816
Views
246
CrossRef citations to date
0
Altmetric
Reviews

Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers

, MS, , PhD, , PhD & , PhD
Pages 479-495 | Published online: 23 Mar 2010

Bibliography

  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005;5(3):161-71
  • Peer D, Karp JM, Hong S, Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2(12):751-60
  • Zhang SF, Uludag H. Nanoparticulate systems for growth factor delivery. Pharm Res 2009;26(7):1561-80
  • Fenske DB, Chonn A, Cullis PR. Liposomal nanomedicines: an emerging field. Toxicol Pathol 2008;36(1):21-9
  • Duncan R. The dawning era of polymer therapeutics. (Report). Nat Rev Drug Discov 2003;2(5):347-60
  • Jeong JH, Kim SW, Park TG. Molecular design of functional polymers for gene therapy. Prog Polym Sci 2007;32(11):1239-74
  • Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv 2007;4(4):297-305
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. (Report). Nat Rev Drug Discov 2005;4(2):145-60
  • Goldsmith HL, Turitto VT. Rheological aspects of thrombosis and hemostasis–basic principles and applications–Icth-Report–Subcommittee on Rheology of the International Committee on Thrombosis and Hemostasis. Thromb Haemost 1986;55(3):415-35
  • Patil VRS, Campbell CJ, Yun YH, Particle diameter influences adhesion under flow. Biophys J 2001;80(4):1733-43
  • Lamprecht A, Schäfer U, Lehr C-M. Size-dependent bioadhesion of micro- and nanoparticulate carriers to the inflamed colonic mucosa. Pharm Res 2001;18(6):788-93
  • Stolnik S, Illum L, Davis SS. Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 1995;16(2-3):195-214
  • Robert Langer NAP. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J 2003;49(12):2990-3006
  • Brazel CS. Magnetothermally-responsive nanomaterials: combining magnetic nanostructures and thermally-sensitive polymers for triggered drug release. Pharm Res 2009;26(3):644-56
  • Husseini GA, Pitt WG. Ultrasonic-activated micellar drug delivery for cancer treatment. J Pharm Sci 2009;98(3):795-811
  • Meng F, Zhong Z, Feijen J. Stimuli-responsive polymersomes for programmed drug delivery. Macromolecules 2009;10(2):197-209
  • Boomer JA, Inerowicz HD, Zhang ZY, Acid-triggered release from sterically stabilized fusogenic liposomes via a hydrolytic DePEGylation strategy. Langmuir 2003;19(16):6408-15
  • Eastoe J, Vesperinas A, Donnewirth AC, Photodestructible vesicles. Langmuir 2006;22(3):851-3
  • Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharm Rev 2001;53(2):283-318
  • Illum L, Davis SS, Wilson CG, Blood clearance and organ deposition of intravenously administered colloidal particles–the effects of particle-size, nature and shape. Int J Pharm 1982;12(2-3):135-46
  • Tabata Y, Ikada Y. Phagocytosis of polymer microspheres by macrophages. N Polym Mater 1990;94:107-41
  • Panyam J, Dali MM, Sahoo SK, Polymer degradation and in vitro release of a model protein from poly(,-lactide-co-glycolide) nano- and microparticles. J Control Release 2003;92(1-2):173-87
  • Dunne M, Corrigan OI, Ramtoola Z. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials 2000;21(16):1659-68
  • Pasut G, Veronese FM. Polymer-drug conjugation, recent achievements and general strategies. Prog Polym Sci 2007;32(8-9):933-61
  • Ainslie KM, Desai TA. Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. Lab Chip 2008;8(11):1864-78
  • Gates BD, Xu Q, Stewart M, New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 2005;105(4):1171-96
  • Gao Z, Fain HD, Rapoport N. Ultrasound-enhanced tumor targeting of polymeric micellar drug carriers. Mol Pharm 2004;1(4):317-30
