188
Views
27
CrossRef citations to date
0
Altmetric
Reviews

Self-assembled filamentous nanostructures for drug/gene delivery applications

, & , PhD
Pages 341-351 | Published online: 05 Mar 2010

Bibliography

  • Maeda H, Wu J, Sawa T, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000;65(1-2):271-84
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer-chemotherapy - mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46(12):6387-92
  • Kiessling LL, Gestwicki JE, Strong LE. Synthetic multivalent ligands as probes of signal transduction. Angew Chem Int Ed 2006;45(15):2348-68
  • Lim YB, Moon KS, Lee M. Recent advances in functional supramolecular nanostructures assembled from bioactive building blocks. Chem Soc Rev 2009;38(4):925-34
  • Mammen M, Choi SK, Whitesides GM. Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 1998;37(20):2755-94
  • Hanson JA, Chang CB, Graves SM, Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature 2008;455(7209):85-8
  • Warren SC, Messina LC, Slaughter LS, Ordered mesoporous materials from metal nanoparticle-block copolymer self-assembly. Science 2008;320(5884):1748-52
  • Schatz C, Louguet S, Le Meins JF, Lecommandoux S. Polysaccharide-block-polypeptide copolymer vesicles: towards synthetic viral capsids. Angew Chem Int Ed Engl 2009;48(14):2572-5
  • Hu J, Liu G, Nijkang G. Hierarchical interfacial assembly of ABC triblock copolymer. J Am Chem Soc 2008;130(11):3236-7
  • Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 2001;47(1):113-31
  • Lim YB, Moon KS, Lee M. Stabilization of an alpha helix by beta-sheet-mediated self-assembly of a macrocyclic peptide. Angew Chem Int Ed Engl 2009;48(9):1601-5
  • Hamley IW. Peptide fibrillization. Angew Chem Int Ed Engl 2007;46(43):8128-47
  • Konig HM, Kilbinger AF. Learning from nature: beta-sheet-mimicking copolymers get organized. Angew Chem Int Ed Engl 2007;46(44):8334-40
  • Gazit E. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 2007;36(8):1263-9
  • Klok HA. Protein-inspired materials: synthetic concepts and potential applications. Angew Chem Int Ed Engl 2002;41(9):1509-13
  • Ulijn RV, Smith AM. Designing peptide based nanomaterials. Chem Soc Rev 2008;37(4):664-75
  • Yoon YR, Lim YB, Lee E, Lee M. Self-assembly of a peptide rod-coil: a polyproline rod and a cell-penetrating peptide Tat coil. Chem Commun (Camb) 2008;(16):1892-4
  • Sharma J, Chhabra R, Cheng A, Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 2009;323(5910):112-6
  • Aldaye FA, Palmer AL, Sleiman HF. Assembling materials with DNA as the guide. Science 2008;321(5897):1795-9
  • Andersen ES, Dong M, Nielsen MM, Self-assembly of a nanoscale DNA box with a controllable lid. Nature 2009;459(7243):73-U5
  • Douglas SM, Dietz H, Liedl T, Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 2009;459(7245):414-8
  • He Y, Ye T, Su M, Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 2008;452(7184):198-U41
  • Lee M, Cho BK, Zin WC. Supramolecular structures from rod-coil block copolymers. Chem Rev 2001;101(12):3869-92
  • Ryu JH, Lee E, Lim YB, Lee M. Carbohydrate-coated supramolecular structures: transformation of nanofibers into spherical micelles triggered by guest encapsulation. J Am Chem Soc 2007;129(15):4808-14
  • Kim HJ, Lim YB, Lee M. Self-assembly of supramolecular polymers into tunable helical structures. J Polym Sci A Polym Chem 2008;46(6):1925-35
  • Lim YB, Moon KS, Lee M. Rod-coil block molecules: their aqueous self-assembly and biomaterials applications. J Mater Chem 2008;18(25):2909-18
  • Gellman SH. Foldamers: a manifesto. Acc Chem Res 1998;31(4):173-80
  • Hill DJ, Mio MJ, Prince RB, A field guide to foldamers. Chem Rev 2001;101(12):3893-4011
  • Gillies ER, Deiss F, Staedel C, Development and biological assessment of fully water-soluble helical aromatic amide foldamers. Angew Chem Int Ed 2007;46(22):4081-4
  • Thoma G, Katopodis AG, Voelcker N, Novel glycodendrimers self-assemble to nanoparticles which function as polyvalent ligands in vitro and in vivo. Angew Chem Int Ed 2002;41(17):3195-98
  • Percec V, Dulcey AE, Balagurusamy VSK, Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature 2004;430(7001):764-8
  • Sanchez C, Julian B, Belleville P, Popall M. Applications of hybrid organic-inorganic nanocomposites. J Mater Chem 2005;15(35-36):3559-92
  • Yiu HHP, Wright PA. Enzymes supported on ordered mesoporous solids: a special case of an inorganic-organic hybrid. J Mater Chem 2005;15(35-36):3690-700
  • Jiang W, Kim BYS, Rutka JT, Chan WCW. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 2008;3(3):145-50
