1,793
Views
307
CrossRef citations to date
0
Altmetric
Reviews

Drug delivery by red blood cells: vascular carriers designed by mother nature

Pages 403-427 | Published online: 02 Mar 2010

Bibliography

  • Simone EA, Dziubla TD, Muzykantov VR. Polymeric carriers: role of geometry in drug delivery. Expert Opin Drug Deliv 2008;5:1283-300
  • Coller BS, Springer KT, Beer JH, Thromboerythrocytes. In vitro studies of a potential autologous, semi-artificial alternative to platelet transfusions. J Clin Invest 1992;89:546-55
  • Muzykantov VR, Sakharov DV, Smirnov MD, Immunotargeting of erythrocyte-bound streptokinase provides local lysis of a fibrin clot. Biochim Biophys Acta 1986;884:355-62
  • Dale GL, Kuhl W, Beutler E. Incorporation of glucocerebrosidase into Gaucher's disease monocytes in vitro. Proc Natl Acad Sci USA 1979;76:473-5
  • Hinderling PH. Red blood cells: a neglected compartment in pharmacokinetics and pharmacodynamics. Pharmacol Rev 1997;49:279-95
  • Dumez H, Highley M, Guetens G, Erythrocytes and the transfer of anticancer drugs and metabolites: a possible relationship with therapeutic outcome. Semin Oncol 2001;28:24-8
  • Sakurai F, Nishioka T, Saito H, Interaction between DNA-cationic liposome complexes and erythrocytes is an important factor in systemic gene transfer via the intravenous route in mice: the role of the neutral helper lipid. Gene Ther 2001;8:677-86
  • Ihler GM, Glew RH, Schnure FW. Enzyme loading of erythrocytes. Proc Natl Acad Sci USA 1973;70:2663-6
  • Vink H, Duling BR. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res 1996;79:581-9
  • Kalfa TA, Pushkaran S, Mohandas N, Rac GTPases regulate the morphology and deformability of the erythrocyte cytoskeleton. Blood 2006;108:3637-45
  • Pasini EM, Kirkegaard M, Mortensen P, In-depth analysis of the membrane and cytosolic proteome of red blood cells. Blood 2006;108:791-801
  • Ktavtzoff R, Desbois I, Doinel C, Immunological response to L-asparaginase loaded into red blood cells. Adv Exp Med Biol 1992;326:175-82
  • Tonetti M, Astroff B, Satterfield W, Construction and characterization of adriamycin-loaded canine red blood cells as a potential slow delivery system. Biotechnol Appl Biochem 1990;12:621-9
  • Rossi L, Serafini S, Cenerini L, Erythrocyte-mediated delivery of dexamethasone in patients with chronic obstructive pulmonary disease. Biotechnol Appl Biochem 2001;33:85-9
  • Hamidi M, Tajerzadeh H. Carrier erythrocytes: an overview. Drug Deliv 2003;10:9-20
  • Hamidi M, Zarrin A, Foroozesh M, Mohammadi-Samani S. Applications of carrier erythrocytes in delivery of biopharmaceuticals. J Control Release 2007;118:145-60
  • Pierige F, Serafini S, Rossi L, Magnani M. Cell-based drug delivery. Adv Drug Deliv Rev 2008;60:286-95
  • Patel PD, Dand N, Hirlekar RS, Kadam VJ. Drug loaded erythrocytes: as novel drug delivery system. Curr Pharm Des 2008;14:63-70
  • Rossi L, Serafini S, Pierige F, Erythrocyte-based drug delivery. Expert Opin Drug Deliv 2005;2:311-22
  • Krantz A. Red cell-mediated therapy: opportunities and challenges. Blood Cells Mol Dis 1997;23:58-68
  • Schlegel RA, Rechsteiner MC. Microinjection of thymidine kinase and bovine serum albumin into mammalian cells by fusion with red blood cells. Cell 1975;5:371-9
  • Humphreys JD, Ihler G. Enhanced stability of erythrocyte-entrapped glucocerebrosidase activity. J Lab Clin Med 1980;96:682-92
  • Garin M, Rossi L, Luque J, Magnani M. Lactate catabolism by enzyme-loaded red blood cells. Biotechnol Appl Biochem 1995;22 (Pt 3):295-303
  • Tajerzadeh H, Hamidi M. Evaluation of hypotonic preswelling method for encapsulation of enalaprilat in intact human erythrocytes. Drug Dev Ind Pharm 2000;26:1247-57
  • Fraternale A, Rossi L, Magnani M. Encapsulation, metabolism and release of 2-fluoro-ara-AMP from human erythrocytes. Biochim Biophys Acta 1996;1291:149-54
  • Magnani M, Casabianca A, Fraternale A, Synthesis and targeted delivery of an azidothymidine homodinucleotide conferring protection to macrophages against retroviral infection. Proc Natl Acad Sci USA 1996;93:4403-8
  • Muzykantov VR, Smirnov MD, Samokhin GP. Avidin attachment to biotinylated erythrocytes induces homologous lysis via the alternative pathway of complement. Blood 1991;78:2611-8
  • Muzykantov VR, Zaltsman AB, Smirnov MD, Target-sensitive immunoerythrocytes: interaction of biotinylated red blood cells with immobilized avidin induces their lysis by complement. Biochim Biophys Acta 1996;1279:137-43
  • Perez MT, Alvarez FJ, Garcia-Perez AI, Heterogeneity of hypotonically loaded rat erythrocyte populations as detected by counter-current distribution in aqueous polymer two-phase systems. J Chromatogr B Biomed Appl 1996;677:45-51
  • Alvarez FJ, Herraez A, Murciano JC, In vivo survival and organ uptake of loaded carrier rat erythrocytes. J Biochem (Tokyo) 1996;120:286-91
  • Garin MI, Lopez RM, Sanz S, Erythrocytes as carriers for recombinant human erythropoietin. Pharm Res 1996;13:869-74
  • Teisseire B, Ropars C, Villereal MC, Nicolau C. Long-term physiological effects of enhanced O2 release by inositol hexaphosphate-loaded erythrocytes. Proc Natl Acad Sci USA 1987;84:6894-8
  • Boucher L, Chassaigne M, Ropars C. Internalization and distribution of inositol hexakisphosphate in red blood cells. Biotechnol Appl Biochem 1996;24 (Pt 1):73-78
  • Eichler HG, Schneider W, Raberger G, Erythrocytes as carriers for heparin. Preliminary in vitro and animal studies. Res Exp Med (Berl) 1986;186:407-12
  • Flynn G, McHale L, McHale AP. Methotrexate-loaded, photosensitized erythrocytes: a photo-activatable carrier/delivery system for use in cancer therapy. Cancer Lett 1994;82:225-9
  • Millan CG, Castaneda AZ, Lopez FG, Encapsulation and in vitro evaluation of amikacin-loaded erythrocytes. Drug Deliv 2005;12:409-16
  • Gutierrez Millan C, Bax BE, Castaneda AZ, In vitro studies of amikacin-loaded human carrier erythrocytes. Transl Res 2008;152:59-66
  • Al-Achi A, Greenwood R. Erythrocytes as oral delivery systems for human insulin. Drug Dev Ind Pharm 1998;24:67-72
  • Kravtzoff R, Urvoase E, Chambon C, Ropars C. Gd-DOTA loaded into red blood cells, a new magnetic resonance imaging contrast agents for vascular system. Adv Exp Med Biol 1992;326:347-54
  • Doucet D, Urvoas E, Kravtzoff R, Blood-pool magnetic resonance imaging contrast agents. New developments. Invest Radiol 1991;26(Suppl 1):S46-47; discussion S60-44
  • Johnson KM, Tao JZ, Kennan RP, Gore JC. Gadolinium-bearing red cells as blood pool MRI contrast agents. Magn Reson Med 1998;40:133-42
