1,449
Views
72
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in intravenous delivery of poorly water-soluble compounds

, PhD, , PhD, , PhD & , PhD
Pages 1261-1282 | Published online: 26 Nov 2009

Bibliography

  • Timpe C. Strategies for formulating development of poorly water-soluble drug candidates – a recent perspective. Am Pharm Rev 2007;0(3):104-9
  • Liu R. Water insoluble drug formulation, 2nd edition, Boca Raton, FL: CRC Press, Taylor & Francis Group; 2008
  • Duma RJ, Akers MJ, Turco SJ. Parenteral drug administration: routes, precautions, problems, complications, and drug delivery systems, chapter 2. In: Avis KE, Lieberman HA, Lachman L, editors, Pharmaceutical dosage forms: parenteral medications, 2nd edition New York NY: Marcel Dekker, Inc.; 1992. p. 17-58
  • Duma RJ, Akers MJ, Turco SJ. Particulate matter in injections. USP 32-NF 27 S1 <788>, Rockville, MD: United States Pharmacopeia; 2009
  • DeLuca PP, Boylan JC. Formulation of small volume parenterals, chapter 5. In: Avis KE, Lieberman HA, Lachman L, editors, Pharmaceutical dosage forms: parenteral medications. 2nd edition. New York NY: Marcel Dekker, Inc.; 1992. p. 173-248
  • Yalkowsky SH. Solubility and solubilization in aqueous media. Washington, D.C.: American Chemical Society; 1999
  • Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res 2004;21:201-30
  • Loftsson T, Jarho P, Masson M, Jarvinen T. Cyclodextrins in drug delivery. Expert Opin Drug Deliv 2005;2:335-51
  • Loftsson T, Masson M. Cyclodextrins in topical drug formulations: theory and practice. Int J Pharm 2001;225:15-30
  • Loftsson T, Hreinsdottir D, Masson M. Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 2005;302:18-28
  • Al-Soufi W, Cabrer PR, Jover A, Determination of second-order association constants by global analysis of 1H and 13C NMR chemical shifts. Application to the complexation of sodium fusidate and potassium helvolate by beta- and gamma-cyclodextrin. Steroids 2003;68:43-53
  • Liu Y, Chen GS, Chen Y, Inclusion complexes of paclitaxel and oligo(ethylenediamino) bridged bis(beta-cyclodextrin)s: solubilization and antitumor activity. Bioorg Med Chem 2004;12:5767-75
  • Wen X, Liu Z, Zhu T, Evidence for the 2:1 molecular recognition and inclusion behaviour between beta- and gamma-cyclodextrins and cinchonine. Bioorg Chem 2004;32:223-33
  • Vargas-Berenguel A, Ortega-Caballero F, Santoyo-Gonzalez F, Dendritic galactosides based on a beta-cyclodextrin core for the construction of site-specific molecular delivery systems: synthesis and molecular recognition studies. Chemistry 2002;8:812-27
  • Kolhe P, Misra E, Kannan RM, Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int J Pharm 2003;259:143-60
  • Boas U, Sontjens SH, Jensen KJ, New dendrimer peptide host guest complexes: towards dendrimers as peptide carriers. Chembiochem 2002;3:433-9
  • Kannan S, Kolhe P, Raykova V, Dynamics of cellular entry and drug delivery by dendritic polymers into human lung epithelial carcinoma cells. J Biomater Sci Polym Ed 2004;15:311-30
  • Fuchs S, Otto H, Jehle S, Fluorescent dendrimers with a peptide cathepsin B cleavage site for drug delivery applications. Chem Commun (Camb) 2005;1830-2
  • Patri AK, Kukowska-Latallo JF, Baker JR Jr Targeted drug delivery with dendrimers. comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 2005;57:2203-14
  • Dhanikula RS, Hildgen P. Synthesis and evaluation of novel dendrimers with a hydrophilic interior as nanocarriers for drug delivery. Bioconjug Chem 2006;17:29-41
  • Bermejo JF, Ortega P, Chonco L, Water-soluble carbosilane dendrimers: synthesis biocompatibility and complexation with oligonucleotides; evaluation for medical applications. Chemistry 2007;13:483-95
  • SoluBestWater soluble nanoparticles inclusion complexes. WO2005030257; 2005
