507
Views
157
CrossRef citations to date
0
Altmetric
Reviews

Drug delivery from ordered mesoporous matrices

, &
Pages 1383-1400 | Published online: 26 Nov 2009

Bibliography

  • Vallet-Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem-Int Edit 2007;46:7548-58
  • Vallet-Regí M. Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chem Eur J 2006;12:5934-43.
  • Vallet-Regí M, Balas F, Colilla M, Bioceramics and pharmaceuticals: a remarkable synergy. Solid State Sci 2007;9:768-76.
  • Slowing, II, Trewyn BG, Giri S, Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater 2007;17:1225-36
  • Colilla M, Manzano M, Vallet-Regí M. Recent advances in ceramic implants as drug delivery systems for biomedical applications. Int J Nanomed 2008;3:403-14
  • Wang S. Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater 2009;117:1-9
  • Trewyn BG, Giri S, Slowing, II, Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chem Commun 2007;3236-45.
  • Kresge CT, Leonowicz ME, Roth WJ, Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 1992;359:710-2
  • Yanagisawa T, Shimizu T, Kuroda K, The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bull Chem Soc Jpn 1990;63:988-92
  • Zhao DY, Feng JL, Huo QS, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998;279:548-52
  • Zhao DY, Huo QS, Feng JL, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 1998;120:6024-36
  • Huo QS, Margolese DI, Ciesla U, Generalized synthesis of periodic surfactant inorganic composite-materials. Nature 1994;368:317-21
  • Sakamoto Y, Kim TW, Ryoo R, Terasaki O. Three-dimensional structure of large-pore mesoporous cubic Ia(3)over-bard silica with complementary pores and its carbon replica by electron crystallography. Angew Chem-Int Edit 2004;43:5231-4
  • Huo QS, Margolese DI, Stucky GD. Surfactant control of phases in the synthesis of mesoporous silica-based materials Chem Mater 1996;8:1147-60
  • Ryoo R, Joo SH, Kim, JM. Energetically favored formation of MCM-48 from cationic-neutral surfactant mixtures. J Phys Chem B 1999;103:7435-40
  • Kim TW, Ryoo R, Kruk M, Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time. J Phys Chem B 2004;108:11480-9
  • Hoffmann F, Cornelius M, Morell J, Froba M. Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem-Int Edit 2006;45:3216-51
  • Han YJ, Stucky GD, Butle A. Mesoporous silicate sequestration and release of proteins. J Am Chem Soc, 1999; 121; 9897-8.
  • Lu YF, Fan HY, Doke N, Evaporation-induced self-assembly of hybrid bridged silsesquioxane film and particulate mesophases with integral organic functionality. J Am Chem Soc 2000;122:5258-61
  • Kecht J, Schlossbauer A, Bein T. Selective functionalization of the outer and inner surfaces in mesoporous silica nanoparticles. Chem Mater 2008;20:7207-14
  • Antochshuk V, Jaroniec M. Functionalized mesoporous materials obtained via interfacial reactions in self-assembled silica-surfactant systems. Chem Mat 2000;12:2496-501
  • Jun L, Xiangdong F, Glen EF, Hybrid mesoporous materials with functionalized monolayers. Adv Mater 1998;10:161-5
  • Vallet-Regí M, Balas F, Colilla M, Manzano M. Drug Confinement and Delivery in Ceramic Implants. Drug Metab Lett 2007;1:37-40
  • Kokubo T, Kushitani H, Sakka S, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J Biomed Mater Res 1990;24:721-34
  • Vallet-Regí M, Rámila A, del Real RP, Pérez-Pariente J. A new property of MCM-41: drug delivery system. Chem Mat 2001;13:308-11
  • Vallet-Regí M, Balas F, Colilla M, Manzano M. Bone-regenerative bioceramic implants with drug and protein controlled delivery capability. Prog Solid State Chem 2008;36:163-91