  • Hambye AS, Verbeke KA, Vandermeiren RP, Comparison of modified technetium-99m albumin and technetium-99m red blood cells for equilibrium ventriculography. J Nucl Med 1997;38:1521-8
  • Kim SH, Kim EJ, Hou JH, Opsonized erythrocyte ghosts for liver-targeted delivery of antisense oligodeoxynucleotides. Biomaterials 2009;30:959-67
  • Grimaldi S, Lisi A, Pozzi D, Santoro N. Attempts to use liposomes and RBC ghosts as vectors in drug and antisense therapy of virus infection. Res Virol 1997;148:177-80
  • Byun HM, Suh D, Yoon H, Erythrocyte ghost-mediated gene delivery for prolonged and blood-targeted expression. Gene Ther 2004;11:492-6
  • Antonelli A, Sfara C, Mosca L, New biomimetic constructs for improved in vivo circulation of superparamagnetic nanoparticles. J Nanosci Nanotechnol 2008;8:2270-8
  • Bax BE, Bain MD, Fairbanks LD, In vitro and in vivo studies with human carrier erythrocytes loaded with polyethylene glycol-conjugated and native adenosine deaminase. Br J Haematol 2000;109:549-54
  • Kravtzoff R, Desbois I, Lamagnere JP, Improved pharmacodynamics of L-asparaginase-loaded in human red blood cells. Eur J Clin Pharmacol 1996;49:465-70
  • Kravtzoff R, Colombat PH, Desbois I, Tolerance evaluation of L-asparaginase loaded in red blood cells. Eur J Clin Pharmacol 1996;51:221-5
  • Garin MI, Lopez RM, Luque J. Pharmacokinetic properties and in-vivo biological activity of recombinant human erythropoietin encapsulated in red blood cells. Cytokine 1997;9:66-71
  • van Wijk R, van Solinge WW. The energy-less red blood cell is lost: erythrocyte enzyme abnormalities of glycolysis. Blood 2005;106:4034-42
  • Dejam A, Hunter CJ, Pelletier MM, Erythrocytes are the major intravascular storage sites of nitrite in human blood. Blood 2005;106:734-9
  • Turrini F, Arese P, Yuan J, Low PS. Clustering of integral membrane proteins of the human erythrocyte membrane stimulates autologous IgG binding, complement deposition, and phagocytosis. J Biol Chem 1991;266:23611-7
  • Chiarantini L, Rossi L, Fraternale A, Magnani M. Modulated red blood cell survival by membrane protein clustering. Mol Cell Biochem 1995;144:53-9
  • Paulitschke M, Nash GB, Anstee DJ, Perturbation of red blood cell membrane rigidity by extracellular ligands. Blood 1995;86:342-8
  • Zaltzman AB, Van den Berg CW, Muzykantov VR, Morgan BP. Enhanced complement susceptibility of avidin-biotin-treated human erythrocytes is a consequence of neutralization of the complement regulators CD59 and decay accelerating factor. Biochem J 1995;307 (Pt 3):651-656
  • Rancourt C, Robertson MW III, Wang M, Endothelial cell vehicles for delivery of cytotoxic genes as a gene therapy approach for carcinoma of the ovary. Clin Cancer Res 1998;4:265-70
  • Jordan JA, Alvarez FJ, Lotero LA, Differential induction of macrophage recognition of carrier erythrocytes by treatment with band 3 cross-linkers. Biotechnol Appl Biochem 1998;27(Pt 2):133-137
  • Lisovskaya IL, Shcherbachenko IM, Volkova RI, Ataullakhanov FI. Clotrimazole enhances lysis of human erythrocytes induced by t-BHP. Chem Biol Interact 2009;180:433-9
  • Turrini F, Mannu F, Arese P, Characterization of the autologous antibodies that opsonize erythrocytes with clustered integral membrane proteins. Blood 1993;81:3146-52
  • Geldwerth D, Helley D, de Jong K, Detection of phosphatidylserine surface exposure on human erythrocytes using annexin V-ferrofluid. Biochem Biophys Res Commun 1999;258:199-203
  • Closse C, Dachary-Prigent J, Boisseau MR. Phosphatidylserine-related adhesion of human erythrocytes to vascular endothelium. Br J Haematol 1999;107:300-2
  • Oldenborg PA, Zheleznyak A, Fang YF, Role of CD47 as a marker of self on red blood cells. Science 2000;288:2051-4
  • Ishikawa-Sekigami T, Kaneko Y, Okazawa H, SHPS-1 promotes the survival of circulating erythrocytes through inhibition of phagocytosis by splenic macrophages. Blood 2006;107:341-8
  • Jordan JA, Murciano JC, Lotero A, In vitro properties and organ uptake of rat band 3 cross-linked erythrocytes. Biochimie 1997;79:53-61
  • Chiarantini L, Johnson J, Deloach JR. Optimized recirculation survival of mouse carrier erythrocytes. Blood Cells 1991;17:607-617; discussion 618-622
  • Eichler HG, Gasic S, Bauer K, In vivo clearance of antibody-sensitized human drug carrier erythrocytes. Clin Pharmacol Ther 1986;40:300-3
  • Grover GJ, Loegering DJ. Effect of red blood cell stroma on the reticuloendothelial system clearance and killing of Streptococcus pneumoniae. Circ Shock 1984;14:39-47
  • Magnani M, Rossi L, D'Ascenzo M, Erythrocyte engineering for drug delivery and targeting. Biotechnol Appl Biochem 1998;28 (Pt 1):1-6
  • Magnani M, Rossi L, Fraternale A, Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides. Gene Ther 2002;9:749-51
  • Alvarez FJ, Jordan JA, Calleja P, Cross-linking treatment of loaded erythrocytes increases delivery of encapsulated substance to macrophages. Biotechnol Appl Biochem 1998;27(Pt 2):139-143
  • Alvarez FJ, Jordan JA, Herraez A, Hypotonically loaded rat erythrocytes deliver encapsulated substances into peritoneal macrophages. J Biochem 1998;123:233-9
  • Magnani M, Rossi L, Brandi G, Targeting antiretroviral nucleoside analogues in phosphorylated form to macrophages: in vitro and in vivo studies. Proc Natl Acad Sci USA 1992;89:6477-81
  • Gaudreault RC, Bellemare B, Lacroix J. Erythrocyte membrane-bound daunorubicin as a delivery system in anticancer treatment. Anticancer Res 1989;9:1201-5
  • Schuchman E, Muro S. The development of enzyme replacement therapy for lysosomal diseases: Gaucher disease and beyond. In: Futerman T, Zimran A, editors, Gaucher disease: lessons learned about therapy of lysosomal diseases, CRC Press, Boca Raton, FL; 2006. p. 125-40
  • Schuchman EH, Suchi M, Takahashi T, Human acid sphingomyelinase. Isolation, nucleotide sequence and expression of the full-length and alternatively spliced cDNAs. J Biol Chem 1991;266:8531-9
  • Schuchman EH. Hematopoietic stem cell gene therapy for Niemann-Pick disease and other lysosomal storage diseases. Chem Phys Lipids 1999;102:179-88
  • Muro S, Schuchman EH, Muzykantov VR. Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis. Mol Ther 2006;13:135-41
  • Thorpe SR, Fiddler MB, Desnick RJ. Enzyme therapy. V. In vivo fate of erythrocyte-entrapped beta-glucuronidase in beta-glucuronidase-deficient mice. Pediatr Res 1975;9:918-23
  • Beutler E, Dale GL, Guinto DE, Kuhl W. Enzyme replacement therapy in Gaucher's disease: preliminary clinical trial of a new enzyme preparation. Proc Natl Acad Sci USA 1977;74:4620-3