  • Gao ZG, Fain HD, Rapoport N. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. J Control Release 2005;102(1):203-22
  • Gao ZG, Lee DH, Kim DI, Doxorubicin loaded pH-sensitive micelle targeting acidic extracellular pH of human ovarian A2780 tumor in mice. J Drug Target 2005;13(7):391-7
  • Chithrani BD, Chan WCW. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 2007;7(6):1542-50
  • Jiang W, KimBetty YS, Rutka JT, Nanoparticle-mediated cellular response is size-dependent. Nat Nano 2008;3(3):145-50
  • Xia Y, Whitesides GM. Soft Lithography. Angew Chem Int Ed 1998;37(5):550-75
  • Resnick DJ, Sreenivasan SV, Wilson CG. Step and flash imprint lithography. Mater Today 2005;21:34-42
  • Koh WG, Revzin A, Pishko MV. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir 2002;18(7):2459-62
  • Stephen YC, Peter RK, Zhang W, Sub–10 nm imprint lithography and applications. J Vacuum Sci Technol B Microelectronics Nanometer Struct 1997;15(6):2897-904
  • Chou SY, Krauss PR, Renstrom PJ. Imprint lithography with 25-nanometer resolution. Science 1996;272(5258):85-7
  • Bacher W, Bade K, Matthis B, Fabrication of LIGA mold inserts. Microsystem Technol 1998;4(3):117-9
  • Matthew C, Annette G, Byung Jin C, Patterning nonflat substrates with a low pressure, room temperature, imprint lithography process. J Vacuum Sci Technol B Microelectronics Nanometer Struct 2001;19(6):2162-72
  • Jan H, Martin V, Kees van den H, Mold-assisted nanolithography: a process for reliable pattern replication. AVS; 1996. p. 4124-8
  • Bender M, Otto M, Hadam B, Fabrication of nanostructures using a UV-based imprint technique. Microelectronic Eng 2000;53(1-4):233-6
  • Gale MT. Replication techniques for diffractive optical elements. Microelectronic Eng 1997;34(3-4):321-39
  • Shvartsman FP. Holographic optical elements by dry photopolymer embossing. SPIE 1991;1461(5):313-20
  • Desai TA, Chu WH, Tu JK, Microfabricated immunoisolating biocapsules. Biotechnol Bioeng 1998;57(1):118-20
  • Desai TA, Hansford DJ, Kulinsky L, Nanopore technology for biomedical applications. Biomed Microdevices 1999;2(1):11-40
  • Tao SL, Desai TA. Micromachined polymeric devices for applications in targeted drug delivery. J Assoc Lab Automation 2004;9(3):155-8
  • Tao SL, Popat K, Desai TA. Off-wafer fabrication and surface modification of asymmetric 3D SU-8 microparticles. Nat Protocols 2007;1(6):3153-8
  • Tao SL, Desai TA. Microfabricated drug delivery systems: from particles to pores. Adv Drug Deliv Rev 2003;55(3):315-28
  • Ahmed A, Bonner C, Desai TA. Bioadhesive microdevices for drug delivery: a Feasibility Study. Biomed Microdev 2001;3(2):89-96
  • Tao SL, Desai TA. Microfabrication of multilayer, asymmetric, polymeric devices for drug delivery. Adv Mater 2005;17(13):1625-30
  • Dendukuri D, Hatton TA, Doyle PS. Synthesis and self-assembly of amphiphilic polymeric microparticles. Langmuir 2006;23(8):4669-74
  • Dendukuri D, Pregibon DC, Collins J, Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater 2006;5(5):365-9
  • Dendukuri D, Tsoi K, Hatton TA, Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir 2005;21(6):2113-6
  • Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 2007;121(1-2):3-9
  • Glangchai LC, Caldorera-Moore M, Shi L, Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles. J Control Release 2008;125(3):263-72
  • Euliss LE, Welch CM, Maynor BW, Monodisperse nanocarriers: novel fabrication of polymeric nanoparticles for bio-nanotechnology. Advances in Resist Technology and Processing XXIII; SPIE; San Jose, CA, USA; 2006. p. 61534A-8
