404
Views
89
CrossRef citations to date
0
Altmetric
Reviews

Design of stimuli-responsive dendrimers

Pages 307-319 | Published online: 22 Jan 2010

Bibliography

  • de las Heras Alarcón C, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications. Chem Soc Rev 2005;34:276-85
  • Kost J, Langer R. Responsive polymeric delivery systems. Adv Drug Deliv Rev 2001;46:125-48
  • Bawa P, Pillay V, Choonara YE, du Toit LC. Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 2009;4:22001
  • Meng F, Zhong Z, Feijen J. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 2009;10:197-209
  • Bikram M, West JL. Thermo-responsive systems for controlled drug delivery. Expert Opin Drug Deliv 2008;5:1077-91
  • Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 2006;58:1655-70
  • Alvarez-Lorenzo C, Bromberg L, Concheiro A. Light-sensitive intelligent drug delivery systems. Photochem Photobiol 2009;85:848-60
  • Meng F, Hennink WE, Zhong Z. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 2009;30:2180-98
  • Saito G, Swanson JA, Lee KD. Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Deliv Rev 2003;55:199-215
  • Ambade AV, Savariar EN, Thayumanavan S. Dendrimeric micelles for controlled drug release and targeted delivery. Mol Pharm 2005;2:264-72
  • Lasic DD. Liposomes: from physics to applications. Elsevier, Amsterdam; 1993
  • Haag R, Kratz F. Polymer therapeutics: concepts and applications. Angew Chem Int Ed 2006;45:1198-215
  • Medina SH, El-Sayed MEH. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev 2009;109:3141-57
  • Wolinsky JB, Grinstaff MW. Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 2008;60:1037-55
  • Tekade RK, Kumar PV, Jain NK. Dendrimers in oncology: an expanding horizon. Chem Rev 2009;109:49-87
  • Lee CC, MacKay JA, Fréchet JM, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol 2005;23:1517-26
  • Gajbhiye V, Kumar PV, Tekade RK, Jainet NK. Pharmaceutical and biomedical potential of pegylated dendrimers. Curr Pharm Des 2007;13:415-29
  • Paleos CM, Tsiourvas D, Sideratou Z, Tziveleka L. Multifunctional dendritic drug delivery systems: design, synthesis, controlled and triggered release. Curr Top Med Chem 2008;8:1204-24
  • Boas U, Heegaard PMH. Dendrimers in drug research. Chem Soc Rev 2004;33:43-63
  • D’Emanuele A, Attwood D. Dendrimer–drug interactions. Adv Drug Deliv Rev 2005;57:2147-62
  • Svenson S, Tomalia DA. Dendrimers in biomedical applications−reflections on the field. Adv Drug Deliv Rev 2005;57:2106-29
  • Tomalia DA. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci 2005;30:294-324
  • Tomalia DA, Baker H, Dewald J, A new class of polymers: starburst-dendritic macromolecules. Polym J 1985;17:117-32
  • Tomalia DA, Naylor AM, Goddard WA III. Starburst dendrimers: Molecular-level control of size, shape, surface chemistry, topology, and flexibility from atom to macroscopic matter. Angew Chem Int Ed Eng 1990;29:138-75
  • Maeda H, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst 1989;6:193-210
  • Maeda H, Wu J, Sawa T, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2007;122:39-46
  • Tomalia DA, Hall M, Hedstrand DM. Starburst dendrimers. 3. The importance of branch junction symmetry in the development of topological shell molecules. J Am Chem Soc 1987;109:1601-3
  • Stauffer P, Goldberg N. Thermal ablation therapy. Int J Hyperthermia 2004;20(7):671-7
  • Koide T. Triple helical collagen-like peptides: engineering and applications in matrix biology. Connect Tissue Res 2005;46:131-41
  • Wallace DG, Rosenblatt J. Collagen gel systems for sustained delivery and tissue engineering. Adv Drug Deliv Rev 2003;55:1631-49
  • Sano A, Maeda M, Nagahara S, Atelocollagen for protein and gene delivery. Adv Drug Deliv Rev 2003;55:1651-77
  • Kojima C, Kojima C, Tsumura S, A collagen-mimic dendrimer capable of controlled release. J Am Chem Soc 2009;131:6052-3