  • Moran NF, Bain MD, Muqit MM, Bax BE. Carrier erythrocyte entrapped thymidine phosphorylase therapy for MNGIE. Neurology 2008;71:686-8
  • Magnani M, Rossi L, Casabianca A, Red blood cells as advanced drug delivery systems for antiviral nucleoside analogues. Adv Exp Med Biol 1992;326:239-45
  • Benatti U, Giovine M, Damonte G, Azidothymidine homodinucleotide-loaded erythrocytes and bioreactors for slow delivery of the antiretroviral drug azidothymidine. Biochem Biophys Res Commun 1996;220:20-5
  • Rossi L, Brandi G, Schiavano GF, Macrophage protection against human immunodeficiency virus or herpes simplex virus by red blood cell-mediated delivery of a heterodinucleotide of azidothymidine and acyclovir. AIDS Res Hum Retroviruses 1998;14:435-44
  • Fraternale A, Casabianca A, Orlandi C, Macrophage protection by addition of glutathione (GSH)-loaded erythrocytes to AZT and DDI in a murine AIDS model. Antiviral Res 2002;56:263-72
  • Chiarantini L, Antonelli A, Rossi L, Red blood cell phagocytosis following hexokinase inactivation. Cell Biochem Funct 1994;12:217-20
  • Magnani M, Casabianca A, Fraternale A, Inhibition of murine AIDS by a new azidothymidine homodinucleotide. J Acquir Immune Defic Syndr Hum Retrovirol 1998;17:189-95
  • Franchetti P, Cappellacci L, Petrelli R, Inhibition of HIV-1 replication in macrophages by red blood cell-mediated delivery of a heterodinucleotide of lamivudine and tenofovir. Nucleosides Nucleotides Nucleic Acids 2007;26:953-7
  • Rossi L, Brandi G, Schiavano GF, Heterodimer-loaded erythrocytes as bioreactors for slow delivery of the antiviral drug azidothymidine and the antimycobacterial drug ethambutol. AIDS Res Hum Retroviruses 1999;15:345-53
  • Rossi L, Serafini S, Cappellacci L, Erythrocyte-mediated delivery of a new homodinucleotide active against human immunodeficiency virus and herpes simplex virus. J Antimicrob Chemother 2001;47:819-27
  • Fraternale A, Paoletti MF, Casabianca A, Erythrocytes as carriers of antisense PNA addressed against HIV-1 gag-pol transframe domain. J Drug Target 2009:1-8
  • Magnani M, Balestra E, Fraternale A, Drug-loaded red blood cell-mediated clearance of HIV-1 macrophage reservoir by selective inhibition of STAT1 expression. J Leukoc Biol 2003;74:764-71
  • Magnani M, Rossi L, Fraternale A, Targeting antiviral nucleotide analogues to macrophages. J Leukoc Biol 1997;62:133-7
  • Terpstra V, van Berkel TJ. Scavenger receptors on liver Kupffer cells mediate the in vivo uptake of oxidatively damaged red blood cells in mice. Blood 2000;95:2157-63
  • Magnani M, Chiarantini L, Vittoria E, Red blood cells as an antigen-delivery system. Biotechnol Appl Biochem 1992;16:188-94
  • Murray AM, Pearson IF, Fairbanks LD, The mouse immune response to carrier erythrocyte entrapped antigens. Vaccine 2006;24:6129-39
  • Olmos G, Lotero LA, Tejedor MC, Diez JC. Delivery to macrophages of interleukin 3 loaded in mouse erythrocytes. Biosci Rep 2000;20:399-410
  • Moyes RB, Kirch H, DeLoach JR. Enhanced biological activity of human recombinant interleukin 2 coupled to mouse red blood cells as evaluated using the mouse Meth A sarcoma model. Biotechnol Appl Biochem 1996;23(Pt 1):29-36
  • Chestier N, Kravtzoff R, Canepa S, Erythrocytes as carriers of ricin A chain: effects on the erythrophagocytic cells. Adv Exp Med Biol 1992;326:279-89
  • Rossi L, Serafini S, Antonelli A, Macrophage depletion induced by clodronate-loaded erythrocytes. J Drug Target 2005;13:99-111
  • Rossi L, Migliavacca B, Pierige F, Prolonged islet allograft survival in diabetic mice upon macrophage depletion by clodronate-loaded erythrocytes. Transplantation 2008;85:648-50
  • Rossi L, Castro M, D'Orio F, Low doses of dexamethasone constantly delivered by autologous erythrocytes slow the progression of lung disease in cystic fibrosis patients. Blood Cells Mol Dis 2004;33:57-63
  • Annese V, Latiano A, Rossi L, Erythrocytes-mediated delivery of dexamethasone in steroid-dependent IBD patients-a pilot uncontrolled study. Am J Gastroenterol 2005;100:1370-5
  • Castro M, Rossi L, Papadatou B, Long-term treatment with autologous red blood cells loaded with dexamethasone 21-phosphate in pediatric patients affected by steroid-dependent Crohn disease. J Pediatr Gastroenterol Nutr 2007;44:423-6
  • Bossa F, Latiano A, Rossi L, Erythrocyte-mediated delivery of dexamethasone in patients with mild-to-moderate ulcerative colitis, refractory to mesalamine: a randomized, controlled study. Am J Gastroenterol 2008;103:2509-16
  • Lizano C, Weissig V, Torchilin VP, In vivo biodistribution of erythrocytes and polyethyleneglycol- phosphatidylethanolamine micelles carrying the antitumour agent dequalinium. Eur J Pharm Biopharm 2003;56:153-7
  • Ataullakhanov FI, Kulikova EV, Vitvitsky VM. Reversible binding of anthracycline antibiotics to erythrocytes treated with glutaraldehyde. Biotechnol Appl Biochem 1996;24(Pt 3):241-244
  • Tonetti M, Zocchi E, Guida L, Use of glutaraldehyde treated autologous human erythrocytes for hepatic targeting of doxorubicin. Adv Exp Med Biol 1992;326:307-17
  • Tonetti M, Astroff AB, Satterfield W, Pharmacokinetic properties of doxorubicin encapsulated in glutaraldehyde-treated canine erythrocytes. Am J Vet Res 1991;52:1630-5
  • Matherne CM, Satterfield WC, Gasparini A, Clinical efficacy and toxicity of doxorubicin encapsulated in glutaraldehyde-treated erythrocytes administered to dogs with lymphosarcoma. Am J Vet Res 1994;55:847-53
  • Skorokhod OA, Garmaeva T, Vitvitsky VM, Pharmacokinetics of erythrocyte-bound daunorubicin in patients with acute leukemia. Med Sci Monit 2004;10:PI55-64
  • Skorokhod O, Kulikova EV, Galkina NM, Doxorubicin pharmacokinetics in lymphoma patients treated with doxorubicin-loaded eythrocytes. Haematologica 2007;92:570-1
  • Desilets J, Lejeune A, Mercer J, Gicquaud C. Nanoerythrosomes, a new derivative of erythrocyte ghost: IV. Fate of reinjected nanoerythrosomes. Anticancer Res 2001;21:1741-7
  • Lejeune A, Moorjani M, Gicquaud C, Nanoerythrosome, a new derivative of erythrocyte ghost: preparation and antineoplastic potential as drug carrier for daunorubicin. Anticancer Res 1994;14:915-9
  • Moorjani M, Lejeune A, Gicquaud C, Nanoerythrosomes, a new derivative of erythrocyte ghost II: identification of the mechanism of action. Anticancer Res 1996;16:2831-6
  • Lejeune A, Poyet P, Gaudreault RC, Gicquaud C. Nanoerythrosomes, a new derivative of erythrocyte ghost: III. Is phagocytosis involved in the mechanism of action? Anticancer Res 1997;17:3599-603