  • Gratton SEA, Pohlhaus PD, Lee J, Nanofabricated particles for engineered drug therapies: a preliminary biodistribution study of PRINT^(TM) nanoparticles. J Control Release 2007;121(1):10-8
  • Gratton SEA, Ropp PA, Pohlhaus PD, The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 2008;105(33):11613-8
  • Kenton BW, Natasha SW, Kevin PH, Soft lithography using perfluorinated polyether molds and PRINT technology for fabrication of 3-D arrays on glass substrates. In: Michael JL, editor, SPIE; 2006. p. 61513F(1-9)
  • Pandya AA, Maynor BW, Gratton SEA, Fabrication of organic nanoparticles by PRINT: master generation using lithographic and RIE techniques. Emerging Lithographic Technologies X; SPIE; San Jose, CA, USA; 2006. p. 61513C-6
  • Rolland JP, Maynor BW, Euliss LE, Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc 2005;127(28):10096-100
  • Champion JA, Katare YK, Mitragotri S. Making polymeric micro- and nanoparticles of complex shapes. Proc Natl Acad Sci USA 2007;104(29):11901-4
  • Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 2006;103(13):4930-4
  • Truskett VN, Watts MPC. Trends in imprint lithography for biological applications. Trends Biotechnol 2006;24(7):312-7
  • Dorian AC, Kevin PH, Joseph MD. Top-down particle fabrication: control of size and shape for diagnostic imaging and drug delivery. Wiley Interdisciplinary Reviews: Nanomed Nanobiotechnol 2009;1(4):391-404
  • Kelly JY, DeSimone JM. Shape-specific, monodisperse nano-molding of protein particles. J Am Chem Soc 2008;130(16):5438-9
  • Decuzzi P, Lee S, Bhushan B, A theoretical model for the margination of particles within blood vessels. Ann Biomed Eng 2005;33(2):179-90
  • Decuzzi P, Ferrari M. The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 2006;27(30):5307-14
  • Decuzzi P, Causa F, Ferrari M, The effective dispersion of nanovectors within the tumor microvasculature. Ann Biomed Eng 2006;34(4):633-41
  • Decuzzi P, Pasqualini R, Arap W, Intravascular delivery of particulate systems: does geometry really matter? Pharm Res 2009;26(1):235-43
  • Geng Y, Dalhaimer P, Cai S, Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nano 2007;2(4):249-55
  • Nishiyama N. Nanomedicine: nanocarriers shape up for long life. Nat Nano 2007;2(4):203-4
  • Furlani EP, Ng KC. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys Rev E Stat Nonlin Soft Matter Phys 2006;73(6):061919(1-10)
  • Goldman AJ, Cox RG, Brenner H. Slow viscous motion of a sphere parallel to a plane wall--II Couette flow. Chem Eng Sci 1967;22(4):653-60
  • Liotta LA, Ferrari M, Petricoin E. Clinical proteomics: written in blood. Nature 2003;425(6961):905
  • Ladewig K, Xu ZP, Lu GQ. Layered double hydroxide nanoparticles in gene and drug delivery. Expert Opin Drug Deliv 2009;6(9):907-22
  • Xu ZP, Niebert M, Porazik K, Subcellular compartment targeting of layered double hydroxide nanoparticles. J Control Release 2008;130(1):86-94
  • Chen W, Meng F, Li F, pH-responsive biodegradable micelles based on acid-labile polycarbonate hydrophobe: synthesis and triggered drug release. Biomacromolecules 2009;10:1727-35
  • Oh KT, Kim D, You HH, pH-sensitive properties of surface charge-switched multifunctional polymeric micelle. Int J Pharm 2009;376(1-2):134-40
  • Lee ES, Oh KT, Kim D, Tumor pH-responsive flower-like micelles of poly(L-lactic acid)-b-poly (ethylene glycol)-b-poly(L-histidine). J Control Release 2007;123(1):19-26
  • Bae Y, Jang WD, Nishiyama N, Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol Biosyst 2005;1(3):242-50
  • Oh KT, Oh YT, Oh NM, A smart flower-like polymeric micelle for pH-triggered anticancer drug release. Int J Pharm 2009;375(1-2):163-9