  • Kimura M, Kato M, Muto T, Temperature-sensitive dendritic hosts: synthesis, characterization, and control of catalytic activity. Macromolecules 2000;33:1117-9
  • You YZ, Hong CY, Pan CY, Wang PH. Synthesis of a dendritic core-shell nanostructure with a temperature-sensitive shell. Adv Mater 2004;16:1953-7
  • Xu J, Luo S, Shi W, Liu S. Two-stage collapse of unimolecular micelles with double thermoresponsive coronas. Langmuir 2006;22:989-97
  • Yang Z, Zhang W, Zou J, Shi W. Synthesis and thermally responsive characteristics of dendritic poly(ether-amide) grafting with PNIPAAm and PEG. Polymer 2007;48:931-8
  • Yang Z, Xie J, Zhou W, Shi W. Temperature sensitivity and drug encapsulation of star-shaped amphiphilic block copolymer based on dendritic poly(ether-amide). J Biomed Mater A 2009;89A:988-1000
  • Zhu L, Zhu G, Li M, Thermosensitive aggregates self-assembled by an asymmetric block copolymer of dendritic polyether and poly(N-isopropylacrylamide). Eur Polym J 2002;38:2503-6
  • Ge Z, Luo S, Liu S. Syntheses and self-assembly of poly(benzyl ether)-b-poly(N-isopropylacrylamide) dendritic-linear diblock copolymers. J Polym Sci A Polym Chem 2006;44:1357-71
  • Lee HI, Lee JA, Poon Z, Hammond PT. Temperature-triggered reversible micellar self-assembly of linear–dendritic block copolymers. Chem Commun 2008;2008:3726-8
  • Stover TC, Kim YS, Lowe TL, Kester M. Thermoresponsive and biodegradable linear-dendritic nanoparticles for targeted and sustained release of a pro-apoptotic drug. Biomaterials 2008;29:359-69
  • Kim YS, Gil ES, Lowe TL. Synthesis and characterization of thermoresponsive-co-biodegradable linear-dendritic copolymers. Macromolecules 2006;39:7805-11
  • Haba Y, Harada A, Takagishi T, Kono K. Rendering poly(amidoamine) or poly(propylenimine) dendrimers temperature sensitive. J Am Chem Soc 2004;126:12760-1
  • Haba Y, Kojima C, Harada A, Kono K. Comparison of thermosensitive properties between poly(amidoamine) dendrimers having peripheral N-isopropylamide groups and linear polymers with the same groups. Angew Chem Int Ed 2007;46:234-7
  • Tono Y, Kojima C, Haba Y, Thermosensitive properties of poly(amidoamine) dendrimers with peripheral phenylalanine residues. Langmuir 2006;22:4920-2
  • Haba Y, Kojima C, Harada A, Kono K. Control of temperature-sensitive properties of poly(amidoamine) dendrimers using peripheral modification with various alkylamide groups. Macromolecules 2006;39:7451-3
  • Kono K, Miyoshi T, Haba Y, Temperature sensitivity control of alkylamide-terminated poly(amidoamine) dendrimers induced by guest molecule binding. J Am Chem Soc 2007;129:7222-3
  • Aathimanikandan SV, Savariar EN, Thayumanavan S. Temperature-sensitive dendritic micelles. J Am Chem Soc 2005;127:14922-9
  • Chang DW, Dai L. Luminescent amphiphilic dendrimers with oligo(p-phenylene vinylene) core branches and oligo(ethylene oxide) terminal chains: syntheses and stimuli-responsive properties. J Mater Chem 2007;17:364-71
  • Li W, Zhang A, Chen Y, Low toxic, thermoresponsive dendrimers based on oligoethylene glycols with sharp and fully reversible phase transitions. Chem Commun 2008;2008:5948-50
  • Parrott MC, Marchington EB, Valliant JF, Adronov A. Synthesis and properties of carborane-functionalized aliphatic polyester dendrimers. J Am Chem Soc 2005;127:12081-9
  • Kinberger GA, Cai W, Goodman M. Collagen mimetic dendrimers. J Am Chem Soc 2002;124:15162-3
  • Kinberger GA, Taulane JP, Goodman M. The design, synthesis, and characterization of a PAMAM-based triple helical collagen mimetic dendrimer. Tetrahedron 2006;62:5280-6
  • Bullough PA, Hughson FM, Skehel JJ, Wiley DC. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 1994;371:37-43
  • Kohman RE, Zimmerman SC. Degradable dendrimers divergently synthesized via click chemistry. Chem Commun 2009;2009:794-6
