244
Views
29
CrossRef citations to date
0
Altmetric
Reviews

Potential of polymeric nanoparticles in AIDS treatment and prevention

, , &
Pages 95-112 | Published online: 13 Dec 2010

Bibliography

  • AIDS Epidemic Update: November 2009. Joint United Nations Programme on HIV/AIDS (UNAIDS) and World Health Organization (WHO), 2009. Available from: http://data.unaids.org/pub/Report/2009/JC1700_Epi_Update_2009_en.pdf [Last accessed 29 September 2010]
  • Levy JA. HIV and the pathogenesis of AIDS. 3rd edition. American Society of Microbiology Press, Washington, DC; 2007
  • Kahn JO, Walker BD. Acute human immunodeficiency virus type 1 infection. N Engl J Med 1989;339:33-9
  • Appay V, Sauce D. Immune activation and inflammation in HIV-1 infection: causes and consequences. J Pathol 2008;214:231-41
  • Stevenson M. HIV-1 pathogenesis. Nat Med 2003;9:853-60
  • Hel Z, McGhee JR, Mestecky J. HIV infection: first battle decides the war. Trends Immunol 2006;27:274-81
  • Mellor JW, Rinaldo CR Jr, Gupto P, Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 1996;272:1167-70
  • Blankson JN, Persaud D, Siliciano RF. The challenge of viral reservoirs in HIV-1 infection. Annu Rev Med 2002;53:557-93
  • Schrager LK, D'Souza MP. Cellular and anatomical reservoirs of HIV-1 in patients receiving potent antiretroviral combination therapy. JAMA 1998;280:67-71
  • Richman DD, Margolis DM, Delaney M, The challenge of finding a cure for HIV infection. Science 2009;323:1304-7
  • Chun TW, Justement JS, Moir S, Decay of the HIV reservoir in patients receiving antiretroviral therapy for extended periods: implications for eradication of virus. J Infect Dis 2007;195:1762-4
  • Alexaki A, Liu Y, Wigdahl B. Cellular reservoirs of HIV-1 and their role in viral persistence. Curr HIV Res 2008;6:388-400
  • De Clercq E. Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int J Antimicrob Agents 2007;33:307-20
  • Cote HC, Brumme ZL, Craib KJ, Changes in mitochondrial DNA as a marker of nucleoside toxicity in HIV-infected patients. N Engl J Med 2002;346:811-20
  • Cihlar T, Ray AS. Nucleoside and nucleotide HIV reverse transcriptase inhibitors: 25 years after zidovudine. Antiviral Res 2010;85:39-58
  • Smith CJ, Olsen CH, Mocroft A, The role of antiretroviral therapy in the incidence of pancreatitis in HIV-positive individuals in the EuroSIDA study. AIDS 2008;22:47-56
  • Haubrich RH, Riddler SA, DiRienzo AG, Metabolic outcomes in a randomized trial of nucleoside, nonnucleoside and protease inhibitor-sparing regimens for initial HIV treatment. AIDS 2009;23:1109-18
  • D:A:D Study Group. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients enrolled in the D:A:D study: a multi-cohort collaboration. Lancet 2008;371:1417-26
  • Herlitz LC, Mohan S, Stokes MB, Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities. Kidney Int 2010: published online 1 September 2010, doi:10.1038/ki.2010.318
  • De Clercq E. Tenofovir disoproxil fumarate (TDF): discovery and clinical development. In: Kazmierski WM, editor, Antiviral drugs: biology, chemistry, clinic. John Wiley & Sons, Inc.; 2010: in press
  • Stellbrink HJ, Orkin C, Arribas JR, Comparison of changes in bone density and turnover with abacavir-lamivudine versus tenofovir-emtricitabine in HIV-infected adults: 48-week results from the ASSERT study. Clin Infect Dis 2010;51:963-72
  • de Bethune M-P. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989–2009). Antiviral Res 2010;85:75-90
  • Fundaro C, Genovese O, Rendeli C, Myelomeningocele in a child with intrauterine exposure to efavirenz. AIDS 2002;16:299-300
  • Plosker GL, Noble S. Indinavir: a review of its use in the management of HIV infection. Drugs 2009;58:1165-203
