702
Views
115
CrossRef citations to date
0
Altmetric
Reviews

Two-photon polymerization of microneedles for transdermal drug delivery

, BS, , PhD, , PhD, , PhD & , MD PhD
Pages 513-533 | Published online: 07 Mar 2010

Bibliography

  • Khafagy ES, Morishita M, Onuki Y, Takayama K. Current challenges in non-invasive insulin delivery systems: a comparative review. Adv Drug Deliv Rev 2007;59:1521-46
  • Brown MB, Martin GP, Jones SA, Akomeah FK. Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv 2006;13:175-87
  • Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 2004;3:115-24
  • Chabri F, Bouris K, Jones T, Microfabricated silicon microneedles for nonviral cutaneous gene delivery. Br J Dermatol 2004;150:869-77
  • Mukerjee EV, Collins SD, Isseroff RR, Smith RL. Microneedle array for transdermal biological fluid extraction and in situ analysis. Sensor Actuat A 2004;114:267-75
  • Kaushik S, Hord AH, Denson DD, Lack of pain associated with microfabricated microneedles. Anesth Analg 2001;92:502-4
  • Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol 2008;26:1261-8
  • Gowthamarajan K, Kulkarni GT. Oral insulin – fact or fiction?: possibilities of achieving oral delivery for insulin. Resonance 2003;8:38-46
  • Nordquist L, Roxhed N, Griss P, Stemme G. Novel microneedle patches for active insulin delivery are efficient in maintaining glycaemic control: an initial comparison with subcutaneous administration. Pharm Res 2007;24:1381-8
  • Doraiswamy A, Jin C, Narayan RJ, Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices. Acta Biomater 2006;2:267-75
  • Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 2004;56:581-7
  • Henry S, McAllister DV, Allen MG, Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci 1998;87(8):922-25
  • Gill HS, Denson DD, Burris BA, Prausnitz MR. Effect of microneedle design on pain in human volunteers. Clin J Pain 2008;24:585-94
  • Khafagy ES, Morishita M, Onuki Y, Current challenges in non-invasive insulin delivery systems: a comparative review. Adv Drug Deliv Rev 2007;59:1521-46
  • Martano W, Davis SP, Holiday NR, Transdermal delivery of insulin using microneedles in vivo. Pharm Res 2004;21:947-52
  • Lin WQ, Cormier M, Samiee A, Transdermal delivery of antisense oligonucleotides with microprojection patch (Macroflux (R)) technology. Pharm Res 2001;18:1789-93
  • Birchall J, Coulman S, Pearton M, Cutaneous DNA delivery and gene expression in ex vivo human skin explants via wet-etch microfabricated microneedles. J Drug Target 2005;13:415-21
  • Coulman SA, Anstey A, Gateley C, Microneedle mediated delivery of nanoparticles into human skin. Int J Pharm 2009;366:190-200
  • Cormier M, Johnson B, Ameri M, Transdermal delivery of desmopressin using a coated microneedle array patch system. J Control Release 2004;97:503-11
  • Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release 2007;117:227-37
  • Schuetz YB, Naik A, Guy RH, Kalia YN. Emerging strategies for the transdermal delivery of peptide and protein drugs. Expert Opin Drug Deliv 2005;2:533-48
  • Kobayashi K, Suzuki H. A sampling mechanism employing the phase transition of a gel and its application to a micro analysis system imitating a mosquito. Sensor Actuat B 2001;80:1-8
  • Suzuki H, Tokuda T, Kobayashi K. A disposable ‘intelligent mosquito’ with a reversible sampling mechanism using the volume-phase transition of a gel. Sensor Actuat B 2002;83:53-9
  • Wang PM, Cornwell M, Hill J, Prausnitz MR. Precise microinjection into skin using hollow microneedles. J Invest Dermatol 2006;126:1080-7