  • Halford B. Molecules get suited up. Chem Eng News 2006;84(42):11
  • Hussain R, Siligardi G. Fat-free albumin as a novel drug delivery system. Int J Peptide Res Ther 2006;2(3):311-15
  • Wunder A, Müller-Ladner U, Stelzer EH, Albumin-based drug delivery as novel therapeutic approach for rheumatoid arthritis. J Immunol 2003;170:4793-801
  • Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 2001;37:1590-8
  • Ten Tije AJ, Verweij J, Loos WJ, Sparreboon A. Pharmacological effects of formulation vehicles: Implications for cancer chemotheraphy. Clin Pharmacokinet 2003;42(7):665-85
  • Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 2006;112:630-48
  • Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Exp Opin Drug Deliv 2006;3(1):139-62
  • Torchilin VP. Block copolymer micelles as a solution for drug delivery problems. Expert Opin Ther Patents 2005;15(1):63-75
  • Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev 2002;54:169-90
  • Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci 2003;92:1343-55
  • Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 2002;82(2-3):189-212
  • Le GD, Gori S, Luo L, Poly(N-vinylpyrrolidone)-block-poly(D,L-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation. J Control Release 2004;99:83-101
  • Benahmed A, Ranger M, Leroux JC. Novel polymeric micelles based on the amphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(D,L-lactide). Pharm Res 2001;18:323-8
  • Gaucher G, Dufresne MH, Sant VP, Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 2005;109:169-88
  • Teagarden DL, Baker DS. Practical aspects of lyophilization using non-aqueous co-solvent systems. Eur J Pharm Sci 2002;15:115-33
  • Kabanov AV, Alakhov VY. Pluronic block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. Crit Rev Ther Drug Carrier Syst 2002;19:1-72
  • Kozlov MY, Milik-Nubarov NS, Batrakova EV, Kabanov AV. Relationship between Pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes. Macromolecules 2000;33:3305-13
  • Meadows JSynergistic mixed Poloxamers for the solubilization of drugs. US20040258718A1; 2004
  • Danson S, Ferry D, Alakhov V, Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer 2004;90:2085-91
  • Allen C, Han J, Yu Y, Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone. J Control Release 2000;63:275-86
  • Leung SY, Jackson J, Miyake H, Polymeric micellar paclitaxel phosphorylates Bcl 2 and induces apoptotic regression of androgen-independent LNCaP prostate tumors. Prostate 2000;44:156-63
  • Kim TY, Kim DW, Chung JY, Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 2004;10:3708-16
  • Park SR, Oh DY, Kim DW, A multi-center, late phase II clinical trial of Genexol (paclitaxel) and cisplatin for patients with advanced gastric cancer. Oncol Rep 2004;12:1059-64
  • Matsumura Y, Hamaguchi T, Ura T, Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 2004;91:1775-81
  • Hamaguchi T, Matsumura Y, Suzuki M, NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer 2005;92:1240-6
  • Nakanishi T, Fukushima S, Okamoto K, Development of the polymer micelle carrier system for doxorubicin. J Control Release 2001;74:295-302
  • Lukyanov AN, Gao Z, Mazzola L, Torchilin VP. Polyethylene glycol-diacyllipid micelles demonstrate increased accumulation in subcutaneous tumors in mice. Pharm Res 2002;9:1424-9
  • Maeda H, Wu J, Sawa T, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000;65:271-84
  • Liu SQ, Wiradharma N, Gao SJ, Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs. Biomaterials 2007;28:1423-33
  • Soga O, Van Nostrum CF, Fens M, Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J Control Release 2005;103:341-53
  • Lee ES, Shin HJ, Na K, Bae YH. Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization. J Control Release 2003;90:363-74