  • Cameron DW, Heath-Chiozzi M, Danner S, Randomised placebo-controlled trial of ritonavir in advanced HIV-1 disease. The Advanced HIV Disease Ritonavir Study Group. Lancet 1998;351:543-9
  • Croxtall JD, Perry CM. Lopinavir/Ritonavir: a review of its use in the management of HIV-1 infection. Drugs 2010;70:1885-915
  • Sulkowski MS, Thomas DL, Chaisson RE, Moore RD. Hepatotoxicity associated with antiretroviral therapy in adults infected with human immunodeficiency virus and the role of hepatitis C or B virus infection. JAMA 2000;283:74-80
  • Wensing AM, van Maarseveen NM, Nijhuis M. Fifteen years of HIV protease inhibitors: raising the barrier to resistance. Antiviral Res 2010;85:59-74
  • McColl DJ, Chen X. Strand transfer inhibitors of HIV-1 integrase: bringing in a new era of antiretroviral therapy. Antiviral Res 2010;85:101-18
  • Bartlett JG, Gallant JE. Drug information. In: 2004 Medical Management of HIV Infection. Baltimore, MD: Johns Hopkins Medicine Health Publishing Business Group 2004. p. 99, 240-5
  • Ndegwa S. Maraviroc (Celsentri) for multidrug-resistant human immunodeficiency virus (HIV)-1. Issues Emerg Health Technol 2007;110:1-8
  • RxList the internet drug index, RxList, Inc. Available from: http://www.rxlist.com/cgi/generic/intelence_cp.htm [Accessed 30 September 10]
  • Sharma P, Garg S. Pure drug and polymer based nanotechnologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs. Adv Drug Deliv Rev 2010;62:491-502
  • Ojewole E, Mackraj I, Naidoo P, Govender T. Exploring the use of novel drug delivery systems for antiretroviral drugs. Eur J Pharm Biopharm 2008;70:697-710
  • Flexner C. HIV drug development: the next 25 years. Nat Rev Drug Discov 2007;6:959-66
  • Pozniak A. Tenofovir: what have over 1 million years of patient experience taught us? Int J Clin Pract 2008;62:1285-93
  • Li X, Chan KW. Transport, metabolism and elimination mechanisms of anti-HIV agents. Adv Drug Deliv Rev 1999;39:81-103
  • Staszewski S, Miller V, Sabin C, Virological response to protease inhibitor therapy in an HIV clinic cohort. AIDS 1999;13:367-73
  • Sosnik A, Chiappetta DA, Carcaboso AM. Drug delivery systems in HIV pharmacotherapy: what has been done and the challenges standing ahead. J Control Release 2009;138:2-15
  • Hochman JH, Chiba M, Nishime J, Influence of P-glycoprotein on the transport and metabolismof indinavir in Caco-2 cells expressing cytochrome P-450 3A4. J Pharmacol Exp Ther 2000;292:310-18
  • Schinkel AH. The roles of P-glycoprotein and MRP1 in the blood-brain and blood-cerebrospinal fluid barriers. Adv Exp Med Biol 2001;500:365-72
  • Croxtall JD, Keam SJ. Raltegravir: a review of its use in the management of HIV infection in treatment-experienced patients. Drugs 2009;69:1059-75
  • Fung HB, Guo Y. Enfuvirtide: a fusion inhibitor for the treatment of HIV infection. Clin Ther 2004;26:352-78
  • Volberding PA, Deeks SG. Antiretroviral therapy and management of HIV infection. Lancet 2010;376:49-62
  • Lieberman-Blum SS, Fung HB, Bandres JC. Maraviroc: a CCR5-receptor antagonist for the treatment of HIV-1 infection. Clin Ther 2008;30:1228-50
  • Gazzard BG. British HIV association guidelines for the treatment of HIV-1-infected adults with antiretroviral therapy. HIV Med 2008;9:563-608
  • Saksena NK, Haddad DN. Viral reservoirs an impediment to HAART: new strategies to eliminate HIV-1. Curr Drug Targets Infect Disord 2003;3:179-206
  • Richman DD, Margolis DM, Delaney M, The challenge of finding a cure for HIV infection. Science 2009;323:1304-7
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001;70:1-20