  • Jo SM, Kim JC. Glucose-triggered release from liposomes incorporating poly(N-isopropylacrylamide-co-methacrylic acid-co-octadecylacrylate) and glucose oxidase. Colloid Polym Sci 2009;287(4):379-84
  • Zalipsky S, Qazen M, Walker JA, New detachable poly(ethylene glycol) conjugates: cysteine-cleavable lipopolymers regenerating natural phospholipid, diacyl phosphatidylethanolamine. Bioconjug Chem 1999;10(5):703-7
  • Guo X, Szoka FC. Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG-diortho ester-lipid conjugate. Bioconjug Chem 2001;12(2):291-300
  • Shenoy D, Little S, Langer R, Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localization studies. Pharm Res 2005;22(12):2107-14
  • Jain SK, Amit KC, Chalasani KB, Enzyme triggered pH sensitive liposomes for insulin delivery. J Drug Deliv Sci Technol 2007;17(6):399-405
  • Kim S, Chung EH, Gilbert M, Synthetic MMP-13 degradable ECMs based on poly(N-isopropylacrylamide-co-acrylic acid) semi-interpenetrating polymer networks. I. Degradation and cell migration. J Biomed Mater Res A 2005;75A(1):73-88
  • Kim S, Healy KE. Synthesis and characterization of injectable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links. Biomacromolecules 2003;4(5):1214-23
  • Pak CC, Ali S, Janoff AS, Triggerable liposomal fusion by enzyme cleavage of a novel peptide-lipid conjugate. Biochim Biophys Acta Biomembr 1998;1372(1):13-27
  • Pak CC, Erukulla RK, Ahl PL, Elastase activated liposomal delivery to nucleated cells. Biochim Biophys Acta Biomembr 1999;1419(2):111-26
  • Hu LR, Ho RJY, Huang L. Trypsin induced destabilization of liposomes composed of dioleoylphosphatidylethanolamine and glyophorin. Biochem Biophys Res Commun 1986;141(3):973-8
  • Davidsen J, Jorgensen K, Andresen TL, Secreted phospholipase A(2) as a new enzymatic trigger mechanism for localised liposomal drug release and absorption in diseased tissue. Biochim Biophys Acta Biomembr 2003;1609(1):95-101
  • Sahu A, Bora U, Kasoju N, Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomater 2008;4(6):1752-61
  • Elegbede AI, Banerjee J, Hanson AJ, Mechanistic studies of the triggered release of liposomal contents by matrix metalloproteinase-9. J Am Chem Soc 2008;130(32):10633-42
  • Peng KW, Morling FJ, Cosset FL, A gene delivery system activatable by disease-associated matrix metalloproteinases. Hum Gene Ther 1997;8(6):729-38
  • Sarkar N, Banerjee J, Hanson AJ, Matrix metalloproteinase-assisted triggered release of liposomal contents. Bioconjug Chem 2008;19(1):57-64
  • Xiong XY, Tam KC, Gan LH. Effect of enzymatic degradation on the release kinetics of model drug from Pluronic F127/poly(lactic acid) nano-particles. J Control Release 2005;108(2-3):263-70
  • Romberg B, Flesch FM, Hennink WE, Enzyme-induced shedding of a poly(amino acid)-coating triggers contents release from dioleoyl phosphatidylethanolamine liposomes. Int J Pharm 2008;355(1-2):108-13
  • Ong W, Yang YM, Cruciano AC, Redox-triggered contents release from liposomes. J Am Chem Soc 2008;130(44):14739-44
  • Kirpotin D, Hong KL, Mullah N, Liposomes with detachable polymer coating: destabilization and fusion of dioleoylphosphatidylethanolamine vesicles triggered by cleavage of surface-grafted poly(ethylene glycol). FEBS Lett 1996;388(2-3):115-8
  • Tang FX, Hughes JA. Introduction of a disulfide bond into a cationic lipid enhances transgene expression of plasmid DNA. Biochem Biophys Res Commun 1998;242(1):141-5
  • Matsumoto S, Christie RJ, Nishiyama N, Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery. Biomacromolecules 2009;10(1):119-27