  • Sethuraman VA, Bae YH. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J Control Release 2007;118:216-24
  • Roby A, Erdogan S, Torchilin VP. Solubilization of poorly soluble PDT agent, meso-tetraphenylporphin, in plain or immunotargeted PEG-PE micelles results in dramatically improved cancer cell killing in vitro. Eur J Pharm Biopharm 2006;62:235-40
  • Lukyanov AN, Gao Z, Torchilin VP. Micelles from polyethylene glycol/phosphatidylethanolamine conjugates for tumor drug delivery. J Control Release 2003;91:97-102
  • Park EK, Kim SY, Lee SB, Lee YM. Folate-conjugated methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. J Control Release 2005;109:158-68
  • Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release 2004;96:273-83
  • Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov 2004;3:785-96
  • Mouton JW, Van Peer A, De Beule K, Pharmacokinetics of itraconazole and hydroxyitraconazole in healthy subjects after single and multiple doses of a novel formulation. Antimicrob Agents Chemother 2006;50:4096-102
  • Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001;53:283-318
  • Kipp JE. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm 2004;284:109-22
  • Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 2003;18:113-20
  • Moschwitzer J, Achleitner G, Pomper H, Müller RH. Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nanosuspension technology. Eur J Pharm Biopharm 2004;58:615-19
  • Wong J, Brugger A, Khare A, Suspensions for intravenous (IV) injection: a review of development, preclinical and clinical aspects. Adv Drug Deliv Rev 2008;60:939-54
  • Merisko-Liversidge EM, Liversidge GG. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol 2008;36:43-8
  • Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 2006;62:3-16
  • Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 2001;47:3-19
  • Müller RH, Benita S, Böhm BHL. Emulsions and nanosuspensions for the formulation of poorly soluble drugs. Stuttgart, Germany: Medpharm Scientific Publishers; 1998
  • DissoCubes. SkyePharma PLC, London, UK, 2008. Available from: www.skyepharma.com/technology/oral technology/particle engineering technologies/dissocubes.html [Last accessed 9 March 2009]
  • Baxter International Microprecipitation method for preparing submicron suspensions. US6607784; 2003
  • Asahi T, Masuhara H, Sugiyama T, . Process for producing fullerene dispersion liquid, and fullerene dispersion liquid. EP1939140A1; 2008
  • Douroumis D, Fahr A. Stable carbamazepine colloidal systems using the cosolvent technique. Eur J Pharm Sci 2007;30:367-74
  • Nanomorph®: Introduction. SOLIQS, Abbott Gmbh & Co., KG, Ludwigshafen, Germany Available from: www.soliqs.com/NanoMorph R.20.0.html [Last accessed 9 March 2009]
  • Lindfors L, Skantze P, Skantze U, Amorphous drug nanosuspensions. 3. Particle dissolution and crystal growth. Langmuir 2007;23:9866-74
  • ABRAXANE® (paclitaxel albumin-bound particles) for Injectable Suspension prescription information. Abraxis BioScience, LLC, Los Angeles, CA, 2008 Available from: www.abraxane.com [Last accessed 9 March 2009]
  • Desai NP, Soon-Shiong P, Magdassi S, Sahadevan DCNovel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof. WO9900113; 1999
  • Bristow S, Shekunov T, Shekunov B. Analysis of the supersaturation and precipitation process with supercritical CO2. J Supercrit Fluids 2001;21(3):257-71
  • Shekunov BY, Chattopadhyay P, Seitzinger J, Huff R. Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions. Pharm Res 2006;23:196-204
  • Pasquali I, Bettini R, Giordano F. Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics. Eur J Pharm Sci 2006;27:299-310
  • Kocbek P, Baumgartner S, Kristl J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int J Pharm 2006;312:179-86