  • Kreuter J. In: Swarbrick J, Boylan JC, editors, Nanoparticles. Marcel Dekker, New York; 1994. p. 10
  • Fattal E, Vauthier C. In: Swarbric J, Boylan JC, editors, Nanoparticles as drug delivery systems. Marcel Dekker, New York; 2002. p. 10
  • Oppenheim RC. Solid colloidal drug delivery systems: nanoparticles. Int J Pharm 1981;8:217-34
  • Allemann E, Gurny R, Doelker E. Drug loaded nanoparticles preparation methods and drug targeting issues. Eur J Pharm Biopharm 1993;39:173-91
  • Ubrich N, Schmidt C, Bodmeier R, Oral evaluation in rabbits of cyclosporine-loaded Eudragit RS or RL nanoparticles. Int J Pharm 2005;288:169-75
  • Hoffart V, Lamprecht A, Maincent P, Oral bioavailability of a low molecular weight heparin using a polymeric delivery system. J Control Release 2006;113:38-42
  • Kawashima Y. Nanoparticulate systems for improved drug delivery. Adv Drug Deliv Rev 2001;47:1-2
  • Lewis DH. In: Chasin M, Langer R, editors, Biodegradable polymers as drug delivery systems. Marcel Dekker, New York; 1990. p. 45
  • Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Sci 2002;6:319-27
  • Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 2002;54:135-47
  • Gartner S, Markovits P, Markovitz DM, The role of mononuclear phagocytes in HTLVIII/LAV infection. Science 1986;233:215-19
  • Koenig S, Gendelman HE, Orenstein JM, Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 1986;233:1089-93
  • McElrath MJ, Pruett JE, Cohn ZA. Mononuclear phagocytes of blood and bone marrow: comparative roles as viral reservoirs in human immunodeficiency virus type 1 infections. Proc Natl Acad Sci USA 1989;86:675-9
  • Bagnarelli P, Valenza A, Menzo S, Dynamics and modulation of human immunodeficiency virus type 1 transcript in vitro and in vivo. J Virol 1996;70:7603-13
  • Aquaro S, Bagnarelli P, Guenci T, Long-term survival and virus production in human primary macrophages infected by human immunodeficiency virus. J Med Virol 2002;68:479-88
  • Garaci E, Caroleo MC, Aloe L, Nerve growth factor is an autocrine factor essential for the survival of macrophages infected with HIV. Proc Natl Acad Sci USA 1999;96:14013-18
  • McGann KA, Collman R, Kolson DL, Human immunodeficiency virus-I causes productive infections of macrophages in primary placental cell culture. J Infect Dis 1994;169:746-53
  • Milman G, Sharma O. Mechanism of HIV/SIV mucosal transmission. AIDS Res Hum Retroviruses 1994;109:1305-12
  • Vanct-Wout AB, Kootstra NA, Mulder-Kampinga GA. Macrophage-tropic variants initiate human immunodeficiency virus type I infections after sexual, parenteral and vertical transmission. J Clin Invest 1994;94:2060-7
  • Stolnik S, Illum L, Davis SS. Long circulating microparticulate drug carriers. Adv Drug Deliv Rev 1995;16:195-214
  • Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006;307:93-102
  • Roser M, Fisher D, Kissel T. Surface-modified biodegradable albumin nano-and microspheres II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm 1998;46:255-63
  • Schafer V, von Briesen H, Andreesen R, Phagocytosis of nanoparticles by human immunodeficiency virus (HIV)-infected macrophages: a possibility for antiviral drug targeting. Pharm Res 1992;9:541-46
  • Bender AR, Schafer V, Steffan AM, Inhibition of HIV in vitro by antiviral drug-targeting using nanoparticles. Res Virol 1994;145:215-20
  • Bender AR, von Briesen H, Kreuter J, Efficiency of nanoparticles as a carrier system for antiviral agents in human immunodeficiency virus-infected human monocytes/macrophages in vitro. Antimicrob Agents Chemother 1996;40:1467-71
  • Shah LK, Amiji MM. Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Pharm Res 2006;23:2638-45