  • Magnani M, Fazi A, Mangani F, Methanol detoxification by enzyme-loaded erythrocytes. Biotechnol Appl Biochem 1993;18(Pt 3):217-226
  • Fazi A, Mancini U, Piatti E, Human red blood cells as bioreactors for the inactivation of harmful xenobiotics. Biotechnol Appl Biochem 1991;14:60-8
  • Ihler G, Lantzy A, Purpura J, Glew RH. Enzymatic degradation of uric acid by uricase-loaded human erythrocytes. J Clin Invest 1975;56:595-602
  • Way JL, Leung P, Ray L, Sander C. Erythrocyte encapsulated thiosulfate sulfurtransferase. Bibl Haematol 1985;51:75-81
  • Leung P, Ray LE, Sander C, Encapsulation of thiosulfate: cyanide sulfurtransferase by mouse erythrocytes. Toxicol Appl Pharmacol 1986;83:101-7
  • Petrikovics I, Pei L, McGuinn WD, Encapsulation of rhodanese and organic thiosulfonates by mouse erythrocytes. Fundam Appl Toxicol 1994;23:70-5
  • McGuinn WD, Cannon EP, Chui CT, The encapsulation of squid diisopropylphosphorofluoridate- hydrolyzing enzyme within mouse erythrocytes. Fundam Appl Toxicol 1993;21:38-43
  • Pei L, Omburo G, McGuinn WD, Encapsulation of phosphotriesterase within murine erythrocytes. Toxicol Appl Pharmacol 1994;124:296-301
  • Pei L, Petrikovics I, Way JL. Antagonism of the lethal effects of paraoxon by carrier erythrocytes containing phosphotriesterase. Fundam Appl Toxicol 1995;28:209-14
  • Sanz S, Pinilla M, Garin M, The influence of enzyme concentration on the encapsulation of glutamate dehydrogenase and alcohol dehydrogenase in red blood cells. Biotechnol Appl Biochem 1995;22(Pt 2):223-231
  • Lizano C, Sanz S, Luque J, Pinilla M. In vitro study of alcohol dehydrogenase and acetaldehyde dehydrogenase encapsulated into human erythrocytes by an electroporation procedure. Biochim Biophys Acta 1998;1425:328-36
  • Updike SJ, Wakamiya RT, Lightfoot EN Jr. Asparaginase entrapped in red blood cells: action and survival. Science 1976;193:681-3
  • Baysal SH, Uslan AH. Encapsulation of urease and PEG-urease in erythrocyte. Artif Cells Blood Substit Immobil Biotechnol 2000;28:263-71
  • Hamarat Baysal S, Uslan AH. Encapsulation of catalase and PEG-catalase in erythrocyte. Artif Cells Blood Substit Immobil Biotechnol 2001;29:359-66
  • Hamarat Baysal S, Uslan AH. Encapsulation of PEG-urease/PEG-AlaDH enzyme system in erythrocyte. Artif Cells Blood Substit Immobil Biotechnol 2001;29:405-12
  • Leung P, Cannon EP, Petrikovics I, In vivo studies on rhodanese encapsulation in mouse carrier erythrocytes. Toxicol Appl Pharmacol 1991;110:268-74
  • Way JL, Cannon EP, Leung P, Antagonism of the lethal effects of cyanide with resealed erythrocytes containing rhodanese and thiosulfate. Adv Exp Med Biol 1992;326:159-63
  • Cannon EP, Leung P, Hawkins A, Antagonism of cyanide intoxication with murine carrier erythrocytes containing bovine rhodanese and sodium thiosulfate. J Toxicol Environ Health 1994;41:267-74
  • Petrikovics I, Cannon EP, McGuinn WD, Cyanide antagonism with carrier erythrocytes and organic thiosulfonates. Fundam Appl Toxicol 1995;24:86-93
  • Baysal SH, Uslan AH, Pala HH, Tuncoku O. Encapsulation of PEG-urease/PEG-AlaDH within sheep erythrocytes and determination of the system's activity in lowering blood levels of urea in animal models. Artif Cells Blood Substit Immobil Biotechnol 2007;35:391-403
  • Kravtzoff R, Ropars C, Laguerre M, Erythrocytes as carriers for L-asparaginase. Methodological and mouse in-vivo studies. J Pharm Pharmacol 1990;42:473-6
  • Garin MI, Kravtzoff R, Chestier N, Density gradient separation of L-asparaginase-loaded human erythrocytes. Biochem Mol Biol Int 1994;33:807-14
  • Kwon YM, Chung HS, Moon C, L-Asparaginase encapsulated intact erythrocytes for treatment of acute lymphoblastic leukemia (ALL). J Control Release 2009;139:182-9
  • Kosenko EA, Venediktova NI, Kudryavtsev AA, Encapsulation of glutamine synthetase in mouse erythrocytes: a new procedure for ammonia detoxification. Biochem Cell Biol 2008;86:469-76
  • Sanz S, Lizano C, Luque J, Pinilla M. In vitro and in vivo study of glutamate dehydrogenase encapsulated into mouse erythrocytes by a hypotonic dialysis procedure. Life Sci 1999;65:2781-9
  • Lizano C, Perez MT, Pinilla M. Mouse erythrocytes as carriers for coencapsulated alcohol and aldehyde dehydrogenase obtained by electroporation in vivo survival rate in circulation, organ distribution and ethanol degradation. Life Sci 2001;68:2001-16
  • Bax BE, Fairbanks LD, Bain MD, The entrapment of polyethylene glycol-bound adenosine deaminase (Pegademase) in human carrier erythrocytes. Biochem Soc Trans 1996;24:442S
  • Bax BE, Bain MD, Fairbanks LD, A 9-yr evaluation of carrier erythrocyte encapsulated adenosine deaminase (ADA) therapy in a patient with adult-type ADA deficiency. Eur J Haematol 2007;79:338-48
  • Magnani M, Mancini U, Bianchi M, Fazi A. Comparison of uricase-bound and uricase-loaded erythrocytes as bioreactors for uric acid degradation. Adv Exp Med Biol 1992;326:189-94
  • Chambers E, Mitragotri S. Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J Control Release 2004;100:111-9
  • Chambers E, Mitragotri S. Long circulating nanoparticles via adhesion on red blood cells: mechanism and extended circulation. Exp Biol Med (Maywood) 2007;232:958-66
  • Hall SS, Mitragotri S, Daugherty PS. Identification of peptide ligands facilitating nanoparticle attachment to erythrocytes. Biotechnol Prog 2007;23:749-54
  • Smirnov VN, Domogatsky SP, Dolgov VV, Carrier-directed targeting of liposomes and erythrocytes to denuded areas of vessel wall. Proc Natl Acad Sci USA 1986;83:6603-7
  • Muzykantov VR, Smirnov MD, Zaltzman AB, Samokhin GP. Tannin-mediated attachment of avidin provides complement-resistant immunoerythrocytes that can be lysed in the presence of activator of complement. Anal Biochem 1993;208:338-42
  • Muzykantov VR, Sakharov DV, Domogatsky SP, Directed targeting of immunoerythrocytes provides local protection of endothelial cells from damage by hydrogen peroxide. Am J Pathol 1987;128:276-85
  • Chiarantini L, Droleskey R, Magnani M, DeLoach JR. In vitro targeting of erythrocytes to cytotoxic T-cells by coupling of Thy-1.2 monoclonal antibody. Biotechnol Appl Biochem 1992;15:171-84
  • Orr GA. The use of the 2-iminobiotin-avidin interaction for the selective retrieval of labeled plasma membrane components. J Biol Chem 1981;256:761-6
  • Godfrey W, Doe B, Wallace EF, Affinity targeting of membrane vesicles to cell surfaces. Exp Cell Res 1981;135:137-45