  • Colilla M, Izquierdo-Barba I, Vallet-Regi M. Novel biomaterials for drug delivery. Expert Opin Ther Patents 2008;18:639-56
  • Horcajada P, Rámila A, Pérez-Pariente J, Vallet-Regí M. Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater 2004;68:105-9
  • Horcajada P, Rámila A, Férey G, Vallet-Regí M. Influence of superficial organic modification of MCM-41 matrices on drug delivery rate. Solid State Sci 2006;8:1243-9
  • Muñoz B, Rámila A, Pérez-Pariente J, MCM-41 organic modification as drug delivery rate regulator. Chem Mat 2003;15:500-3
  • Song SW, Hidajat K, Kawi S. Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions. Langmuir 2005;21:9568-75
  • Azais T, Tourne-Peteilh C, Aussenac F, Solid-State NMR study of ibuprofen confined in MCM-41 material. Chem Mat 2006;18:6382-90
  • Tang QL, Xu Y, Wu D, Sun YH. Hydrophobicity-controlled drug delivery system from organic modified mesoporous silica. Chem Lett 2006;35:474-5
  • Tang QL, Xu Y, Wu D, Studies on a new carrier of trimethylsilyl-modified mesoporous material for controlled drug delivery. J Control Release 2006;114:41-6
  • Cavallaro G, Pierro P, Palumbo FS, Drug delivery devices based on mesoporous silicate. Drug Deliv 2004;11:41-6
  • Tagliati CA, Kimura E, Nothenberg MS, Pharmacokinetic profile and adverse gastric effect of zinc-piroxicam in rats. Gen Pharmacol 1999;33:67-71
  • Ambrogi V, Perioli L, Marmottini F, Improvement of dissolution rate of piroxicam by inclusion into MCM-41 mesoporous silicate. Eur J Pharm Sci 2007;32:216-22
  • Zeng W, Qian XF, Zhang YB, Organic modified mesoporous MCM-41 through solvothermal process as drug delivery system. Mater Res Bull 2005;40:766-72
  • Rogers-Foy JM, Powers DL, Brosnan DA, Hydroxyapatite composites designed for antibiotic drug delivery and bone reconstruction: A caprine model. J Invest Surg 1999;12:263-75
  • Baro M, Sánchez E, Delgado A, In vitro-in vivo characterization of gentamicin bone implants. J Control Release 2002;83:353-64
  • Caliceti P, Salmaso S, Lante A, Controlled release of biomolecules from temperature-sensitive hydrogels prepared by radiation polymerization. J Control Release 2001;75:173-81
  • Changez M, Burugapalli K, Koul V, Choudhary V. The effect of composition of poly(acrylic acid)-gelatin hydrogel on gentamicin sulphate release: in vitro. Biomaterials 2003;24:527-36
  • Virto MR, Frutos P, Torrado S, Frutos G. Gentamicin release from modified acrylic bone cements with lactose and hydroxypropylmethylcellulose. Biomaterials 2003;24:79-87
  • Padilla S, del Real RP, Vallet-Regí M. In vitro release of gentamicin from OHAp/PEMA/PMMA samples. J Control Release 2002;83:343-52
  • Vallet-Regi M, Doadrio JC, Doadrio AL, Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin. Solid State Ionics 2004;172:435-9
  • Doadrio AL, Sousa EMB, Doadrio JC, Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. J Control Release 2004;97:125-32
  • Xue JM, Shi M. PLGA/mesoporous silica hybrid structure for controlled drug release. J Control Release 2004;98:209-17
  • Izquierdo-Barba I, Martínez A, Doadrio AL, Release evaluation of drugs from ordered three-dimensional silica structures. Eur J Pharm Sci 2005;26:365-73
  • Doadrio JC, Sousa EMB, Izquierdo-Barba I, Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern. J Mater Chem 2006;16:462-6
  • Mellaerts R, Aerts CA, Van Humbeeck J, Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials. Chem Commun 2007;1375-7.