  • Zahn JD, Deshmukh A, Pisano AP, Liepmann D. Continuous on-chip micropumping for microneedle enhanced drug delivery. Biomed Microdev 2004;6:183-90
  • Belshe RB, Newman FK, Cannon J, Serum antibody responses after intradermal vaccination against influenza. N Engl J Med 2004;351:2286-94
  • Kenney RT, Frech SA, Muenz LR, Dose sparing with intradermal injection of influenza vaccine. N Engl J Med 2004;351:2295-301
  • Kim YC, Quan FS, Yoo DG, Enhanced memory responses to seasonal H1N1 influenza vaccination of the skin with the use of vaccine-coated microneedles. J Infect Dis 2010;201:190-8
  • Alarcon JB, Hartley AW, Harvey NG, Preclinical evaluation of microneedle technology for intradermal delivery of influenza vaccines. Clin Vaccine Immunol 2007;14:375-81
  • Zhu QY, Zarnitsyn VG, Ye L, Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge. Proc Natl Acad Sci USA 2009;106:7968-73
  • Ding Z, Verbaan FJ, Bivas-Benita M, Microneedle arrays for the transcutaneous immunization of diphtheria and influenza in BALB/c mice. J Control Release 2009;136:71-8
  • Van Damme P, Oosterhuis-Kafeja F, Van der Wielen M, Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine 2009;27:454-9
  • Haq MI, Smith E, John DN, Clinical administration of microneedles: skin puncture, pain and sensation. Biomed Dev 2009;11:35-47
  • Bal SM, Caussin J, Pavel S, In vivo assessment of safety of microneedle arrays in human skin. Eur J Pharm Sci 2008;35:193-202
  • Sivamani RK, Stoeber B, Wu GC, Clinical microneedle injection of methyl nicotinate: stratum corneum penetration. Skin Res Technol 2005;11:152-6
  • Wagner AR, Cooper SM. Article of manufacture for intracutaneous injections. US2893392; 1959
  • Reaume SE. The use of hydrofluoric acid in making glass microneedles. Science 1952;116:641
  • Martanto W, Moore JS, Kashlan O, Microinfusion using hollow microneedles. Pharm Res 2006;23:104-13
  • Shikida M, Ando M, Ishihara Y, Non-photolithographic pattern transfer for fabricating pen-shaped microneedle structures. J Micromech Microeng 2004;14:1462-7
  • Shikida M, Hasada T, Sato K. Fabrication of a hollow needle structure by dicing, wet etching and metal deposition. J Micromech Microeng 2006;16:2230-9
  • Wilke N, Mulcahy A, Ye SR, Morrissey A. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectron J 2005;36:650-6
  • Griss P, Stemme G. Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfer. J Microelectromech Syst 2003;12:296-301
  • Roxhed N, Gasser TC, Griss P, Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery. J Microelectromech Syst 2007;16:1429-40
  • Gardeniers HJGE, Luttge R, Berenschot EJW, Silicon micromachined hollow microneedles for transdermal liquid transport. J Microelectromech Syst 2003;12:855-62
  • Ji J, Tay FEH, Miao JM, Iliescu C. Microfabricated microneedle with porous tip for drug delivery. J Micromech Microeng 2006;16:958-64
  • Stoeber B, Liepmann D. Arrays of hollow out-of-plane microneedles for drug delivery. J Microelectromech Syst 2005;14:472-9
  • McAllister DV, Wang PM, Davis SP, Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci USA 2003;100:13755-60
  • Cheng J, Kricka LJ. Biochip technology. Taylor & Francis, Philadelphia; 2005
  • Bogner E, Dominizi K, Hagl P, Bridging the gap–Biocompatibility of microelectronic materials. Acta Biomater 2006;2:229-37
  • Clarke DR. The mechanical properties of semiconductors. Semiconduct Semimetals 1992;37:79-142
  • Izumi S, Ping CW, Yamaguchi M, Strength analysis of MEMS micromirror devices–Effects of loading mode and etching damage. Key Eng Mater 2005;297-300:527-532
