1,072
Views
160
CrossRef citations to date
0
Altmetric
Reviews

Nanostructured hyaluronic acid-based materials for active delivery to cancer

Pages 681-703 | Published online: 05 Apr 2010

Bibliography

  • Kayser O, Lemke A, Hernandez-Trejo N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol 2005;6(1):3-5
  • Hawley AE, Davis SS, Illum L. Targeting of colloids to lymph nodes: influence of lymphatic physiology and colloidal characteristics. Adv Drug Deliv Rev 1995;17(1):129-48
  • Ishida O, Maruyama K, Sasaki K, Iwatsuru M. Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice. Int J Pharm 1999;190(1):49-56
  • Jain KK. Nanoparticles as targeting ligands. Trends Biotechnol 2006;24(4):143-5
  • Petrak K. Design and properties of particulate carriers for intravascular administration. Drugs Pharm Sci 1993;61:257-297
  • Maeda H. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 2001;46(1-3):169-85
  • Ogawara K, Yoshida M, Furumoto K, Uptake by hepatocytes and biliary excretion of intravenously administered polystyrene microspheres in rats. J Drug Target 1999;7(3):213-21
  • Lee ES, Kim D, Youn YS, A virus-mimetic nanogel vehicle. Angew Chem Int Ed Engl 2008;47(13):2418-21
  • Corot C, Robert P, Idee JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 2006;58(14):1471-504
  • Weissleder R. Molecular imaging in cancer. Science 2006;312(5777):1168-71
  • Takahashi H, Niidome T, Nariai A, Gold nanorod-sensitized cell death: microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods. Chem Lett 2006;35(5):500-1
  • Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 2008;41(12):1842-51
  • Gao X, Cui Y, Levenson RM, In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 2004;22(8):969-76
  • Lai T-Y, Lee W-C. Killing of cancer cell line by photoexcitation of folic acid-modified titanium dioxide nanoparticles. J Photochem Photobiol A Chem 2009;204(2-3):148-53
  • Palazzo B, Iafisco M, Laforgia M, Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv Funct Mater 2007;17(13):2180-8
  • Klumpp C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta 2006;1758(3):404-12
  • Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci Polym Symp 1975;51:135-53
  • Sampathkumar SG, Yarema KJ. Targeting cancer cells with dendrimers. Chem Biol 2005;12(1):5-6
  • Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 2007;65(3):259-69
  • Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 2008;60(15):1638-49
  • Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 2008;33(4):448-77
  • Raemdonck K, Demeester J, De Smedt S. Advanced nanogel engineering for drug delivery. Soft Matter 2009;5(4):707-15
  • Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 2000;50(1):161-77
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4(2):145-60
  • Haag R, Kratz F. Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl 2006;45(8):1198-215
  • Hirsch LR, Stafford RJ, Bankson JA, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003;100(23):13549-54
  • Nam J, Won N, Jin H, pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy. J Am Chem Soc 2009;131(38):13639-45
  • Chatterjee DK, Fong LS, Zhang Y. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 2008;60(15):1627-37
  • Oba T. Photosensitizer Nanoparticles for Photodynamic Therapy. Curr Bioactive Comp 2007;3:239-251
  • Lee Y, Park SY, Kim C, Park TG. Thermally triggered intracellular explosion of volume transition nanogels for necrotic cell death. J Control Release 2009;135(1):89-95
  • Kamb A. What's wrong with our cancer models? Nat Rev Drug Discov 2005;4(2):161-5
  • Lee RJ, Low PS. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 1994;269(5):3198-204
  • Lee JY, Spicer AP. Hyaluronan: a multifunctional, megaDalton, stealth molecule. Curr Opin Cell Biol 2000;12(5):581-6
  • Kinzler KW, Vogelstein B. Landscaping the cancer terrain. Science 1998;280(5366):1036-7
  • Toole BP, Wight TN, Tammi MI. Hyaluronan-cell interactions in cancer and vascular disease. J Biol Chem 2002;277(7):4593-6
  • Day AJ, Prestwich GD. Hyaluronan-binding proteins: tying up the giant. J Biol Chem 2002;277(7):4585-8