  • Mellaerts R, Jammaer JAG, Van Speybroeck M, Physical state of poorly water soluble therapeutic molecules loaded into SBA-15 ordered mesoporous silica carriers: A case study with itraconazole and ibuprofen. Langmuir 2008;24:8651-9
  • Mellaerts R, Mols R, Jammaer JAG, Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica. Eur J Pharm Biopharm 2008;69:223-30
  • Zelenak V, Hornebecq V, Llewellyn P. Zinc(II)-benzoato complexes immobilised in mesoporous silica host. Microporous Mesoporous Mater 2005;83:125-35
  • Qu FY, Zhu GS, Huang SY, Controlled release of captopril by regulating the pore size and morphology of ordered mesoporous silica. Microporous Mesoporous Mater 2006;92:1-9
  • Qu FY, Zhu GS, Huang SY, Effective controlled release of captopril by silylation of mesoporous MCM-41. ChemPhysChem 2006;7:400-6
  • Andersson J, Rosenholm J, Areva S, Linden M. Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices. Chem Mat 2004;16:4160-7
  • Chen F, Larsen MB, Sánchez C, Wiborg O. The S-enantiomer of R,S-citalopram, increases inhibitor binding to the human serotonin transporter by an allosteric mechanism. Comparison with other serotonin transporter inhibitors. Eur Neuropsychopharmacol 2005;15:193-8
  • Nunes CD, Vaz PD, Fernandes AC, Loading and delivery of sertraline using inorganic micro and mesoporous materials. Eur J Pharm Biopharm 2007;66:357-65
  • Tang QL, Xu Y, Wu D, Sun YH. A study of carboxylic-modified mesoporous silica in controlled delivery for drug famotidine. J Solid State Chem 2006;179:1513-20
  • Xu W, Gao Q, Xu Y, Controlled drug release from bifunctionalized mesoporous silica. J Solid State Chem 2008;181:2837-44
  • Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science 2000;289:1508-14
  • Nancollas GH, Tang R, Phipps RJ, Novel insights into actions of bisphosphonates on bone: Differences in interactions with hydroxyapatite. Bone 2006;38:617-27
  • Russell RGG, Rogers MJ. Bisphosphonates: from the laboratory to the clinic and back again. Bone 1999;25:97-106
  • Balas F, Manzano M, Horcajada P, Vallet-Regí M. Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J Am Chem Soc 2006;128:8116-7
  • Nieto A, Balas F, Colilla M, Functionalization degree of SBA-15 as key factor to modulate sodium alendronate dosage. Microporous Mesoporous Mater 2008;116:4-13
  • Yiu HHP, Botting CH, Botting NP, Wright PA. Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve. Phys Chem Chem Phys 2001;3:2983-5
  • Balas F, Manzano M, Colilla M, Vallet-Regi M. L-Trp adsorption into silica mesoporous materials to promote bone formation. Acta Biomater 2008;4:514-22
  • Suva LJ, Winslow GA, Wettenhall REH, A Parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science 1987;237:893-6
  • Pasqua L, Testa F, Aiello R, Preparation of bifunctional hybrid mesoporous silica potentially useful for drug targeting. Microporous Mesoporous Mater 2007;103:166-73
  • Lai CY, Trewyn BG, Jeftinija DM, A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 2003;125:4451-9
  • Radu DR, Lai CY, Jeftinija K, A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J Am Chem Soc 2004;126:13216-7
  • Fisher KA, Katherine DH, Joan TM. Comparison of micro- and mesoporous inorganic materials in the uptake and release of the drug model fluorescein and its analogues. Chem A Eur J 2003;9:5873-8
  • Yang Q, Wang SH, Fan PW, pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery. Chem Mat 2005;17:5999-6003
  • Leung KCF, Nguyen TD, Stoddart JF, Zink JI. Supramolecular nanovalves controlled by proton abstraction and competitive binding. Chem Mat 2006;18:5919-28
  • Nguyen TD, Leung KCF, Liong M, Construction of a pH-driven supramolecular nanovalve. Org Lett 2006;8:3363-6
  • Zhu YF, Shi JL, Shen WH, Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angew Chem-Int Edit 2005;44:5083-7
  • Xu WJ, Gao Q, Xu Y, pH-Controlled drug release from mesoporous silica tablets coated with hydroxypropyl methylcellulose phthalate. Mater Res Bull 2009;44:606-12
  • Song SW, Hidajat K, Kawi S. pH-Controllable drug release using hydrogel encapsulated mesoporous silica. Chem Commun 2007;4396-8
  • Chiyoung P, Kyoungho O, Sang Cheon L, Chulhee K. Controlled release of guest molecules from mesoporous silica particles bbased on a pH-responsive polypseudorotaxane Motif13. Ang Chem Int Ed 2007;46:1455-7
  • Chang JH, Shim CH, Kim BJ, Bicontinuous, thermoresponsive, L-3-phase silica nanocomposites and their smart drug-delivery applications. Adv Mater 2005;17:634-7
  • Fu Q, Rao GVR, Ista LK, Control of molecular transport through stimuli-responsive ordered mesoporous materials. Adv Mater 2003;15:1262-6
  • Zhou ZY, Zhu SM, Zhang D. Grafting of thermo-responsive polymer inside mesoporous silica with large pore size using ATRP and investigation of its use in drug release. J Mater Chem 2007;17:2428-33
  • Mal NK, Fujiwara M, Tanaka Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature 2003;421:350-3
  • Liu N, Dunphy R, Atanassov P, Photoregulation of mass transport through a photoresponsive azobenzene-modified nanoporous membrane. Nanolett 2004;4:551-4
  • Lu J, Choi E, Tamanoi F, Light-activated nanoimpeller-controlled drug release in cancer cells. Small 2008;4:421-6.