  • Zhang K, Fang HF, Chen ZY, Shape effects of nanoparticles conjugated with cell-penetrating peptides (HIV Tat PTD) on CHO cell uptake. Bioconjug Chem 2008;19(9):1880-7
  • Perrault SD, Walkey C, Jennings T, Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 2009;9(5):1909-15
  • Raffa V, Ciofani G, Nitodas S, Can the properties of carbon nanotubes influence their internalization by living cells? Carbon 2008;46(12):1600-10
  • Lim YB, Park S, Lee E, Glycoconjugate nanoribbons from the self-assembly of carbohydrate-peptide block molecules for controllable bacterial cell cluster formation. Biomacromolecules 2007;8(5):1404-8
  • Wang HF, Gu LR, Lin Y, Unique aggregation of anthrax (Bacillus anthracis) spores by sugar-coated single-walled carbon nanotubes. J Am Chem Soc 2006;128(41):13364-5
  • Kim BS, Hong DJ, Bae J, Lee M. Controlled self-assembly of carbohydrate conjugate rod-coil amphiphiles for supramolecular multivalent ligands. J Am Chem Soc 2005;127(46):16333-7
  • Tuzikov AB, Chinarev AA, Gambaryan AS, Polyglycine II nanosheets: supramolecular antivirals? Chembiochem 2003;4(2-3):147-54
  • Kostarelos K. The long and short of carbon nanotube toxicity. Nat Biotechnol 2008;26(7):774-6
  • Poland CA, Duffin R, Kinloch I, Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 2008;3(7):423-8
  • Connor EE, Mwamuka J, Gole A, Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005;1(3):325-7
  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 2004;15(4):897-900
  • Pernodet N, Fang XH, Sun Y, Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2006;2(6):766-73
  • Pan Y, Neuss S, Leifert A, Size-dependent cytotoxicity of gold nanoparticles. Small 2007;3(11):1941-9
  • Lee YS. Self-assembly and nanotechnology - a force balance approach. Wiley, New York; 2008
  • Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov 2005;4(7):581-93
  • Mastrobattista E, van der Aa MAEM, Hennink WE, Crommelin DJA. Artificial viruses: a nanotechnological approach to gene delivery. Nat Rev Drug Discov 2006;5(2):115-21
  • Han M, Bae Y, Nishiyama N, Transfection study using multicellular tumor spheroids for screening non-viral polymeric gene vectors with low cytotoxicity and high transfection efficiencies. J Control Release 2007;121(1-2):38-48
  • Xu PS, Li SY, Li Q, Virion-minnicking nanocapsules from pH-controlled hierarchical self-assembly for gene delivery. Angew Chem Int Ed 2008;47(7):1260-4
  • Goodsell DS. Bionanotechnology-lessons from nature. WILEY-LISS, New Jersey; 2004
  • Gazit E. Plenty of room for biology at the bottom-An introduction to bionanotechnology. Imperial College Press, London; 2007
  • Nesloney CL, Kelly JW. Progress towards understanding beta-sheet structure. Bioorg Med Chem 1996;4(6):739-66
  • Konig HM, Kilbinger AFM. Learning from nature: beta-sheet-mimicking copolymers get organized. Angew Chem Int Ed 2007;46(44):8334-40
  • Lim YB, Lee M. Nanostructures of beta-sheet peptides: steps towards bioactive functional materials. J Mater Chem 2008;18(7):723-7
  • Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP. Supramolecular polymers. Chem Rev 2001;101(12):4071-97
  • Shimizu T, Masuda M, Minamikawa H. Supramolecular nanotube architectures based on amphiphilic molecules. Chem Rev 2005;105(4):1401-43
  • Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001;294(5547):1684-8
  • Wang X, Guerin G, Wang H, Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 2007;317(5838):644-7
  • Ghadiri MR, Granja JR, Milligan RA, Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 1993;366(6453):324-7
  • Chen X, Tam UC, Czlapinski JL, Interfacing carbon nanotubes with living cells. J Am Chem Soc 2006;128(19):6292-3
  • Oda R, Artzner F, Laguerre M, Huc I. Molecular structure of self-assembled chiral nanoribbons and nanotubules revealed in the hydrated state. J Am Chem Soc 2008;130(44):14705-12
  • Aggeli A, Nyrkova IA, Bell M, Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta -sheet tapes, ribbons, fibrils, and fibers. Proc Natl Acad Sci USA 2001;98(21):11857-62
  • Zhang S, Marini DM, Hwang W, Santoso S. Design of nanostructured biological materials through self-assembly of peptides and proteins. Curr Opin Chem Biol 2002;6(6):865-71
  • Lim YB, Park S, Lee E, Glycoconjugate nanoribbons from the self-assembly of carbohydrate-peptide block molecules for controllable bacterial cell cluster formation. Biomacromolecules 2007;8(5):1404-8
  • Lim YB, Park S, Lee E, Tunable bacterial agglutination and motility inhibition by self-assembled glyco-nanoribbons. Chem Asian J 2007;2(11):1363-9