  • Jadaan OM, Nemeth NN, Bagdahn J, Probabilistic Weibull behavior and mechanical properties of MEMS brittle materials. J Mater Sci 2003;38:4087-113
  • Moon SJ, Lee SS, Lee HS, Kwon TH. Fabrication of microneedle array using LIGA and hot embossing process. Microsystem technologies-micro- and nanosystems-information storage and processing systems. 2005;11:311-8
  • Perennes F, Marmiroli B, Matteucci M, Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol. J Micromech Microeng 2006;16:473-9
  • Gill HS, Denson DD, Burris BA, Prausnitz MR. Effect of microneedle design on pain in human volunteers. Clin J Pain 2008;24:585-94
  • Martanto W, Davis SP, Holiday NR, Transdermal delivery of insulin using microneedles in vivo. Pharm Res 2004;21:947-52
  • Gill HS, Prausnitz MR. Coating formulations for microneedles. Pharm Res 2007;24:1369-80
  • Gill HS, Prausnitz MR. Pocketed microneedles for drug delivery to the skin. J Phys Chem Solids 2008;69:1537-41
  • Kim K, Lee J. High aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnector. Microsyst Technol 2007;13:231-5
  • Chandrasekaran S, Brazzle JD, Frazier AB. Surface micromachined metallic microneedles. J Microelectromech Syst 2003;12:281-8
  • Chandrasekaran S, Frazier AB. Characterization of surface micromachined metallic microneedles. J Microelectromech Syst 2003;12:289-95
  • Gittard SD, Ovsianikov A, Monteiro-Riviere NA, Fabrication of polymer microneedles using a two-photon polymerization and micromolding process. J Diabetes Sci Technol 2009;3:304-11
  • Miyano T, Tobinaga Y, Kanno T, Sugar micro needles as transdermic drug delivery system. Biomed Microdev 2005;7:185-8
  • Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release 2005;104:51-66
  • Aoyagi S, Izumi H, Fukuda M. Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito's proboscis. Sensor Actuat A 2008;143:20-8
  • Gittard SD, Ovsianikov A, Akar H, Two photon polymerization-micromolding of polyethylene glycol-gentamicin sulfate microneedles for transdermal drug delivery. Adv Eng Mater 2010 (In press)
  • Gittard SD, Narayan RJ, Jin C, Pulsed laser deposition of antimicrobial silver coating on Ormocer® microneedles. Biofabrication 2009;1:041001
  • Zosano pharma, inc. announces publication of positive phase 2 study of its zp-pth patch for osteoporosis therapy. Available from: http://zosanopharma.com/index.php?option=com_content& task=view&id=127&Itemid=170 [Last accessed 18 November 2009]
  • Nanoject: An innovative micro-needle technology. Available from: www.debiotech.ch [Last accessed 18 November 2009]
  • Focus areas: Advanced drug delivery. Available from: www.bd.com/technologies/add [Last accessed 18 November 2009]
  • Mikszta JA, Sullivan VJ, Dean C, Protective immunization against inhalational anthrax: a comparison of minimally invasive delivery platforms. J Infect Dis 2005;191:278-88
  • News & events: First European application filed for product using innovative intradermal microinjection system BD Soluvia™. Available from: http://www.bd.com/contentmanager/b_article.asp?Item_ID=23419&ContentType_ID=1&BusinessCode=20001&d=&s=&dTitle=&dc=&dcTitle= [Last accessed 14 January 2010]
  • Press releases: INTANZA®/IDflu®, first intradermal influenza vaccine, approved in the European Union. Available from: http://en.sanofi-aventis.com/press/press_releases/2009/ppc_24214.asp [Last accessed 14 January 2010]
  • NanoPass makes its micronjet technology available to increase global supply of pandemic influenza vaccines. Available from: www.nanopass.com/upfilesA/microsoft%20word%20-%20h1n1%20flu%20pr%20aug%2012%20final%20_2_.pdf [Last accessed 18 November 2009]