  • Roffman E, Meromsky L, Ben-Hur H, Selective labeling of functional groups on membrane proteins or glycoproteins using reactive biotin derivatives and 125I-streptavidin. Biochem Biophys Res Commun 1986;136:80-5
  • Bayer EA, Safars M, Wilchek M. Selective labeling of sulfhydryls and disulfides on blot transfers using avidin-biotin technology: studies on purified proteins and erythrocyte membranes. Anal Biochem 1987;161:262-71
  • Wilchek M, Ben-Hur H, Bayer EA. p-Diazobenzoyl biocytin–a new biotinylating reagent for the labeling of tyrosines and histidines in proteins. Biochem Biophys Res Commun 1986;138:872-9
  • Samokhin GP, Smirnov MD, Muzykantov VR, Red blood cell targeting to collagen-coated surfaces. FEBS Lett 1983;154:257-61
  • Muzykantov VR, Smirnov MD, Klibanov AL. Avidin attachment to red blood cells via a phospholipid derivative of biotin provides complement-resistant immunoerythrocytes. J Immunol Methods 1993;158:183-90
  • Smirnov MD, Samokhin GP, Muzykantov VR, Type I and III collagens as a possible target for drug delivery to the injured sites of vascular bed. Biochem Biophys Res Commun 1983;116:99-105
  • Muzykantov VR, Sakharov DV, Smirnov MD, Targeting of enzyme immobilized on erythrocyte membrane to collagen-coated surface. FEBS Lett 1985;182:62-6
  • Magnani M, Chiarantini L, Mancini U. Preparation and characterization of biotinylated red blood cells. Biotechnol Appl Biochem 1994;20(Pt 3):335-345
  • Muzykantov VR, Taylor RP. Attachment of biotinylated antibody to red blood cells: antigen-binding capacity of immunoerythrocytes and their susceptibility to lysis by complement. Anal Biochem 1994;223:142-8
  • Cowley H, Wojda U, Cipolone KM, Biotinylation modifies red cell antigens. Transfusion 1999;39:163-8
  • Suzuki T, Dale GL. Biotinylated erythrocytes: in vivo survival and in vitro recovery. Blood 1987;70:791-5
  • Suzuki T, Dale GL. Senescent erythrocytes: isolation of in vivo aged cells and their biochemical characteristics. Proc Natl Acad Sci USA 1988;85:1647-51
  • Mock DM, Lankford GL, Widness JA, Measurement of red cell survival using biotin-labeled red cells: validation against 51Cr-labeled red cells. Transfusion 1999;39:156-62
  • Mock DM, Lankford GL, Widness JA, Measurement of circulating red cell volume using biotin-labeled red cells: validation against 51Cr-labeled red cells. Transfusion 1999;39:149-55
  • Waugh RE, Narla M, Jackson CW, Rheologic properties of senescent erythrocytes: loss of surface area and volume with red blood cell age. Blood 1992;79:1351-8
  • Hoffmann-Fezer G, Mysliwietz J, Mortlbauer W, Biotin labeling as an alternative nonradioactive approach to determination of red cell survival. Ann Hematol 1993;67:81-7
  • Franco RS, Lohmann J, Silberstein EB, Time-dependent changes in the density and hemoglobin F content of biotin-labeled sickle cells. J Clin Invest 1998;101:2730-40
  • Cavill I, Trevett D, Fisher J, Hoy T. The measurement of the total volume of red cells in man: a non-radioactive approach using biotin. Br J Haematol 1988;70:491-3
  • Hoffmann-Fezer G, Maschke H, Zeitler HJ, Direct in vivo biotinylation of erythrocytes as an assay for red cell survival studies. Ann Hematol 1991;63:214-7
  • Cordle DG, Strauss RG, Lankford G, Mock DM. Antibodies provoked by the transfusion of biotin-labeled red cells. Transfusion 1999;39:1065-9
  • Muzykantov VR, Smirnov MD, Klibanov AL. Avidin attachment to biotinylated amino groups of the erythrocyte membrane eliminates homologous restriction of both classical and alternative pathways of the complement. FEBS Lett 1993;318:108-12
  • Muzykantov VR, Seregina N, Smirnov MD. Fast lysis by complement and uptake by liver of avidin-carrying biotinylated erythrocytes. Int J Artif Organs 1992;15:622-7
  • Muzykantov VR, Smirnov MD, Samokhin GP. Streptavidin-induced lysis of homologous biotinylated erythrocytes. Evidence against the key role of the avidin charge in complement activation via the alternative pathway. FEBS Lett 1991;280:112-4
  • Muzykantov VR, Smirnov MD, Samokhin GP. Avidin-induced lysis of biotinylated erythrocytes by homologous complement via the alternative pathway depends on avidin's ability of multipoint binding with biotinylated membrane. Biochim Biophys Acta 1992;1107:119-25
  • Muzykantov VR, Smirnov MD, Samokhin GP. Avidin acylation prevents the complement-dependent lysis of avidin-carrying erythrocytes. Biochem J 1991;273(Pt 2):393-7
  • Muzykantov VR, Murciano JC. Attachment of antibody to biotinylated red blood cells: immuno-red blood cells display high affinity to immobilized antigen and normal biodistribution in rats. Biotechnol Appl Biochem 1996;24(Pt 1):41-45
  • Muzykantov VR, Murciano JC, Taylor RP, Regulation of the complement-mediated elimination of red blood cells modified with biotin and streptavidin. Anal Biochem 1996;241:109-19
  • Chiarantini L, Matteucci D, Pistello M, AIDS vaccination studies using an ex vivo feline immunodeficiency virus model: homologous erythrocytes as a delivery system for preferential immunization with putative protective antigens. Clin Diagn Lab Immunol 1998;5:235-41
  • Kirch HJ, Moyes RB, Chiarantini L, DeLoach JR. Effect of targeted erythrocytes coated with recombinant human interleukin 2 on T-lymphocyte proliferation in vitro. Biotechnol Appl Biochem 1994;19(Pt 3):331-340
  • Chiarantini L, Argnani R, Zucchini S, Red blood cells as delivery system for recombinant HSV-1 glycoprotein B: immunogenicity and protection in mice. Vaccine 1997;15:276-80
  • Chiarantini L, Droleskey R, Magnani M, Targeting of erythrocytes to cytotoxic T-cells. Adv Exp Med Biol 1992;326:257-67
  • Scott MD, Murad KL, Koumpouras F, Chemical camouflage of antigenic determinants: stealth erythrocytes. Proc Natl Acad Sci USA 1997;94:7566-71
  • Scott MD, Bradley AJ, Murad KL. Camouflaged blood cells: low-technology bioengineering for transfusion medicine? Transfus Med Rev 2000;14:53-63
  • Garratty G. Stealth erythrocytes–a possible transfusion product for the new century? Vox Sang 2000;78(Suppl 2):143-147
  • Armstrong JK, Meiselman HJ, Fisher TC. Covalent binding of poly(ethylene glycol) (PEG) to the surface of red blood cells inhibits aggregation and reduces low shear blood viscosity. Am J Hematol 1997;56:26-8
  • Murad KL, Mahany KL, Brugnara C, Structural and functional consequences of antigenic modulation of red blood cells with methoxypoly(ethylene glycol). Blood 1999;93:2121-7
  • Bradley AJ, Test ST, Murad KL, Interactions of IgM ABO antibodies and complement with methoxy-PEG-modified human RBCs. Transfusion 2001;41:1225-33