  • Chandra B, Mallik S, Srivastava DK. Design of photocleavable lipids and their application in liposomal ‘uncorking’. Chem Commun 2005;24:3021-3
  • Chen K, Preuss A, Hackbarth S, Novel photosensitizer-protein nanoparticles for photodynamic therapy: photophysical characterization and in vitro investigations. J Photochem Photobiol B 2009;96(1):66-74
  • Zhang ZY, Smith BD. Synthesis and characterization of NVOC-DOPE, a caged photoactivatable derivative of dioleoylphosphatidylethanolamine. Bioconjug Chem 1999;10(6):1150-2
  • Chiu GNC, Abraham SA, Ickenstein LM, Encapsulation of doxorubicin into thermosensitive liposomes via complexation with the transition metal manganese. J Control Release 2005;104(2):271-88
  • Kono K, Murakami T, Yoshida T, Temperature sensitization of liposomes by use of thermosensitive block copolymers synthesized by living cationic polymerization: Effect of copolymer chain length. Bioconjug Chem 2005;16(6):1367-74
  • Owens DE, Eby JK, Jian Y, Temperature-responsive polymer-gold nanocomposites as intelligent therapeutic systems. J Biomed Mater Res A 2007;83A(3):692-5
  • Owens DE, Jian YC, Fang JE, Thermally responsive swelling properties of polyacrylamide/poly(acrylic acid) interpenetrating polymer network nanoparticles. Macromolecules 2007;40(20):7306-10
  • Yuan Q, Venkatasubramanian R, Hein S, A stimulus-responsive magnetic nanoparticle drug carrier: magnetite encapsulated by chitosan-grafted-copolymer. Acta Biomater 2008;4(4):1024-37
  • Husseini GA, Myrup GD, Pitt WG, Factors affecting acoustically triggered release of drugs from polymeric micelles. J Control Release 2000;69(1):43-52
  • Marin A, Muniruzzaman M, Rapoport N. Acoustic activation of drug delivery from polymeric micelles: effect of pulsed ultrasound. J Control Release 2001;71(3):239-49
  • O'Neill BE, Vo H, Angstadt M, Pulsed high intensity focused ultrasound mediated nanoparticle delivery: mechanisms and efficacy in murine muscle. Ultrasound Med Biol 2009;35(3):416-24
  • Pitt WG, Husseini GA. Ultrasound in drug and gene delivery–preface. Adv Drug Deliv Rev 2008;60(10):1095-6
  • Needham D, Dewhirst MW. The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv Drug Deliv Rev 2001;53(3):285-305
  • Husseini GA, Pitt WG. Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv Drug Deliv Rev 2008;60(10):1137-52
  • Nelson JL, Roeder BL, Carmen JC, Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res 2002;62(24):7280-3
  • Hosseinkhani H, Kushibiki T, Matsumoto K, Enhanced suppression of tumor growth using a combination of NK4 plasmid DNA-PEG engrafted cationized dextran complex and ultrasound irradiation. Cancer Gene Ther 2006;13(5):479-89
  • Hosseinkhani H, Tabata Y. Ultrasound enhances in vivo tumor expression of plasmid DNA by PEG-introduced cationized dextran. J Control Release 2005;108(2-3):540-56
  • Aoyama T, Hosseinkhani H, Yamamoto S, Enhanced expression of plasmid DNA-cationized gelatin complex by ultrasound in murine muscle. J Control Release 2002;80(1-3):345-56
  • Chumakova OV, Liopo AV, Andreev VG, Composition of PLGA and PEI/DNA nanoparticles improves ultrasound-mediated gene delivery in solid tumors in vivo. Cancer Lett 2008;261(2):215-25
  • Lee SY, Ferrari M, Decuzzi P. Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology 2009;141(49):495101(1-11)
  • Decuzzi P, Godin B, Tanaka T, Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 2010;141:320-7
  • Gratton S, Napier M, Ropp P, Microfabricated particles for engineered drug therapies: elucidation into the mechanisms of cellular internalization of PRINT particles. Pharm Res 2008;25(12):2845-52

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.