  • Gross J, Kelly JG. Intradermal drug delivery device and method for intradermal delivery of drugs. US5527288; 1996
  • Jang KK. Skin perforating device for transdermal medication. US5611806; 1997
  • Allen MG, Prausnitz MR, Mcallister DV, Cros FPM. Microneedle devices and methods of manufacture and use thereof. US6334856; 2002
  • Prausnitz MR, Allen MG, Mcallister DV, Henry S. Microneedle device for transport of molecules across tissue US6503231; 2003
  • Prausnitz MR, Allen MG, Gujral I. Microneedle drug delivery devicen US6611707; 2003
  • Prausnitz MR, Allen MG, Henry S, Devices and methods for enhanced microneedle penetration of biological barriers US6743211; 2004
  • Sparks DR. Process of forming a microneedle and microneedle formed thereby US6844213; 2005
  • Angel AB, Hunter IW. Microneedle transdermal transport device US7364568; 2008
  • Whitson RC. Hollow microneedle patch US6603987; 2003
  • Devoe RJ, Ferguson DE, Frederickson FL, Process for making microneedles, microneedle arrays, masters, and replication tools. WO112309; 2007
  • Sugimura H, Suzuki G, Ueno M, Method for producing microneedle WO013282; 2008
  • Erguson D, Nayar S, Pochardt D. Method of molding a microneedle. EP1824655; 2007
  • Mills E, Bell G, Sartor D, Energy efficiency in California laboratory type facilities. Lawrence Berkeley National Laboratory, Berkeley, CA: LBNL-39061; 1996
  • Ovsianikov A, Passinger S, Houbertz R, Chichkov BN. Three dimensional material processing with femtosecond lasers. In: Phips C, editor, Laser ablation and its applications. Springer, Berlin; 2007. p. 121-57
  • Belfield KD, Schafer KJ, Liu YU, Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and non-destructive three-dimensional imaging. J Phys Org Chem 2000;13:837-49
  • Lee K, Kim RH, Yang D, Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog Polym Sci 2008;33:631-81
  • Seet KK, Mizeikis V, Matsuo S, Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing. Adv Mater 2005;17:541-5
  • Ovsianikov A, Chichkov B, Mente P, Two photon polymerization of polymer-ceramic hybrid materials for transdermal drug delivery. Int J Appl Ceram Technol 2007;4:22-9
  • Serbin J, Ovsianikov A, Chichkov B. Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties. Opt Expr 2004;12:5221-8
  • Serbin J, Egbert A, Ostendorf A, Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics. Opt Lett 2003;28:301-3
  • Haske W, Chen VW, Hales JM, 65 nm feature sizes using visible wavelength 3-D multiphoton lithography. Opt Expr 2007;15:3426-36
  • Takada K, Sun HB, Kawata S. Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting. Appl Phys Lett 2005;86:071122
  • Juodkazis S, Mizeikis V, Seet KK, Two-photon lithography of nanorods in SU-8 photoresist. Nanotechnol 2005;16:846-9
  • Haske W, Chen VW, Hales JM, 65nm feature sizes using visible wavelength 3-D multiphoton lithography. Opt Expr 2007;15:3426-36
  • Xing JF, Dong XZ, Chen WQ, Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency. Appl Phys Lett 2007;90:131106
  • Haske W, Chen VW, Hales JM, 65 nm feature sizes using visible wavelength 3-D multiphoton lithography. Opt Expr 2007;15:3426-36
  • Brown MB, Martin GP, Jones SA, Dermal and transdermal drug delivery systems: Current and future prospects. Drug Deliv 2006;13:175-87
  • Davis SP, Landis BJ, Adams ZH, Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J Biomech 2004;37:1155-63
  • Griss P, Stemme G. Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfer. J Microelectromech Syst 2003;12:296-301
  • Gardeniers HJGE, Luttge R, Berenschot EJW, Silicon micromachined hollow microneedles for transdermal liquid. J Microelectromech Syst 2003;12:855-62