  • Hua Q, Knudson CB, Knudson W. Internalization of hyaluronan by chondrocytes occurs via receptor-mediated endocytosis. J Cell Sci 1993;106(Pt 1):365-75
  • Harris EN, Kyosseva SV, Weigel JA, Weigel PH. Expression, processing, and glycosaminoglycan binding activity of the recombinant human 315-kDa hyaluronic acid receptor for endocytosis (HARE). J Biol Chem 2007;282(5):2785-97
  • Choi KY, Min KH, Na JH, Self-assembled hyaluronic acid nanoparticles as a potential drug carrier for cancer therapy: synthesis, characterization, and in vivo biodistribution. J Mater Chem 2009;19(24):4102-7
  • Zhou B, Weigel JA, Fauss L, Weigel PH. Identification of the hyaluronan receptor for endocytosis (HARE). J Biol Chem 2000;275(48):37733-41
  • Sugahara S, Okuno S, Yano T, Characteristics of tissue distribution of various polysaccharides as drug carriers: influences of molecular weight and anionic charge on tumor targeting. Biol Pharm Bull 2001;24(5):535-43
  • Cera C, Palumbo M, Stefanelli S, Water-soluble polysaccharide-anthracycline conjugates: biological activity. Anticancer Drug Des 1992;7(2):143-51
  • Luo Y, Bernshaw NJ, Lu ZR, Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates. Pharm Res 2002;19(4):396-402
  • Luo Y, Prestwich GD. Synthesis and selective cytotoxicity of a hyaluronic acid-antitumor bioconjugate. Bioconjug Chem 1999;10(5):755-63
  • Luo Y, Ziebell MR, Prestwich GD. A hyaluronic acid-taxol antitumor bioconjugate targeted to cancer cells. Biomacromolecules 2000;1(2):208-18
  • Coradini D, Pellizzaro C, Miglierini G, Hyaluronic acid as drug delivery for sodium butyrate: improvement of the anti-proliferative activity on a breast-cancer cell line. Int J Cancer 1999;81(3):411-6
  • Coradini D, Zorzet S, Rossin R, Inhibition of hepatocellular carcinomas in vitro and hepatic metastases in vivo in mice by the histone deacetylase inhibitor HA-But. Clin Cancer Res 2004;10(14):4822-30
  • Di Meo C, Panza L, Campo F, Novel types of carborane-carrier hyaluronan derivatives via ‘click chemistry’. Macromol Biosci 2008;8(7):670-81
  • Di Meo C, Panza L, Capitani D, Hyaluronan as carrier of carboranes for tumor targeting in boron neutron capture therapy. Biomacromolecules 2007;8(2):552-9
  • Varghese OP, Sun W, Hilborn J, Ossipov DA. In situ cross-linkable high molecular weight hyaluronan-bisphosphonate conjugate for localized delivery and cell-specific targeting: a hydrogel linked prodrug approach. J Am Chem Soc 2009;131(25):8781-3
  • Goldberg VM, Buckwalter JA. Hyaluronans in the treatment of osteoarthritis of the knee: evidence for disease-modifying activity. Osteoarthritis Cartilage 2005;13(3):216-24
  • Heymann D, Ory B, Gouin F, Bisphosphonates: new therapeutic agents for the treatment of bone tumors. Trends Mol Med 2004;10(7):337-43
  • Knudson W, Chow G, Knudson CB. CD44-mediated uptake and degradation of hyaluronan. Matrix Biol 2002;21(1):15-23
  • Schumacker PT. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 2006;10(3):175-6
  • Kim J, Park K, Hahn SK. Effect of hyaluronic acid molecular weight on the morphology of quantum dot-hyaluronic acid conjugates. Int J Biol Macromol 2008;42(1):41-5
  • Kim J, Kim KS, Jiang G, In vivo real-time bioimaging of hyaluronic acid derivatives using quantum dots. Biopolymers 2008;89(12):1144-53
  • Lee H, Choi SH, Park TG. Direct visualization of hyaluronic acid polymer chain by self-assembled one-dimensional array of gold nanoparticles. Macromolecules 2006;39(1):23-5
  • Jiang G, Park K, Kim J, Target specific intracellular delivery of siRNA/PEI-HA complex by receptor mediated endocytosis. Mol Pharm 2009;6(3):727-37
  • Banerji S, Wright AJ, Noble M, Structures of the CD44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nat Struct Mol Biol 2007;14(3):234-9
  • Mahteme H, Graf W, Larsson BS, Gustafson S. Uptake of hyaluronan in hepatic metastases after blocking of liver endothelial cell receptors. Glycoconj J 1998;15(9):935-9
  • Yun YH, Goetz DJ, Yellen P, Chen W. Hyaluronan microspheres for sustained gene delivery and site-specific targeting. Biomaterials 2004;25(1):147-57