  • Kim HJ, Matsuda H, Zhou HS, Honma I. Ultrasound-triggered smart drug release from a poly(dimethylsiloxane)-mesoporous silica composite. Adv Mater 2006;18:3083-8
  • Hernández R, Tseng H-R, Wong JW, An operational supramolecular nanovalve. J Am Chem Soc 2004;126:3370-1
  • Nguyen TD, Tseng HR, Celestre PC, A reversible molecular valve. Proc Natl Acad Sci USA 2005;102:10029-34
  • Nguyen TD, Liu Y, Saha S, Design and optimization of molecular nanovalves based on redox-switchable biostable rotaxanes. J Am Chem Soc 2007;129:626-34
  • Angelos S, Yang YW, Patel K, pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. Angew Chem-Int Edit 2008;47:2222-6
  • Ferris DP, Zhao YL, Khashab NM, Light-operated mechanized nanoparticles. J Am Chem Soc 2009;131:1686-8
  • Arcos D, López-Noriega A, Ruíz-Hernandez E, Ordered mesoporous microspheres for bone grafting and drug delivery. Chem Mat 2009;21:1000-9
  • Manzano M, Aina V, Areán CO, Studies on MCM-41 mesoporous silica for drug delivery: Effect of particle morphology and amine functionalization. Chem Eng J 2008;137:30-7
  • Xu W, Gao Q, Xu Y, Controllable release of ibuprofen from size-adjustable and surface hydrophobic mesoporous silica spheres. Powder Tech 2009;191:13-20
  • Zhu YF, Shi JL, Chen HR, A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property. Microporous Mesoporous Mater 2005;84:218-22
  • Zhu YF, Shi JL, Shen WH, Preparation of novel hollow mesoporous silica spheres and their sustained-release property. Nanotech 2005;16:2633-8
  • Zhu YF, Shi JL, Li YS, Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface. Microporous Mesoporous Mater 2005;85:75-81
  • Zhu YF, Shi JL, Li YS, Hollow mesoporous spheres with cubic pore network as a potential carrier for drug storage and its in vitro release kinetics. J Mater Res 2005;20:54-61
  • Trewyn BG, Giri S, Slowing , Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chem Commun 2007;3236-45
  • Giri S, Trewyn BG, Stellmaker MP, Lin VSY. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew Chem-Int Edit 2005;44:5038-44
  • Ruíz-Hernández E, López-Noriega A, Arcos D, Aerosol-assisted synthesis of magnetic mesoporous silica spheres for drug targeting. Chem Mat 2007;19:3455-63
  • Ruíz-Hernández E, López-Noriega A, Arcos D, Vallet-Regí M. Mesoporous magnetic microspheres for drug targeting. Solid State Sci 2008;10:421-6
  • López-Noriega A, Ruíz-Hernández E, Stevens SM, Mesoporous microspheres with doubly ordered core-shell structure. Chem Mat 2009;21:18-20
  • Arruebo M, Galán M, Navascues N, Development of magnetic nanostructured silica-based materials as potential vectors for drug-delivery applications. Chem Mat 2006;18:1911-9
  • Lin Y-S, Hung Y, Su J-K, Gadolinium(III)-incorporated nanosized mesoporous silica as potential magnetic resonance imaging contrast agents. J Phys Chem B 2004;108:15608-11
  • Lin YS, Tsai CP, Huang HY, Well-ordered mesoporous silica nanoparticles as cell markers. Chem Mat 2005;17:4570-3
  • Huang DM, Hung Y, Ko BS, Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. Faseb J 2005;19:2014-6
  • Martin KR. The chemistry of silica and its potential health benefits. J Nutr Health Aging 2007;11:94-8
  • Colilla M, Vallet-Regí M. Novel insights into ordered mesoporous materials for biomedical applications. In: Bioceramics, Preparation and Application. Nova Science Publishers, Inc. New York, USA, 2009. (ISBN 978-1-60741-056-0), [In press]
  • Di Pasqua AJ, Sharma KK, Shi Y-L, Cytotoxicity of mesoporous silica nanomaterials. J Inorg Biochem 2008;102:1416-23
  • Hudson SP, Padera RF, Langer R, Kohane DS. The biocompatibility of mesoporous silicates. Biomaterials 2008;29:4045-55
  • Heikkila T, Salonen J, Tuura J, Mesoporous silica material TUD-1 as a drug delivery system. Int J Pharm 2007;331:133-8
  • Tourne-Peteilh C, Lerner DA, Charnay C, The potential of ordered mesoporous silica for the storage of drugs: The example of a pentapeptide encapsulated in a MSU-Tween 80. ChemPhysChem 2003;4:281-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.