  • Hillaireau H, Le Doan T, Besnard M, Encapsulation of antiviral nucleotide analogues azidothymidine-triphosphate and cidofovir in poly(iso-butylcyanoacrylate) nanocapsules. Int J Pharm 2006;324:37-42
  • Hillaireau H, Le Doan T, Appel M, Couvreur P. Hybrid polymer nanocapsules enhance in vitro delivery of azidothymidine-triphosphate to macrophages. J Control Release 2006;116:346-52
  • Mainardes RM, Gremiao MP, Brunetti IL, Zidovudine-loaded PLA and PLA-PEG blend nanoparticles: influence of polymer type on phagocytic uptake by polymorphonuclear cells. J Pharm Sci 2009;98:257-67
  • Mainardes RM, Khalil NM, Gremiao MP. Intranasal delivery of zidovudine by PLA and PLA-PEG blend nanoparticles. Int J Pharm 2010;395:266-71
  • Destache CJ, Belgum T, Christensen K, Combination antiretroviral drugs in PLGA nanoparticle for HIV-1. BMC Infect Dis 2009;9:198-206
  • Destache CJ, Belgum T, Goede M, Antiretroviral release from poly(DL-lactide-co-glycolide) nanoparticles in mice. J Antimicrob Chemother 2010;65:2183-7
  • Löbenberg R, Kreuter J. Macrophage targeting of azidothymidine: a promising strategy for AIDS therapy. AIDS Res Hum Retroviruses 1996;12:1709-15
  • Löbenberg R, Araujo L, von Briesen H, Body distribution of azidothymidine bound to hexyl-cyanoacrylate nanoparticles after i.v. injection to rats. J Control Release 1998;50:21-30
  • Löbenberg R, Maas J, Kreuter J. Improved body distribution of 14C-labelled AZT bound to nanoparticles in rats determined by radioluminography. Drug Targets 1998;5:171-9
  • Dembri A, Montisci MJ, Gantier JC, Targeting of 3′-azido -3′-deoxythymidine (AZT)-loaded poly(isohexylcyanoacrylate) nanospheres to the gastrointestinal mucosa and associated lymphoid tissues. Pharm Res 2001;18:467-73
  • Takakura Y, Hashida M. Macromolecular carrier systems for targeted drug delivery: pharmacokinetic considerations on biodistribution. Pharm Res 1996;13:820-31
  • Largent BL, Walton KM, Hoppe CA, Carbohydrate-specific adhesion of alveolar macrophages to mannose derivatized surfaces. J Biol Chem 1984;259:1764-9
  • Haltiwanger RS, Hill RL. The ligand binding specificity and tissue localization of a rat alveolar macrophage lectin. J Biol Chem 1986;261:15696-702
  • Shao J, Ma JKH. Characterization of mannosylphospholipid liposome system for drug targeting to alveolar macrophages. J Drug Deliv Target Ther Agents 1997;1998:43-8
  • Jain SK, Gupta Y, Jain A, Mannosylated gelatin nanoparticles bearing an anti-HIV drug didanosine for site-specific delivery. Nanomedicine 2008;4:41-8
  • Kaur A, Jain S, Tiwary AK. Mannan-coated gelatin nanoparticles for sustained and targeted delivery of didanosine: in vitro and in vivo evaluation. Acta Pharm 2008;58:61-74
  • Rao KS, Reddy MK, Horning JL, Labhasetwar V. TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials 2008;29:4429-38
  • Letendre SL, Ellis RJ, Ances BM, McCutchan JA. Neurologic complications of HIV disease and their treatment. Top HIV Med 2010;18:45-55
  • Grant I. Neurocognitive disturbances in HIV. Int Rev Psychiatry 2008;20:33-47
  • Varatharajana L, Thomasb SA. The transport of anti-HIV drugs across blood–CNS interfaces: summary of current knowledge and recommendations for further research. Antiviral Res 2009;82:A99-A109
  • Khalil NM, Mainardes RM. Colloidal polymeric nanoparticles and brain drug delivery. Curr Drug Deliv 2009;6:261-73
  • Mahajan SD, Roy I, Xu GX, Enhancing the delivery of anti retroviral drug ‘Saquinavir’ across the blood brain barrier using nanoparticles. Curr HIV Res 2010;8:396-404
  • Wong HL, Chattopadhyay N, Wu XY, Bendayan R. Nanotechnology applications for improved delivery of antiretroviral drugs to the brain. Adv Drug Deliv Rev 2010;18;62:503-17