  • Nacharaju P, Boctor FN, Manjula BN, Acharya SA. Surface decoration of red blood cells with maleimidophenyl-polyethylene glycol facilitated by thiolation with iminothiolane: an approach to mask A, B, and D antigens to generate universal red blood cells. Transfusion 2005;45:374-83
  • Tan Y, Qiu Y, Xu H, Decreased immunorejection in unmatched blood transfusions by attachment of methoxypolyethylene glycol on human red blood cells and the effect on D antigen. Transfusion 2006;46:2122-7
  • Nacharaju P, Manjula BN, Acharya SA. Thiolation mediated pegylation platform to generate functional universal red blood cells. Artif Cells Blood Substit Immobil Biotechnol 2007;35:107-18
  • Gundersen SI, Kennedy MS, Palmer AF. Immune recognition of exposed xenoantigens on the surface of PEGylated bovine red blood cells. Biotechnol Bioeng 2008;101:337-44
  • Sabolovic D, Sestier C, Perrotin P, Covalent binding of polyethylene glycol to the surface of red blood cells as detected and followed up by cell electrophoresis and rheological methods. Electrophoresis 2000;21:301-6
  • Chung HA, Kato K, Itoh C, Casual cell surface remodeling using biocompatible lipid-poly(ethylene glycol)(n): development of stealth cells and monitoring of cell membrane behavior in serum-supplemented conditions. J Biomed Mater Res A 2004;70:179-85
  • Leach JK, Hinman A, O'Rear EA. Investigation of deformability, viscosity, and aggregation of mPEG-modified erythrocytes. Biomed Sci Instrum 2002;38:333-8
  • Hashemi-Najafabadi S, Vasheghani-Farahani E, Shojaosadati SA, A method to optimize PEG-coating of red blood cells. Bioconjug Chem 2006;17:1288-93
  • Bradley AJ, Murad KL, Regan KL, Scott MD. Biophysical consequences of linker chemistry and polymer size on stealth erythrocytes: size does matter. Biochim Biophys Acta 2002;1561:147-58
  • Neu B, Armstrong JK, Fisher TC, Electrophoretic mobility of human red blood cells coated with poly(ethylene glycol). Biorheology 2001;38:389-403
  • Neu B, Armstrong JK, Fisher TC, Meiselman HJ. Surface characterization of poly(ethylene glycol) coated human red blood cells by particle electrophoresis. Biorheology 2003;40:477-87
  • Armstrong JK, Meiselman HJ, Wenby RB, Fisher TC. Modulation of red blood cell aggregation and blood viscosity by the covalent attachment of Pluronic copolymers. Biorheology 2001;38:239-47
  • Bradley AJ, Scott MD. Immune complex binding by immunocamouflaged [poly(ethylene glycol)-grafted] erythrocytes. Am J Hematol 2007;82:970-5
  • Bradley AJ, Scott MD. Separation and purification of methoxypoly(ethylene glycol) grafted red blood cells via two-phase partitioning. J Chromatogr B Analyt Technol Biomed Life Sci 2004;807:163-8
  • Blackall DP, Armstrong JK, Meiselman HJ, Fisher TC. Polyethylene glycol-coated red blood cells fail to bind glycophorin A-specific antibodies and are impervious to invasion by the Plasmodium falciparum malaria parasite. Blood 2001;97:551-6
  • Jeong ST, Byun SM. Decreased agglutinability of methoxy-polyethylene glycol attached red blood cells: significance as a blood substitute. Artif Cells Blood Substit Immobil Biotechnol 1996;24:503-11
  • Chen PC, Huang W, Stassinopoulos A, Cheung AT. Effects of pegylated hamster red blood cells on microcirculation. Artif Cells Blood Substit Immobil Biotechnol 2008;36:295-309
  • Jovtchev S, Stoeff S, Arnold K, Zschornig O. Studies on the aggregation behaviour of pegylated human red blood cells with the Zeta sedimentation technique. Clin Hemorheol Microcirc 2008;39:229-33
  • Garratty G. Modulating the red cell membrane to produce universal/stealth donor red cells suitable for transfusion. Vox Sang 2008;94:87-95
  • Garratty G. Progress in modulating the RBC membrane to produce transfusable universal/stealth donor RBCs. Transfus Med Rev 2004;18:245-56
  • Hess C, Schifferli JA. Immune adherence revisited: novel players in an old game. News Physiol Sci 2003;18:104-8
  • Taylor RP, Sutherland WM, Reist CJ, Use of heteropolymeric monoclonal antibodies to attach antigens to the C3b receptor of human erythrocytes: a potential therapeutic treatment. Proc Natl Acad Sci USA 1991;88:3305-9
  • Tosi PF, Schwartz D, Sharma U, Human erythrocytes bearing electroinserted CD4 neutralize infection in vitro by primary isolates of human immunodeficiency virus type 1. Blood 1996;87:4839-44
  • Lindorfer MA, Hahn CS, Foley PL, Taylor RP. Heteropolymer-mediated clearance of immune complexes via erythrocyte CR1: mechanisms and applications. Immunol Rev 2001;183:10-24
  • Fearon DT. Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B lymphocyte, and monocyte. J Exp Med 1980;152:20-30
  • Nickells M, Hauhart R, Krych M, Mapping epitopes for 20 monoclonal antibodies to CR1. Clin Exp Immunol 1998;112:27-33
  • Krych-Goldberg M, Atkinson JP. Structure-function relationships of complement receptor type 1. Immunol Rev 2001;180:112-22
  • Kuhn SE, Nardin A, Klebba PE, Taylor RP. Escherichia coli bound to the primate erythrocyte complement receptor via bispecific monoclonal antibodies are transferred to and phagocytosed by human monocytes in an in vitro model. J Immunol 1998;160:5088-97
  • Nardin A, Sutherland WM, Hevey M, Quantitative studies of heteropolymer-mediated binding of inactivated Marburg virus to the complement receptor on primate erythrocytes. J Immunol Methods 1998;211:21-31
  • Taylor RP, Reist CJ, Sutherland WM, In vivo binding and clearance of circulating antigen by bispecific heteropolymer-mediated binding to primate erythrocyte complement receptor. J Immunol 1992;148:2462-8
  • Repik A, Pincus SE, Ghiran I, A transgenic mouse model for studying the clearance of blood-borne pathogens via human complement receptor 1 (CR1). Clin Exp Immunol 2005;140:230-40
  • Reinagel ML, Gezen M, Ferguson PJ, The primate erythrocyte complement receptor (CR1) as a privileged site: binding of immunoglobulin G to erythrocyte CR1 does not target erythrocytes for phagocytosis. Blood 1997;89:1068-77
  • Gyimesi E, Bankovich AJ, Schuman TA, Staphylococcus aureus bound to complement receptor 1 on human erythrocytes by bispecific monoclonal antibodies is phagocytosed by acceptor macrophages. Immunol Lett 2004;95:185-92
  • Nardin A, Lindorfer MA, Taylor RP. How are immune complexes bound to the primate erythrocyte complement receptor transferred to acceptor phagocytic cells? Mol Immunol 1999;36:827-35
  • Taylor RP, Ferguson PJ, Martin EN, Immune complexes bound to the primate erythrocyte complement receptor (CR1) via anti-CR1 mAbs are cleared simultaneously with loss of CR1 in a concerted reaction in a rhesus monkey model. Clin Immunol Immunopathol 1997;82:49-59