  • Pitarresi G, Craparo EF, Palumbo FS, Composite nanoparticles based on hyaluronic acid chemically cross-linked with alpha,beta-polyaspartylhydrazide. Biomacromolecules 2007;8(6):1890-8
  • Kumar A, Sahoo B, Montpetit A, Development of hyaluronic acid-Fe2O3 hybrid magnetic nanoparticles for targeted delivery of peptides. Nanomedicine 2007;3(2):132-7
  • Jha AK, Hule RA, Jiao T, Structural analysis and mechanical characterization of hyaluronic acid-based doubly cross-linked networks. Macromolecules 2009;42(2):537-46
  • Sahiner N, Jha AK, Nguyen D, Jia XQ. Fabrication and characterization of cross-linkable hydrogel particles based on hyaluronic acid: potential application in vocal fold regeneration. J Biomater Sci Polym Ed 2008;19(2):223-43
  • Lee H, Mok H, Lee S, Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. J Control Release 2007;119(2):245-52
  • Shu XZ, Liu Y, Luo Y, Disulfide cross-linked hyaluronan hydrogels. Biomacromolecules 2002;3(6):1304-11
  • Jia X, Yeo Y, Clifton RJ, Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration. Biomacromolecules 2006;7(12):3336-44
  • Kabanov AV, Astafyeva IV, Chikindas ML, DNA interpolyelectrolyte complexes as a tool for efficient cell transformation. Biopolymers 1991;31(12):1437-43
  • Duceppe N, Tabrizian M. Factors influencing the transfection efficiency of ultra low molecular weight chitosan/hyaluronic acid nanoparticles. Biomaterials 2009;30(13):2625-31
  • de la Fuente M, Seijo B, Alonso MJ. Bioadhesive hyaluronan-chitosan nanoparticles can transport genes across the ocular mucosa and transfect ocular tissue. Gene Ther 2008;15(9):668-76
  • de la Fuente M, Seijo B, Alonso MJ. Novel hyaluronan-based nanocarriers for transmucosal delivery of macromolecules. Macromol Biosci 2008;8(5):441-50
  • De la Fuente M, Seijo B, Alonso MJ. Design of novel polysaccharidic nanostructures for gene delivery. Nanotechnology 2008;19(7):1-9
  • Reynolds F, Weissleder R, Josephson L. Protamine as an efficient membrane-translocating peptide. Bioconjug Chem 2005;16(5):1240-5
  • Chono S, Li SD, Conwell CC, Huang L. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J Control Release 2008;131(1):64-9
  • Mok H, Park JW, Park TG. Antisense oligodeoxynucleotide-conjugated hyaluronic acid/protamine nanocomplexes for intracellular gene inhibition. Bioconjug Chem 2007;18(5):1483-9
  • Vercruysse KP, Ziebell MR, Prestwich GD. Control of enzymatic degradation of hyaluronan by divalent cations. Carbohydr Res 1999;318(1-4):26-37
  • Rosenberg B. Platinum complexes for treatment of cancer. Interdiscip Sci Rev 1978;3(2):134-47
  • Jeong YI, Kim ST, Jin SG, Cisplatin-incorporated hyaluronic acid nanoparticles based on ion-complex formation. J Pharm Sci 2008;97(3):1268-76
  • Choi KY, Lee S, Park K, Preparation and characterization of hyaluronic acid-based hydrogel nanoparticles. J Phys Chem Solids 2008;69(5-6):1591-5
  • Lee H, Ahn CH, Park TG. Poly [lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer micelle nanoparticles for target-specific delivery of doxorubicin. Macromol Biosci 2009;9(4):336-42
  • Yadav AK, Mishra P, Mishra AK, Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin. Nanomedicine 2007;3(4):246-57
  • Yadav AK, Mishra P, Jain S, Preparation and characterization of HA-PEG-PCL intelligent core-corona nanoparticles for delivery of doxorubicin. J Drug Target 2008;16(6):464-78
  • Lee H, Lee K, Park TG. Hyaluronic acid-paclitaxel conjugate micelles: synthesis, characterization, and antitumor activity. Bioconjug Chem 2008;19(6):1319-25
  • Lemarchand C, Gref R, Couvreur P. Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm 2004;58(2):327-41
  • Jain A, Jain SK. In vitro and cell uptake studies for targeting of ligand anchored nanoparticles for colon tumors. Eur J Pharm Sci 2008;35(5):404-16
  • Eliaz RE, Szoka FC Jr. Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res 2001;61(6):2592-601
  • Laroui H, Grossin L, Leonard M, Hyaluronate-covered nanoparticles for the therapeutic targeting of cartilage. Biomacromolecules 2007;8(12):3879-85
  • Lee BY, Kim YB, Kim J, Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging. Adv Mater 2008;20(21):4154-7