  • Pistolis G, Malliaris A, Tsiourvas D, Paleos CM. Poly(propyleneimine) dendrimers as pH-sensitive controlled-release systems. Chem Eur J 1999;5:1440-4
  • Sideratou Z, Tsiourvas D, Paleos CM. Quaternized poly(propylene imine) dendrimers as novel pH-sensitive controlled-release systems. Langmuir 2000;16:1766-9
  • Sideratou Z, Tsiourvas D, Paleos CM. Solubilization and release properties of PEGylated diaminobutane poly(propylene imine) dendrimers. J Colloid Interface Sci 2001;242:272-6
  • Paleos CM, Tsiourvas D, Sideratou Z, Tziveleka L. Acid- and salt-triggered multifunctional poly(propylene imine) dendrimer as a prospective drug delivery system. Biomacromolecules 2004;5:524-9
  • Gajbhiye V, Kumar PV, Sharma A, Jain NK. Novel PEGylated PPI dendritic nanostructures for sustained delivery of anti-inflammatory agent. Curr Nanosci 2008;4:267-77
  • Gajbhiye V, Kumar PV, Tekade RK, Jain NK. PEGylated PPI dendritic architectures for sustained delivery of H2 receptor antagnist. Eur J Med Chem 2009;44:1155-66
  • Kleinman MH, Flory JH, Tomalia DA, Turro NJ. Effect of protonation and PAMAM dendrimer size on the complexation and dynamic mobility of 2-naphthol. J Phys Chem B 2000;104:11472-9
  • Devarakonda B, Hill RA, de Villiers MM. The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine. Int J Pharm 2004;284:133-40
  • Cheng Y, Xu T. Solubility of nicotinic acid in polyamidoamine dendrimer solutions. Eur J Med Chem 2005;40:1384-9
  • Tekade RK, Dutta T, Gajbhiye V, Jain NK. Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. J Microencapsul 2009;26:287-96
  • Kannaiyan D, Imae T. pH-Dependent encapsulation of pyrene in PPI-core:PAMAM-shell dendrimers. Langmuir 2009;25:5282-5
  • Criscione JM, Le BL, Stern E, Self-assembly of pH-responsive fluorinated dendrimer-based particulates for drug delivery and noninvasive imaging. Biomaterials 2009;30:3946-55
  • Yuan W, Yuan Y, Zheng S, Hong X. Synthesis, characterization, and controllable drug release of dendritic star-block copolymer by ring-opening polymerization and atom transfer radical polymerization. Polymer 2007;48:2585-94
  • Tian L, Hammond PT. Comb-dendritic block copolymers as tree-shaped macromolecular amphiphiles for nanoparticle self-assembly. Chem Mater 2006;18:3976-84
  • Gillies ER, Jonsson TB, Frechet JM. Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J Am Chem Soc 2004;126:11936-43
  • Gillies ER, Frechet JM. pH-Responsive copolymer assemblies for controlled release of doxorubicin. Bioconjugate Chem 2005;16:361-8
  • Kono K, Kojima C, Hayashi N, Preparation and cytotoxic activity of poly(ethylene glycol)-modified poly(amidoamine) dendrimers bearing adriamycin. Biomaterials 2008;29:1664-75
  • Ihre HR, Padilla De Jesus OL, Szoka FC Jr, Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconjugate Chem 2002;13:443-52
  • Padilla De Jesus OL, Ihre HR, Gagne L, Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjugate Chem 2002;13:453-61
  • Lee CC, Gillies ER, Fox ME, A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Natl Acad Sci USA 2006;103:16649-54
  • Guillaudeu SJ, Fox ME, Haidar YM, Pegylated dendrimers with core functionality for biological applications. Bioconjugate Chem 2008;19:461-9
  • Navath RS, Kurtoglu YE, Wang B, Dendrimer−drug conjugates for tailored intracellular drug release based on glutathione levels. Bioconjugate Chem 2008;19:2446-55
  • Kurtoglu YE, Navath RS, Wang B, Poly(amidoamine) dendrimer–drug conjugates with disulfide linkages for intracellular drug delivery. Biomaterials 2009;30:2112-21
  • Kojima C, Haba Y, Fukui T, Design of biocompatible dendrimers with environment-sensitivity. Macromolecules 2003;36:2183-6
  • Dolmans DEJGJ, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer 2003;3:380-7