  • Gassmann P, List M, Schweitzer A, Sucker H. Hydrosols: alternatives for the parenteral application of poorly water soluble drugs. Eur J Pharm Biopharm 1994;40(22):64-72
  • Douroumis D, Fahr A. Stable carbamazepine colloidal systems using the cosolvent technique. Eur J Pharm Sci 2007;0(5):367-74
  • Peters K, Müller RH, Craig DQ. An investigation into the distribution of lecithins in nanosuspension systems using low frequency dielectric spectroscopy. Int J Pharm 1999;184:53-61
  • Ostwald W. Studies on the formation and inversion of solids. First paper: supersaturation and supercooling. Z Physik Chemie 1897;22:289-330
  • Lindfors L, Skantze P, Skantze U, Amorphous drug nanosuspensions. 1. Inhibition of Ostwald ripening. Langmuir 2006;22:906-10
  • Lee J, Cheng Y. Critical freezing rate in freeze drying nanocrystal dispersions. J Control Release 2006;111:185-92
  • Merisko-Liversidge EM, Liversidge GG. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Path 2008;36:43-8
  • Rabinow B, Kipp J, Papadopoulos P, Itraconazole IV nanosuspension enhances efficacy through altered pharmacokinetics in the rat. Int J Pharm 2007;339(1-2):251-60
  • Davis SS, Washington C, West P, Lipid emulsions as drug delivery systems. Ann NY Acad Sci 1987;507:75-88
  • Tardi PG, Boman NL, Cullis PR. Liposomal doxorubicin. J Drug Target 1996;4:129-40
  • ABELCET. Enzon Pharmaceuticals, Inc., Bridgewater, NJ, 2008. Available from: www.enzon.com/index.php?id=35 [Last accessed 9 March 2009]
  • Fahr A, Van HP, May S, Transfer of lipophilic drugs between liposomal membranes and biological interfaces: consequences for drug delivery. Eur J Pharm Sci 2005;26:251-65
  • Herbrecht R, Natarajan-Ame S, Nivoix Y, Letscher-Bru V. The lipid formulations of amphotericin B. Expert Opin Pharmacother 2003;4:1277-87
  • Visudyne. Novartis Pharmaceuticals Corp., East Hanover, N, 2008. Available from: www.visudyne.com/info/visudyne/visudyne.jsp [Last accessed 9 March 2009]
  • Von Roenn JH, Lee S, Cianfrocca M, Phase III study of paclitaxel (Pac) versus pegylated liposomal doxorubicin (PLD) for the treatment of advanced human immunodeficiency virus (HIV)-associated Kaposi's sarcoma (KS): an Eastern Cooperative Oncology Group (ECOG) and AIDS Malignancy Consortium. 2007 ASCO Annual Meeting Proceedings. J Clin Oncol 2007;25(18S):, 20503aa
  • Vincristine, DOXIL® (Doxorubicin HCl Liposome Injection) and Dexamethasone vs. Vincristine, Doxorubicin, and Dexamethasone in Patients With Newly Diagnosed Multiple Myeloma. U.S. national Institutes of health, Bethesda, MD, 2009 Available from: clinicaltrials.gov/ct2/show/NCT00344422?intr=%22Dexamethasone%22&rank=9 [Last accessed 9 March 2009]
  • Booser DJ, Esteva FJ, Rivera E, Phase II study of liposomal annamycin in the treatment of doxorubicin-resistant breast cancer. Cancer Chemother Pharmacol 2002;50(1):6-8
  • Papahadjopoulos D, Vail WJ, Jacobson K, Poste G. Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochim Biophys Acta 1975;394:483-91
  • Segarra I, Movshin Da L, Zarif L. Pharmacokinetics and tissue distribution after intravenous administration of a single dose of amphotericin B cochleates, a new lipid-based delivery system. J Pharm Sci 2002;91(8):1827-37
  • FluidCrystal® NP Injection nanoparticles. CAMURUS AB, Lund, Sweden, 2009 Available from: camurus.verkstad.org/index.asp?DocumentID=3&DocumentIDSub=8&Lang=&ShowSub=(2)&Show=(3) &main=Technologies [Last accessed 9 March 2009]
  • Johnsson M, Barauskas J, Norlin A, Tiberg F. Physicochemical and drug delivery aspects of lipid-based liquid crystalline nanoparticles: a case study of intravenously administered propofol. J Nanosci Nanotechnol 2006;6:3017-24
  • Hemenway J, Stella VJ. Prodrugs and parenteral drug delivery (2.2.2). In: Stella, ., editors, Prodrugs: challenges and rewards, Part I New York, NY: AAPS Press, Springer Science + Business Media, LLC; 2007. p. 218-81