  • Craig ML, Bankovich AJ, Taylor RP. Visualization of the transfer reaction: tracking immune complexes from erythrocyte complement receptor 1 to macrophages. Clin Immunol 2002;105:36-47
  • Craig ML, Waitumbi JN, Taylor RP. Processing of C3b-opsonized immune complexes bound to non-complement receptor 1 (CR1) sites on red cells: phagocytosis, transfer, and associations with CR1. J Immunol 2005;174:3059-66
  • Reist CJ, Liang HY, Denny D, Cross-linked bispecific monoclonal antibody heteropolymers facilitate the clearance of human IgM from the circulation of squirrel monkeys. Eur J Immunol 1994;24:2018-25
  • Ferguson PJ, Martin EN, Greene KL, Antigen-based heteropolymers facilitate, via primate erythrocyte complement receptor type 1, rapid erythrocyte binding of an autoantibody and its clearance from the circulation in rhesus monkeys. J Immunol 1995;155:339-47
  • Lindorfer MA, Nardin A, Foley PL, Targeting of Pseudomonas aeruginosa in the bloodstream with bispecific monoclonal antibodies. J Immunol 2001;167:2240-9
  • Taylor RP, Sutherland WM, Martin EN, Bispecific monoclonal antibody complexes bound to primate erythrocyte complement receptor 1 facilitate virus clearance in a monkey model. J Immunol 1997;158:842-50
  • Taylor RP, Martin EN, Reinagel ML, Bispecific monoclonal antibody complexes facilitate erythrocyte binding and liver clearance of a prototype particulate pathogen in a monkey model. J Immunol 1997;159:4035-44
  • Hahn CS, French OG, Foley P, Bispecific monoclonal antibodies mediate binding of dengue virus to erythrocytes in a monkey model of passive viremia. J Immunol 2001;166:1057-65
  • Asher DR, Cerny AM, Finberg RW. The erythrocyte viral trap: transgenic expression of viral receptor on erythrocytes attenuates coxsackievirus B infection. Proc Natl Acad Sci USA 2005;102:12897-902
  • Craig ML, Reinagel ML, Martin EN, Infusion of bispecific monoclonal antibody complexes into monkeys provides immunologic protection against later challenge with a model pathogen. Clin Immunol 1999;92:170-80
  • Ferguson PJ, Reist CJ, Martin EN, Antigen-based heteropolymers. A potential therapy for binding and clearing autoantibodies via erythrocyte CR1. Arthritis Rheum 1995;38:190-200
  • Pincus SE, Lukacher N, Mohamed N, Evaluation of antigen-based heteropolymer for treatment of systemic lupus erythematosus in a nonhuman primate model. Clin Immunol 2002;105:141-54
  • Buster BL, Mattes KA, Scheld WM. Monoclonal antibody-mediated, complement-independent binding of human tumor necrosis factor-alpha to primate erythrocytes via complement receptor 1. J Infect Dis 1997;176:1041-6
  • Medof ME, Nagarajan S, Tykocinski ML. Cell-surface engineering with GPI-anchored proteins. FASEB J 1996;10:574-86
  • Civenni G, Test ST, Brodbeck U, Butikofer P. In vitro incorporation of GPI-anchored proteins into human erythrocytes and their fate in the membrane. Blood 1998;91:1784-92
  • Hill A, Ridley SH, Esser D, Protection of erythrocytes from human complement-mediated lysis by membrane-targeted recombinant soluble CD59: a new approach to PNH therapy. Blood 2006;107:2131-7
  • Chen R, Walter EI, Parker G, Mammalian glycophosphatidylinositol anchor transfer to proteins and posttransfer deacylation. Proc Natl Acad Sci USA 1998;95:9512-7
  • Suzuki K, Okumura Y. GPI-linked proteins do not transfer spontaneously from erythrocytes to liposomes. New aspects of reorganization of the cell membrane. Biochemistry 2000;39:9477-85
  • Anderson SM, Yu G, Giattina M, Miller JL. Intercellular transfer of a glycosylphosphatidylinositol (GPI)-linked protein: release and uptake of CD4-GPI from recombinant adeno-associated virus-transduced HeLa cells. Proc Natl Acad Sci USA 1996;93:5894-8
  • Kooyman DL, Byrne GW, McClellan S, In vivo transfer of GPI-linked complement restriction factors from erythrocytes to the endothelium. Science 1995;269:89-92
  • McCurry KR, Kooyman DL, Alvarado CG, Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury. Nat Med 1995;1:423-7
  • Runge MS, Quertermous T, Zavodny PJ, A recombinant chimeric plasminogen activator with high affinity for fibrin has increased thrombolytic potency in vitro and in vivo. Proc Natl Acad Sci USA 1991;88:10337-41
  • Holvoet P, Laroche Y, Stassen JM, Pharmacokinetic and thrombolytic properties of chimeric plasminogen activators consisting of a single-chain Fv fragment of a fibrin-specific antibody fused to single-chain urokinase. Blood 1993;81:696-703
  • Ding BS, Gottstein C, Grunow A, Endothelial targeting of a recombinant construct fusing a PECAM-1 single-chain variable antibody fragment (scFv) with prourokinase facilitates prophylactic thrombolysis in the pulmonary vasculature. Blood 2005;106:4191-8
  • Oudin S, Libyh MT, Goossens D, A soluble recombinant multimeric anti-Rh(D) single-chain Fv/CR1 molecule restores the immune complex binding ability of CR1-deficient erythrocytes. J Immunol 2000;164:1505-13
  • Kina T, Ikuta K, Takayama E, The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage. Br J Haematol 2000;109:280-7
  • Spitzer D, Unsinger J, Bessler M, Atkinson JP. ScFv-mediated in vivo targeting of DAF to erythrocytes inhibits lysis by complement. Mol Immunol 2004;40:911-9
  • Spitzer D, Unsinger J, Mao D, In vivo correction of complement regulatory protein deficiency with an inhibitor targeting the red blood cell membrane. J Immunol 2005;175:7763-70
  • Spitzer D, Wu X, Ma X, Cutting edge: treatment of complement regulatory protein deficiency by retroviral in vivo gene therapy. J Immunol 2006;177:4953-6
  • Muller M, Buchi L, Woodtli K, Preparation and characterization of ‘heparinocytes’: erythrocytes with covalently bound low molecular weight heparin. FEBS Lett 2000;468:115-9
  • Medof ME, Kinoshita T, Nussenzweig V. Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med 1984;160:1558-78
  • Hoffman JF. On red blood cells, hemolysis and resealed ghosts. Adv Exp Med Biol 1992;326:1-15
  • Muzykantov VR, Murciano JC. Streptavidin-mediated coupling of therapeutic proteins to carrier erythrocytes. In: Magnani M, editor, Erythrocyte engineering for drug delivery and targeting. Eurekah.com, Boston-London; 2001. p. 37-67
  • Jackson MR, Clagett GP. Antithrombotic therapy in peripheral arterial occlusive disease. Chest 1998;114:666S-82S
  • Bradberry JC. Peripheral arterial disease: pathophysiology, risk factors, and role of antithrombotic therapy. J Am Pharm Assoc (Wash DC) 2004;44:S37-44; quiz S44-35