  • Nishiyama N, Morimoto Y, Jang WD, Kataoka K. Design and development of dendrimer photosensitizer-incorporated polymeric micelles for enhanced photodynamic therapy. Adv Drug Deliv Rev 2009;61:327-8
  • Nishiyama N, Stapert HR, Light-harvesting ionic dendrimer porphyrins as new photosensitizers for photodynamic therapy. Bioconjugate Chem 2003;14:58-66
  • Kojima C, Toi Y, Harada A, Kono K. Preparation of polyethylene glycol-attached dendrimers encapsulating photosensitizers for application to photodynamic therapy. Bioconjugate Chem 2007;18:663-70
  • Battah SH, Chee CE, Nakanishi H, Synthesis and biological studies of 5-aminolevulinic acid-containing dendrimers for photodynamic therapy. Bioconjugate Chem 2001;12:980-8
  • Battah S, O'Neill S, Edwards C, Enhanced porphyrin accumulation using dendritic derivatives of 5-aminolaevulinic acid for photodynamic therapy: an in vitro study. Int J Biochem Cell Biol 2006;38:1382-92
  • Battah S, Balaratnam S, Casas A, Macromolecular delivery of 5-aminolaevulinic acid for photodynamic therapy using dendrimer conjugates. Mol Cancer Ther 2007;6:876-85
  • Oar MA, Serin JM, Dichtel WR, Photosensitization of singlet oxygen via two-photon-excited fluorescence resonance energy transfer in a water-soluble dendrimer. Chem Mater 2005;17:2267-75
  • Lai PS, Lou PJ, Peng CL, Doxorubicin delivery by polyamidoamine dendrimer conjugation and photochemical internalization for cancer therapy. J Control Release 2007;122:39-46
  • Jain PK, El-Sayed IH, El-Sayed MA. Au nanoparticles target cancer. Nanotoday 2007;2:18-29
  • Govorov AO, Richardson HH. Generating heat with metal nanoparticles. Nanotoday 2007;2:30-8
  • Pissuwan D, Valenzuela SM, Cortie MB. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol 2006;24:62-7
  • Haba Y, Kojima C, Harada A, Preparation of poly(ethylene glycol)-modified poly(amidoamine) dendrimers encapsulating gold nanoparticles and their heat-generating ability. Langmuir 2007;23:5243-6
  • Amir RJ, Pessah N, Shamis M, Shabat D. Self-Immolative Dendrimers. Angew Chem Int Ed 2003;42:4494-9
  • Shabat D. Self-immolative dendrimers as novel drug delivery platforms. J Polym Sci A Polym Chem 2006;44:1569-78
  • Greenwald RB, Conover CD, Choe YH. Poly(ethylene glycol) conjugated drugs and prodrugs: a comprehensive review. Crit Rev Ther Drug Carrier Syst 2000;17:101-61
  • Okuda T, Kawakami S, Akimoto N, PEGylated lysine dendrimers for tumor-selective targeting after intravenous injection in tumor-bearing mice. J Control Release 2006;116:330-6
  • Singh P, Gupta U, Asthana A, Jain NK. Folate and folate-PEG-PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjugate Chem 2008;19:2239-52
  • Frey H, Haag R. Dendritic polyglycerol: a new versatile biocompatible-material. Rev Mol Biotechnol 2002;90:257-67
  • Liu H, Chen Y, Shen Zh. Thermoresponsive hyperbranched polyethylenimines with isobutyramide functional groups. J Polym Sci A Polym Chem 2007;45:1177-84
  • Shen Y, Kuang M, Shen Z, Gold nanoparticles coated with a thermosensitive hyperbranched polyelectrolyte: towards smart temperature and pH nanosensors. Angew Chem Int Ed 2008;47:2227-30
  • Kojima C, Yoshimura K, Harada A, Synthesis and characterization of hyperbranched poly(glycidol) modified with pH- and temperature-sensitive groups. Bioconjugate Chem 2009;20:1054-7
  • Xu S, Luo Y, Haag R. Water-soluble pH-responsive dendritic core-shell nanocarriers for polar dyes based on poly(ethylene imine). Macromol Biosci 2007;7:968-74
  • Longmire M, Choyke PL, Kobayashi H. Dendrimer-based contrast agents for molecular imaging. Curr Top Med Chem 2008;8:1180-6
  • Almutairi A, Guillaudeu SJ, Berezin MY, Biodegradable pH-sensing dendritic nanoprobes for near-infrared fluorescence lifetime and intensity imaging. J Am Chem Soc 2008;130:444-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.