  • Johnsson M, Barauskas J, Tiberg F. Cubic phases and cubic phase dispersions in a phospholipid-based system. J Am Chem Soc 2005;127:1076-7
  • Barauskas J, Johnsson M, Joabsson F, Tiberg F. Cubic phase nanoparticles (Cubosome): principles for controlling size, structure, and stability. Langmuir 2005;21:2569-77
  • Ishikawa T, Matsunaga N, Tawada H, TAK-599, a novel N-phosphono type prodrug of anti-MRSA cephalosporin T-91825: synthesis, physicochemical and pharmacological properties. Bioorg Med Chem 2003;11:2427-37
  • Detoledo JC, Ramsay RE. Fosphenytoin and phenytoin in patients with status epilepticus: improved tolerability versus increased costs. Drug Saf 2000;22(6):459-66
  • Fischer JH, Patel TV, Fischer PA. Fosphenytoin: clinical pharmacokinetics and comparative advantages in the acute treatment of seizures. Clin Pharmacokinet 2003;42:33-58
  • Fechner J, Ihmsen H, Hatterscheid D, Pharmacokinetics and clinical pharmacodynamics of the new propofol prodrug GPI 15715 in volunteers. Anesthesiology 2003;99:303-13
  • Ueda Y, Matiskella JD, Golik J, Phosphonooxymethyl prodrugs of the broad spectrum antifungal azole, ravuconazole: synthesis and biological properties. Bioorg Med Chem Lett 2003;13:3669-72
  • Hanson BA. Evaluation of a phosphoryloxymethyl (POM) prodrug of camptothecin: Preformulation, formulation and pharmacokinetic studies. Ph.D. Dissertation, University of Kansas; 2002;181
  • Hanson BA, Schowen RL, Stella VJ. A mechanistic and kinetic study of the E-ring hydrolysis and lactonization of a novel phosphoryloxymethyl prodrug of camptothecin. Pharm Res 2003;20:1031-8
  • Liu X, Lynn BC, Zhang J, A versatile prodrug approach for liposomal core-loading of water-insoluble camptothecin anticancer drugs. J Am Chem Soc 2002;124(26):7650-1
  • Mathijssen RH, Loos WJ, Verweij J, Sparreboom A. Pharmacology of topoisomerase I inhibitors irinotecan (CPT-11) and topotecan. Curr Cancer Drug Targets 2002;2:103-23
  • Takata J, Hidaka R, Yamasaki A, Novel d-gamma-tocopherol derivative as a prodrug for d-gamma-tocopherol and a two-step prodrug for S-gamma-CEHC. J Lipid Res 2002;43:2196-204
  • Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001;41:189-207
  • Vicent MJ. Polymer drug conjugates as modulators of cellular apoptosis. AAPS J 2007;9(2):E200-7
  • Vasey PA, Kaye SB, Morrison R, Phase I clinical and pharmacokinetics study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents drug polymer conjugates. Clin Cancer Res 1999;5:83-94
  • Duncan R. N-(2-hydroxypropyl)methacrylamide copolymer conjugates. In: Kwon, editor, Polymeric drug delivery systems, New York, NY: Marcel Dekker; 2005. p. 1-92
  • Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in caner therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 2006;5:1909-17
  • Ducan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 2006;6:688-701
  • Rowinsky EK, Rizzo J, Ocho L, A phase I and pharmacokinetic study of camptothecin as a 1-hour infusion every 3 weeks in patients with advanced solid malignancies. J Clin Oncol 2003;21:148-57
  • Scott L, Evans T, Uao J, Pegamotecan (EZ-246) a novel PEGylated camptothecin conjugate, for treatment of adenocarcinomas of the stomach and gastroesophageal (GE) junction: Preliminary results of a sing-agent phase-2 study. J Clin Oncol 2004;22(14S):4030
  • Bhatt R, De Vries P, Tulinsky J, Synthesis and in vivo antitumor activity of poly(L-glutamic acid) conjugates of 20(S)-camptothecin. J Med Chem 2003;46:190-3
  • Singer JW, Bhatt R, Tulinsky J, Water-soluble poly-(L-glutamic acid)-Gly-camptothecin conjugates enhance camptothecin stability and efficacy in vivo. J Control Release 2001;74:243-7
  • Singer JW, De Vries P, Bhatt R, Conjugation of camptothecin to poly-(L-glutamic acid). Ann NY Acad Sci 2000;922:136-50