  • Rosin M, Urban AD, Gartner C, Polymerization shrinkage-strain and microleakage in dentin-bordered cavities of chemically and light-cured restorative materials. Dental Mater 2002;18:521-8
  • Haas KH, Wolter H. Synthesis, properties and applications of inorganic-organic copolymers. Curr Opin Solid State Mater Sci 1999;4:571-80
  • Obi S, Gale MT, Gimkiewicz C, Replicated optical MEMS in sol-gel materials. IEEE J Sel Top Quant Elect 2004;10:440-4
  • Yap AUJ, Lim LY, Yang TY, Influence of dietary solvents on strength of nanofill and ormocer composites. Oper Dent 2005;30:129-33
  • Al-Hiyasat AS, Darmani H, Milhem MM. Cytotoxicity evaluation of dental resin composites and their flowable derivatives. Clin Oral Invest 2005;9:21-5
  • Doraiswamy A, Aleksandr Ovsianikov A, Shaun D, Fabrication of microneedles using two photon polymerization for transdermal delivery of nanomaterials. J Nanosci Nanotechnol 2010 (In press)
  • Narayan R. Two photon polymerization: an emerging method for rapid prototyping of ceramic-polymer hybrid materials for medical applications. Am Ceram Soc Bull 2009;88:20-5
  • Ovsianikov A, Ostendorf A, Chichkov BN. Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine. Appl Surf Sci 2007;253:6599-602
  • Owen WB. Morphology of the head skeleton and muscles of the mosquito, Culiseta-Inornata (Williston) (Diptera, Culicidae). J Morphol 1985;183:51-85
  • Meyers MA, Lin AYM, Lin YS, The cutting edge: Sharp biological materials. JOM 2008;60:19-24
  • Chichkov B. Two-photon polymerization enhances rapid prototyping of medical devices. SPIE Newsroom 2007; doi: 10.1117/2.1200704.0705
  • Doraiswamy A. Novel CAD/CAM rapid prototyping of next-generation biomedical devices. Ph.D. Dissertation, University of North Carolina Chapel Hill; 2007
  • Bruchez M, Moronne M, Gin P, Semiconductor nanocrystals as fluorescent biological labels. Science 1998;281:2013-6
  • Niemeyer CM. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 2001;40:4128-58
  • Uren RF. Cancer surgery joins the dots. Nat Biotechnol 2004;22:38-9
  • Gao XH, Cui YY, Levenson RM, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004;22:969-76
  • Dahan M, Levi S, Luccardini C, Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 2003;302:442-5
  • Ballou B, Lagerholm BC, Ernst LA, Noninvasive imaging of quantum dots in mice. Bioconjug Chem 2004;15:79-86
  • Hagens WI, Oomen AG, de Jong WH, What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol 2007;49:217-29
  • Vega-Villa KR, Takemoto JK, Yanez JA, Clinical toxicities of nanocarrier systems. Adv Drug Deliv Rev 2008;60:929-38
  • LaFratta CN, Li L, Fourkas JT. Soft-lithographic replication of 3D microstructures with closed loops. Proc Natl Acad Sci USA 2006;103:8589-94
  • Merrill EW, Salzman WM. Polyethylene oxide as a biomaterial. ASAIO J 1983;6:60-4
  • Miyano T, Miyachi T, Okanishi T, Hydrolytic microneedles as transdermal drug delivery system. IEEE Solid State Sensor Actuat Microsyst Conf 2007;1:355-358
  • Takano N, Tachikawa H, Miyano T, Insertion testing of polyethylene glycol microneedle array into cultured human skin with biaxial tension. J Solid Mech Mater Eng 2008;3:604-12
  • DeLong SA, Moon JJ, West JL. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomater 2005;26:3227-34
  • Moon JJ, Hahn MS, Kim I, Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue Eng A 2009;15:579-85
  • Nagaoka S, Nakao A. Clinical-application of antithrombogenic hydrogel with long poly(ethylene oxide) chains. Biomater 1990;11:119-21
