. Materialwissenschaft und Werkstofftechnik 2002;33:738-46
  • Kollum M, Farb A, Schreiber R, . Particle debris from a nanoporous stent coating obscures potential antiproliferative effects of tacrolimus-eluting stents in a porcine model of restenosis Catheterization and cardiovascular interventions 2005;64:85-90
  • Sigler M; Paul T; Grabitz R G. Biocompatibility screening in cardiovascular implants. Zeitschrift fuer Kardiologie 2005;94:383-91
  • Camenzind E, DeScheerder IK. Local Drug delivery for coronary artery disease, Established and emerging applications. Oxford: Taylor & Francis 2005
  • Wieneke H, Sawitowski T, Wnendt S, A new approach in interventional cardiology. Herz 2002;27:518-26
  • Wieneke H, Olaf Dirsch MD, Sawitowski T. Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferationin rabbits. Catheterization and Cardiovascular Interventions 2003;399–407
  • Tao SL, Desai TA, Microfabricated drug delivery systems. Adv Drug Deliv Rev 2003;55:315-28
  • Desai TA. Bhatia S, Ferrari M. Therrapeatic micro/nano technology. Berlin: Springer Sci 2006
  • Desai TA, West T, Cohen M, Nanoporous microsystems for islet cell replacement. Adv Drug Delivery Rev 2004;56:1661-73
  • La Flamme KE, LaTempa TJ, Grimes CA, Desai TA. The effects of cell density and device arrangement on the behavior of macroencapsulated beta-cells. Cell Transplantation 2007;16:765-74
  • La Flamme KE, Gopal M, Gong D, Desai TA. Nanoporous Alumina Capsules for Cellular Macroencapsulation: Transport and Biocompatibility Diabetes Technol Therapeutics 2005;7:684-694
  • Gong D, Yadavalli V, V, Therapeutic micro and nanotechnology: Controlled molecular release using nanoporous alumina capsules. Biomedical Microdevices 2003;5:75-80
  • Zwilling V, Darque-Ceretti E, Boutry-Forveille A, Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interfac Anal 1999;27:629-37
  • Kant K, Losic D. A simple approach for synthesis of TiO2 nanotubes with through-hole morphology. Phys Status Solidi RRL, 2009;3:139-141
  • Macak JM, Albu SP, Schmuki P. Towards ideal hexagonal self-ordering of TiO2 nanotubes. Phys Status Solidi-RRL 2007;1:181-3
  • Prakasam HE, Shankar K, Paulose M, A new benchmark for TiO2 nanotube array growth by anodization. J Phys Chem C 2007;111:7235-41
  • Paulose M, Peng L, Popat KC, Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. J Membr Sci 2008;319:199-205
  • Macak JM, Albu SP, Kim DH, Multilayer TiO2-nanotube formation by two-step anodization. Electrochem Solid State Lett 2007;10:K28-31
  • Macak JM, Schmuki P. Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes. Electrochim Acta 2006;52:1258-64
  • Bauer S, Kleber S, Schmuki P. TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes. Electrochem Commun 2006;8:1321
  • Albu SP, Kim D, Schmuki P. Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace. Angew Chem Int Ed 2008;47:1916-9
  • Song YY, Schmidt-Stein F, Bauer S, Schmuki P. Amphiphilic TiO2 Nanotube Arrays: An Actively Controllable Drug Delivery System. J Am Chem Soc 2009;131:4230-2
  • Liu H, Webster TJ, Nanomedicine for implants. A review of studies and necessary experimental tools. Biomaterials 2007;28:354-69
  • Matsuno H, Yokoyama A, Watari F, Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials 2001;22;1253-1262
  • Kodama T, Study on biocompatibility of titanium alloys. J Stomatol Soc Jpn 1989;51:263-288
  • Popat KC, Leoni L, Grimes CA, Desai TA. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 2007;28:3188-97
  • Popat KC, Eltgroth M, LaTempa TJ, Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 2009;28:4880-8
  • Popat KC, Eltgroth M, La Tempa TJ, Titania nanotubes: A novel platform for drug-eluting coatings for medical implants. Small 2007;3:1878-81
  • Burns K, Yao C, Webster TJ. Increased chondrocyte adhesion on nanotubular anodized titanium. J Biomed Mater Res. Part A 2009;88A:561-8
  • Oh S, Daraio C, Chen LH, Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res. Part A 2006;78A:97-103
  • Oh S, Jin S. Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Mater Sci Eng C 2006; 26 C: 1301-1306
  • von Wilmowsky C, Bauer S, Lutz R, In Vivo Evaluation of Anodic TiO2 Nanotubes: An Experimental Study in the Pig. J Biomed Mater Res. Part B-Appl Biomater 2009;89B:165-71
  • Oh S, Brammer KS, Li YSJ, Stem cell fate dictated solely by altered nanotube dimension. PNAS 2009;106:2130-5
  • Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 2007;7:1686-91
  • Park J, Bauer S, Schlegel KA, TiO2 Nanotube Surfaces: 15 nm - An Optimal Length Scale of Surface Topography for Cell Adhesion and Differentiation. Small 2009;5:666-71
  • Bauer S, Park J, von der Mark K, Schmuki P. Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes. Acta Biomaterialia 2008;4:1576-82
  • Peng LL, Mendelsohn AD, LaTempa TJ, Long-Term small molecule and protein elution from TiO2 nanotubes. Nano Lett 2009;9:1932-6
  • Wykrzykowska JJ, Onuma Y, Serruys PW. Advances in stent drug delivery: the future is in bioabsorbable stents. Expert Opin Drug Deliv 2009;6:113-26
  • Peng L, Eltgroth ML, LaTempa TJ, The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. Biomaterials 2009;30:1268-72
  • Antoci V, Adams CS, Parvizi J, The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials 2008;29:4684-90
  • Jose B, Antoci V, Zeiger AR, Vancomycin covalently bonded to titanium beads kills Staphylococcus aureus. Chem Biol 2005;12:1041-8
  • Shrestha NK, Macak JM, Schmidt-Stein F, Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. Angew Chem Int Ed 2009;48:969-72
  • Kalbacova M, Macak JM, Schmidt-Stein F, TiO2 nanotubes: photocatalyst for cancer cell killing. Phys Status Solidi RRL 2008;2:194-6
  • Farrar G, Altmann P, Watch S, A. Defective gallium-transfer in binding in Alzheimer disease and Down syndrome: possible mechanism for accumulation of aluminium in brain. Lancet 1990;335:747-750
  • Goodman SB, Davidson JA, Fornasiero VL, Histological response to cylinders of a low modulus titanium alloy (Ti–13Nb–13Zr) and a wear resistant zirconium alloy (Zr–2.5Nb) implanted in the rabbit tibia. J Appl Biomater 1993;4:331-339

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.