  • Singer J, Baker B, De Vries P, . Poly-(L)-Glutamic acid-paclitaxel (CT-2103) [XYOTAX®], a biodegradable polymeric drug conjugate. Characterization, preclinical pharmacology, and preliminary clinical data. In: Maeda, . editors, Polymer drugs in the clinical stage advantages and prospects, New York NY: Kluwer Academic/Plenum Publishers; 2003. p. 81-99
  • Auzenne E, Donato NJ, Li C, . Superior therapeutic profile of poly-L-glutamic acid-paclitaxel copolymer compared with taxol in xenogeneic compartmental models of human ovarian caricinoma. Clin Cancer Res 2002;8:573-81
  • Skwarczynski M, Kiso Y. Application of the O–N intramolecular acyl migration reaction in medicinal chemistry. Curr Med Chem 2007;14:2813-23
  • Hayashi Y, Skwarczynski M, Hamada Y, . A novel approach of water-soluble paclitaxel prodrug with no auxiliary and no byproduct: design and synthesis of isotaxel. J Med Chem 2003;46:3782-4
  • Agalloco JP. Thinking inside the box: the application of isolation technology for aseptic processing. Pharm Technol 2006;30:8-11
  • Yang G, Jain N, Yalkowsky SH. Combined effect of SLS and (SBE)(7M)-beta-CD on the solubilization of NSC-639829. Int J Pharm 2004;269:141-8
  • Tommasini S, Calabro ML, Raneri D, Combined effect of pH and polysorbates with cyclodextrins on solubilization of naringenin. J Pharm Biomed Anal 2004;36:327-33
  • Gladys G, Claudia G, Marcela L. The effect of pH and triethanolamine on sulfisoxazole complexation with hydroxypropyl-beta-cyclodextrin. Eur J Pharm Sci 2003;20:285-93
  • Basavaraj S, Sihorkar V, Shantha Kumar TR, Bioavailability enhancement of poorly water soluble and weakly acidic new chemical entity with 2-hydroxypropyl-beta-cyclodextrin: selection of meglumine, a polyhydroxy base, as a novel ternary component. Pharm Dev Technol 2006;11:443-51
  • Valero M, Perez-Revuelta BI, Rodriguez LJ. Effect of PVP K-25 on the formation of the naproxen:beta-ciclodextrin complex. Int J Pharm 2003;253:97-110
  • Cirri M, Maestrelli F, Corti G, Simultaneous effect of cyclodextrin complexation, pH, and hydrophilic polymers on naproxen solubilization. J Pharm Biomed Anal 2006;42:126-31
  • Granero G, De Bertorello MM, Longhi M. Solubilization of a naphthoquinone derivative by hydroxypropyl-beta-cyclodextrin (HP-beta-CD) and polyvinylpyrrolidone (PVP-K30). The influence of PVP-K30 and pH on solubilizing effect of HP-beta-CD. Boll Chim Farm 2002;141:63-6
  • Ribeiro L, Carvalho RA, Ferreira DC, Veiga FJ. Multicomponent complex formation between vinpocetine, cyclodextrins, tartaric acid and water-soluble polymers monitored by NMR and solubility studies. Eur J Pharm Sci 2005;24:1-13
  • AI 850™ Our reformulation of paclitaxel and potential bioequivalent of Abraxane®. Acusphere, Inc., Watertown, MA, 2008 Available from: www.acusphere.com/product/prod_ai850.html [Last accessed 9 March 2009]
  • Straub JA, Chickering DE, Lovely JC, Intravenous hydrophobic drug delivery: a porous particle formulation of paclitaxel (AI-850). Pharm Res 2005;22:347-55
  • Straub JA, Chickering DE, Lovely JC, . Technology: the process particle formation and nanoparticles. CritiTech, Inc., Lawrence KS, 2007. Available from: www.crititech.com/technology.html [Last accessed 9 March 2009]
  • Straub JA, Chickering DE, Lovely JC, . Improving the clinical performance of drugs. Thar Pharmaceuticals, Inc., Pittsburgh, PA, 2008. Available from: www.tharpharma.com/index.htm [Last accessed 9 March 2009]
  • Telesso Technologies Limited, North Ryde NSW, Australia, 2008 Available from: http://telesso.com/ [Last accessed 9 March 2009]
  • Bioral® Technology. BioDelivery Sciences International, Raleigh, NC, 2009. Available from: www.biodeliverysciences.com/Bioral.php [Last accessed 9 March 2009]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.