  • Shi HT, Qi LM, Ma JM, Wu NZ. Architectural control of hierarchical nanobelt superstructures in catanionic reverse micelles. Adv Funct Mater 2005;15(3):442-50
  • Cui H, Muraoka T, Cheetham AG, Stupp SI. Self-assembly of giant peptide nanobelts. Nano Lett 2009;9(3):945-51
  • Menger FM, Keiper JS. Gemini surfactants. Angew Chem Int Ed Engl 2000;39(11):1906-20
  • Lim YB, Lee E, Lee M. Controlled bioactive nanostructures from self-assembly of peptide building blocks. Angew Chem Int Ed 2007;46(47):9011-4
  • Moon KS, Lee E, Lim YB, Lee M. Bioactive molecular sheets from self-assembly of polymerizable peptides. Chem Commun (Camb) 2008;(34):4001-3
  • Israelachvili JN. Intermolecular & surface forces. Academic Press, New York; 1992
  • Binder WH, Smrzka OW. Self-assembly of fibers and fibrils. Angew Chem Int Ed Engl 2006;45(44):7324-8
  • Mimna R, Camus MS, Schmid A, Disruption of amyloid-derived peptide assemblies through the controlled induction of a beta-sheet to alpha-helix transformation: application of the switch concept. Angew Chem Int Ed Engl 2007;46(15):2681-4
  • Nesloney CL, Kelly JW. Progress towards understanding beta-sheet structure. Bioorg Med Chem 1996;4(6):739-66
  • Gore T, Dori Y, Talmon Y, Self-assembly of model collagen peptide amphiphiles. Langmuir 2001;17(17):5352-60
  • Papapostolou D, Bromley EH, Bano C, Woolfson DN. Electrostatic control of thickness and stiffness in a designed protein fiber. J Am Chem Soc 2008;130(15):5124-30
  • Strzalka J, Xu T, Tronin A, Structural studies of amphiphilic 4-helix bundle peptides incorporating designed extended chromophores for nonlinear optical biomolecular materials. Nano Lett 2006;6(11):2395-405
  • Geng Y, Dalhaimer P, Cai SS, Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2007;2(4):249-55
  • Christian DA, Cai S, Garbuzenko OB, Flexible filaments for in vivo imaging and delivery: persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage. Mol Pharm 2009;6(5):1343-52
  • Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988;55(6):1189-93
  • Schwarze SR, Hruska KA, Dowdy SF. Protein transduction: unrestricted delivery into all cells? Trends Cell Biol 2000;10(7):290-5
  • Futaki S. Membrane-permeable arginine-rich peptides and the translocation mechanisms. Adv Drug Deliv Rev 2005;57(4):547-58
  • Lim YB, Lee E, Lee M. Cell-penetrating-peptide-coated nanoribbons for intracellular nanocarriers. Angew Chem Int Ed Engl 2007;46(19):3475-8
  • Lim YB, Kwon OJ, Lee E, A cyclic RGD-coated peptide nanoribbon as a selective intracellular nanocarrier. Org Biomol Chem 2008;6(11):1944-8
  • Janssen ML, Oyen WJ, Dijkgraaf I, Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model. Cancer Res 2002;62(21):6146-51
  • Lim YB, Lee E, Yoon YR, Filamentous artificial virus from a self-assembled discrete nanoribbon. Angew Chem Int Ed Engl 2008;47(24):4525-8
  • Aoyama Y, Kanamori T, Nakai T, Artificial viruses and their application to gene delivery. Size-controlled gene coating with glycocluster nanoparticles. J Am Chem Soc 2003;125(12):3455-7
  • Lim YB, Choi YH, Park JS. A self-destroying polycationic polymer: Biodegradable poly(4-hydroxy-L-proline ester). J Am Chem Soc 1999;121(24):5633-9
  • Lim YB, Kim CH, Kim K, Development of a safe gene delivery system using biodegradable polymer, poly[alpha-(4-aminobutyl)-L-glycolic acid]. J Am Chem Soc 2000;122(27):6524-5
  • Lim YB, Kim SM, Lee Y, Cationic hyperbranched poly(amino ester): a novel class of DNA condensing molecule with cationic surface, biodegradable three-dimensional structure, and tertiary amine groups in the interior. J Am Chem Soc 2001;123(10):2460-1
  • Lim YB, Kim SM, Suh H, Park JS. Biodegradable, endosome disruptive, and cationic network-type polymer as a highly efficient and nontoxic gene delivery carrier. Bioconjug Chem 2002;13(5):952-7
  • Cui H, Chen Z, Zhong S, Block copolymer assembly via kinetic control. Science 2007;317(5838):647-50
  • Fang B, Walther A, Wolf A, Undulated multicompartment cylinders by the controlled and directed stacking of polymer micelles with a compartmentalized corona. Angew Chem Int Ed Engl 2009;48(16):2877-80
  • Kim JK, Lee E, Lim YB, Lee M. Supramolecular capsules with gated pores from an amphiphilic rod assembly. Angew Chem Int Ed Engl 2008;47(25):4662-6
  • He Y, Ye T, Su M, Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 2008;452(7184):198-201
  • Douglas SM, Dietz H, Liedl T, Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 2009;459(7245):414-8
  • Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev 2005;105(4):1547-62

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.