  • Atha DH. Mechanism of precipitation of proteins by polyethylene glycols–analysis in terms of excluded volume. J Biol Chem 1981;256:2108-17
  • Kalia YN, Nonato LB, Lund CH, Development of skin barrier function in premature infants. J Invest Dermatol 1998;111:320-6
  • Stulberg DL, Penrod MA, Blatny RA. Common bacterial skin infections. Am Fam Physician 2002;66:119-24
  • Larson E. Skin hygiene and infection prevention: more of the same or different approaches? Clin Infect Dis 1999;29:1287-94
  • Birchall JC. Microneedle array technology: the time is right but is the science ready? Exp Rev Med Dev 2006;3:1-4
  • Donnelly RF, Singh TRR, Tunney MM, Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm Res 2009;26:2513-22
  • Changez M, Koul V, Krishna B, Studies on biodegradation and release of gentamicin sulphate from interpenetrating network hydrogels based on poly(acrylic acid) and gelatin: in vitro and in vivo. Biomater 2004;25:139-46
  • Naraharisetti PK, Lew MDN, Fu YC, Gentamicin-loaded discs and microspheres and their modifications: characterization and in vitro release. J Control Release 2005;102:345-59
  • Lee SH, Jeong SK, Ahn SK. An Update of the defensive barrier function of skin. Yonsei Med J 2006;47:293-306
  • Banga AK. Theme section: transdermal delivery of proteins. Pharm Res 2007;24:1357-9
  • Birchall JC. Microneedle array technology: the time is right but is the science ready? Exp Rev Med Dev 2006;3:1-4
  • Bragg PD, Rainnie DJ. The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol 1974;20:883-9
  • Rosenkranz HS, Rosenkranz S. Silver sulfadiazine: interaction with isolated deoxyribonucleic acid. Antimicrob Agents Chemother 1972;2:373-83
  • Stoimenov PK, Klinger RL, Metal oxide nanoparticles as bactericidal agents. Langmuir 2002;18:6679-86
  • Slawson RM, Van Dyke MI, Lee H, Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid 1992;27:72-9
  • Zhao G, Stevens SE Jr. Multiple parameters for the comprehensive evaluation of the susceptibility of escherichia coli to the silver ion. BioMetals 1998;11:27-32
  • Trengove NJ, Stacey MC, Macauley S, Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen 1999;7:442-52
  • Wright JB, Lam K, Buret AG, Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair Regen 2002;10:141-51
  • Demling RH, DeSanti L. The rate of re-epithelialization across meshed skin grafts is increased with exposure to silver burns. Burns 2002;28:264-266
  • Morrison ML, Buchanan RA, Liaw PK, Electrochemical and antimicrobial properties of diamond like carbon-metal composite films. Diamond Relat Mater 2006;15:138-46
  • Warrender JM, Aziz MJ. Kinetic energy effects on morphology evolution during pulsed laser deposition of metal-on-insulator films. Phys Rev B 2007;75:085433
  • Willmott PR. Deposition of complex multielemental thin films. Prog Surf Sci 2004;76:163-217
  • Lackner JM. Industrially-scaled large-area and high-rate tribological coating by pulsed laser deposition. Surf Coat Technol 2005;200:1439-44
  • Gittard SD, Narayan RJ, Lusk J, Rapid prototyping of scaphoid and lunate bones. Biotechnol J 2009;4:129-34
  • Ovsianikov A, Chichkov B, Adunka O, Rapid prototyping of ossicular replacement prostheses. Appl Surf Sci 2007;253:6603-7
  • Ovsianikov A, Schlie S, Ngezahayo A, Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials. J Tissue Eng Regen Med 2007;1:443-9
  • Schlie S, Ngezahayo A, Ovsianikov A, Three-dimensional cell growth on structures fabricated from ORMOCER (R) by two-photon polymerization technique. J Biomater Appl 2007;22:275-87

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.