  • Albers GW. Expanding the window for thrombolytic therapy in acute stroke. The potential role of acute MRI for patient selection. Stroke 1999;30:2230-7
  • Kang DW, Latour LL, Chalela JA, Early and late recurrence of ischemic lesion on MRI: evidence for a prolonged stroke-prone state? Neurology 2004;63:2261-5
  • Wartenberg KE, Patsalides A, Yepes MS. Is magnetic resonance spectroscopy superior to conventional diagnostic tools in hypoxic-ischemic encephalopathy? J Neuroimaging 2004;14:180-6
  • Zivin JA. Thrombolytic stroke therapy: past, present, and future. Neurology 1999;53:14-9
  • Imperiale TF, Speroff T. A meta-analysis of methods to prevent venous thromboembolism following total hip replacement. JAMA 1994;271:1780-5
  • Zlokovic BV. Antithrombotic, procoagulant, and fibrinolytic mechanisms in cerebral circulation: implications for brain injury and protection. Neurosurg Focus 1997;2:e5
  • Topol EJ, Califf RM, Weisman HF, Randomised trial of coronary intervention with antibody against platelet IIb/IIIa integrin for reduction of clinical restenosis: results at six months. The EPIC Investigators. Lancet 1994;343:881-6
  • Konstantopoulos K, Mousa SA. Antiplatelet therapies: platelet GPIIb/IIIa antagonists and beyond. Curr Opin Investig Drugs 2001;2:1086-92
  • Topol EJ, Morris DC, Smalling RW, A multicenter, randomized, placebo-controlled trial of a new form of intravenous recombinant tissue-type plasminogen activator (activase) in acute myocardial infarction. J Am Coll Cardiol 1987;9:1205-13
  • Narita M, Bu G, Herz J, Schwartz AL. Two receptor systems are involved in the plasma clearance of tissue-type plasminogen activator (t-PA) in vivo. J Clin Invest 1995;96:1164-8
  • Reilly CF, Fujita T, Mayer EJ, Siegfried ME. Both circulating and clot-bound plasminogen activator inhibitor-1 inhibit endogenous fibrinolysis in the rat. Arterioscler Thromb 1991;11:1276-86
  • Rijken DC, Barrett-Bergshoeff MM, Jie AF, Clot penetration and fibrin binding of amediplase,a chimeric plasminogen activator (K2 tu-PA). Thromb Haemost 2004;91:52-60
  • Wang YF, Tsirka SE, Strickland S, Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat Med 1998;4:228-31
  • Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 2003;4:399-415
  • Collen D, Van Hoef B, Schlott B, Mechanisms of activation of mammalian plasma fibrinolytic systems with streptokinase and with recombinant staphylokinase. Eur J Biochem 1993;216:307-14
  • Holvoet P, Dewerchin M, Stassen JM, Thrombolytic profiles of clot-targeted plasminogen activators. Parameters determining potency and initial and maximal rates. Circulation 1993;87:1007-16
  • Muzykantov VR, Barnathan ES, Atochina EN, Targeting of antibody-conjugated plasminogen activators to the pulmonary vasculature. J Pharmacol Exp Ther 1996;279:1026-34
  • Runge MS, Harker LA, Bode C, Enhanced thrombolytic and antithrombotic potency of a fibrin-targeted plasminogen activator in baboons. Circulation 1996;94:1412-22
  • Benedict CR, Refino CJ, Keyt BA, New variant of human tissue plasminogen activator (TPA) with enhanced efficacy and lower incidence of bleeding compared with recombinant human TPA. Circulation 1995;92:3032-40
  • Chapman DF, Lyden P, Lapchak PA, Comparison of TNK with wild-type tissue plasminogen activator in a rabbit embolic stroke model. Stroke 2001;32:748-52
  • Marder VJ, Stewart D. Towards safer thrombolytic therapy. Semin Hematol 2002;39:206-16
  • Thomas GR, Thibodeaux H, Errett CJ, A long-half-life and fibrin-specific form of tissue plasminogen activator in rabbit models of embolic stroke and peripheral bleeding. Stroke 1994;25:2072-2078; discussion 2078-2079
  • Zhang RL, Zhang L, Jiang Q, Postischemic intracarotid treatment with TNK-tPA reduces infarct volume and improves neurological deficits in embolic stroke in the unanesthetized rat. Brain Res 2000;878:64-71
  • Simon SI, Goldsmith HL. Leukocyte adhesion dynamics in shear flow. Ann Biomed Eng 2002;30:315-32
  • Graham DA, Huang TC, Keyt BA, Alevriadou BR. Real-time measurement of lysis of mural platelet deposits by fibrinolytic agents under arterial flow. Ann Biomed Eng 1998;26:712-24
  • Konstantopoulos K, Kukreti S, McIntire LV. Biomechanics of cell interactions in shear fields. Adv Drug Deliv Rev 1998;33:141-64
  • Murciano JC, Medinilla S, Eslin D, Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nat Biotechnol 2003;21:891-6
  • Zaitsev S, Danielyan K, Murciano JC, Human complement receptor type 1-directed loading of tissue plasminogen activator on circulating erythrocytes for prophylactic fibrinolysis. Blood 2006;108:1895-902
  • Ganguly K, Murciano JC, Westrick R, The glycocalyx protects erythrocyte-bound tissue-type plasminogen activator from enzymatic inhibition. J Pharmacol Exp Ther 2007;321:158-64
  • Ganguly K, Krasik T, Medinilla S, Blood clearance and activity of erythrocyte-coupled fibrinolytics. J Pharmacol Exp Ther 2005;312:1106-13
  • Ganguly K, Goel MS, Krasik T, Fibrin affinity of erythrocyte-coupled tPA resists hemodynamic forces and enhances fibrinolysis in vivo. J Pharmacol Exp Ther 2006;216:1130-6
  • Danielyan K, Ganguly K, Ding BS, Cerebrovascular thromboprophylaxis in mice by erythrocyte-coupled tissue-type plasminogen activator. Circulation 2008;118:1442-9
  • Armstead WM, Ganguly K, Kiessling JW, Red blood cells-coupled tPA prevents impairment of cerebral vasodilatory responses and tissue injury in pediatric cerebral hypoxia/ischemia through inhibition of ERK MAPK activation. J Cereb Blood Flow Metab 2009;29:1463-74
  • Murciano JC, Higazi AA, Cines DB, Muzykantov VR. Soluble urokinase receptor conjugated to carrier red blood cells binds latent pro-urokinase and alters its functional profile. J Control Release 2009;139:190-6
  • Cornacoff JB, Hebert LA, Smead WL, Primate erythrocyte-immune complex-clearing mechanism. J Clin Invest 1983;71:236-47
  • Whipple EC, Shanahan RS, Ditto AH, Analyses of the in vivo trafficking of stoichiometric doses of an anti-complement receptor 1/2 monoclonal antibody infused intravenously in mice. J Immunol 2004;173:2297-306
  • Reid ME. Some concepts relating to the molecular genetic basis of certain MNS blood group antigens. Transfus Med 1994;4:99-111
  • Chasis JA, Mohandas N. Red blood cell glycophorins. Blood 1992;80:1869-79
  • Zaitsev S, Spitzer D, Murciano JC, Targeting of a mutant plasminogen activator to circulating red blood cells for prophylactic fibrinolysis. J Pharmacol Exp Therap 2009. In press

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.