  • Lee BY, Lee K, Kim I-K, Park TG. Fluorescent gold nanoprobe sensitive to intracellular reactive oxygen species. Adv Funct Mater 2009;19(12):1884-90
  • Nasti A, Zaki NM, de Leonardis P, Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation. Pharm Res 2009;26(8):1918-30
  • Duchardt F, Fotin-Mleczek M, Schwarz H, A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 2007;8(7):848-66
  • Fischer D, Li Y, Ahlemeyer B, In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 2003;24(7):1121-31
  • Ito T, Iida-Tanaka N, Koyama Y. Efficient in vivo gene transfection by stable DNA/PEI complexes coated by hyaluronic acid. J Drug Target 2008;16(4):276-81
  • Ito T, Iida-Tanaka N, Niidome T, Hyaluronic acid and its derivative as a multi-functional gene expression enhancer: protection from non-specific interactions, adhesion to targeted cells, and transcriptional activation. J Control Release 2006;112(3):382-8
  • Asayama S, Nogawa M, Takei Y, Synthesis of novel polyampholyte comb-type copolymers consisting of a poly(L-lysine) backbone and hyaluronic acid side chains for a DNA carrier. Bioconjug Chem 1998;9(4):476-81
  • Takei Y, Maruyama A, Ferdous A, Targeted gene delivery to sinusoidal endothelial cells: DNA nanoassociate bearing hyaluronan-glycocalyx. FASEB J 2004;18(6):699-701
  • Saraf A, Hacker MC, Sitharaman B, Synthesis and conformational evaluation of a novel gene delivery vector for human mesenchymal stem cells. Biomacromolecules 2008;9(3):818-27
  • Jiang G, Park K, Kim J, Hyaluronic acid-polyethyleneimine conjugate for target specific intracellular delivery of siRNA. Biopolymers 2008;89(7):635-42
  • Peer D, Margalit R. Tumor-targeted hyaluronan nanoliposomes increase the antitumor activity of liposomal Doxorubicin in syngeneic and human xenograft mouse tumor models. Neoplasia 2004;6(4):343-53
  • Peer D, Margalit R. Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int J Cancer 2004;108(5):780-9
  • Surace C, Arpicco S, Dufay-Wojcicki A, Lipoplexes targeting the CD44 hyaluronic acid receptor for efficient transfection of breast cancer cells. Mol Pharm 2009;6(4):1062-73
  • Langer R, Folkman J. Polymers for the sustained release of proteins and other macromolecules. Nature 1976;263(5580):797-800
  • Zambaux MF, Bonneaux F, Gref R, Preparation and characterization of protein C-loaded PLA nanoparticles. J Control Release 1999;60(2-3):179-88
  • Hyung W, Ko H, Park J, Novel hyaluronic acid (HA) coated drug carriers (HCDCs) for human breast cancer treatment. Biotechnol Bioeng 2008;99(2):442-54
  • Bassleer CT, Combal JP, Bougaret S, Malaise M. Effects of chondroitin sulfate and interleukin-1 beta on human articular chondrocytes cultivated in clusters. Osteoarthritis Cartilage 1998;6(3):196-204
  • Noble PW. Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biol 2002;21(1):25-9
  • Gibson JD, Khanal BP, Zubarev ER. Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc 2007;129(37):11653-61
  • Lee H, Lee K, Kim IK, Park TG. Synthesis, characterization, and in vivo diagnostic applications of hyaluronic acid immobilized gold nanoprobes. Biomaterials 2008;29(35):4709-18
  • Liu LZ, Hu XW, Xia C, Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1alpha expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic Biol Med 2006;41(10):1521-33
  • Schledzewski K, Falkowski M, Moldenhauer G, Lymphatic endothelium-specific hyaluronan receptor LYVE-1 is expressed by stabilin-1+, F4/80+, CD11b+ macrophages in malignant tumours and wound healing tissue in vivo and in bone marrow cultures in vitro: implications for the assessment of lymphangiogenesis. J Pathol 2006;209(1):67-77
  • Hornof M, de la Fuente M, Hallikainen M, Low molecular weight hyaluronan shielding of DNA/PEI polyplexes facilitates CD44 receptor mediated uptake in human corneal epithelial cells. J Gene Med 2008;10(1):70-80
  • Lesley J, Hascall VC, Tammi M, Hyman R. Hyaluronan binding by cell surface CD44. J Biol Chem 2000;275(35):26967-75
  • Gullotti E, Yeo Y. Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm 2009;6(4):1041-51

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.