  • Koziara JM, Lockman PR, Allen DD, Mumper RJ. The blood-brain barrier and brain drug delivery. J Nanosci Nanotechnol 2006;6:2712-35
  • Olivier JC, Fenart L, Chauvet R, Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm Res 1999;16:1836-42
  • Goppert TM, Muller RH. Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 2005;13:179-87
  • Kreuter J. Application of nanoparticles for the delivery of drugs to the brain. Int Congr Ser 2005;1277:85-94
  • Kreuter J, Shamenkov D, Petrov V, Apolipoprotein-mediated transport of nanoparticles-bound drugs across the blood–brain barrier. J Drug Target 2002;10:317-25
  • Kuo YC. Loading efficiency of stavudine on polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate copolymer nanoparticles. Int J Pharm 2005;290:161-72
  • Kuo YC, Chen HH. Effect of nanoparticulate polybutylcyanoacrylate and methylmethacrylate-sulfopropylmethacrylate on the permeability of zidovudine and lamivudine across the in vitro blood-brain barrier. Int J Pharm 2006;327:160-69
  • Kuo YC, Su FL. Transport of stavudine, delavirdine, and saquinavir across the blood–brain barrier by polybutylcyanoacrylate, methylmethacrylatesulfopropylmethacrylate, and solid lipid nanoparticles. Int J Pharm 2007;340:143-52
  • Kang YS, Bickel U, Pardridge WM. Pharmacokinetics and saturable blood-brain barrier transport of biotin bound to a conjugate of avidin and a monoclonal antibody to the transferring receptor. Drug Metab Dispos 1994;22:99-105
  • Shin SU, Friden P, Moran M, Transferrin-antibody fusion proteins are effective in brain targeting. Proc Natl Acad Sci USA 1995;92:2820-24
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001;47:65-81
  • Mishra V, Mahor S, Rawat A, Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target 2006;14:45-53
  • Torchilin VP. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev 2008;60:548-58
  • Jeang KT, Xiao H, Rich EA. Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J Biol Chem 1999;274:28837-40
  • Dennison SR, Baker RD, Nicholl ID, Phoenix DA. Interactions of cell penetrating peptide Tat with model membranes: a biophysical study. Biochem Biophys Res Commun 2007;363:178-82
  • Torchilin VP. Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Biopolymers 2008;90:604-10
  • Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 1999;285:1569-72
  • Rao KS, Ghorpade A, Labhasetwar V. Targeting anti-HIV drugs to the CNS. Expert Opin Drug Deliv 2009;6:771-84
  • Chen X-Q, Fawcett JR, Rahman Y-E, Delivery of nerve growth factor to the brain via the olfactory pathway. J Alzheimer's Dis 1998;1:35-44
  • Thorne RG, Emory CR, Ala TA, Frey WH. Quantitative assessment of protein transport to the rat olfactory bulb following intranasal administration: implications for drug delivery. Brain Res 1995;692:278-82
  • Thorne RG, Pronk GJ, Padmanabhan V, Frey WH. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 2004;127:481-96
  • Ross TM, Martinez PM, Renner JC, Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol 2004;151:66-77
  • Hanson LR, Frey WH. Strategies for intranasal delivery of therapeutics for the prevention and treatment of neuroAIDS. J Neuroimmune Pharmacol 2007;2:81-6
  • Yang Z, Huang Y, Gan G, Sawchuk RJ. Microdialysis evaluation of the brain distribution of stavudine following intranasal and intravenous administration to rats. J Pharm Sci 2005;94:1577-88
  • Betbeder D, Sperandio S, Latapie JP, Biovector nanoparticles improve antinociceptive efficacy of nasal morphine. Pharm Res 2000;17:743-8
  • Zhang QZ, Zha L-S, Zhang Y, The brain targeting efficiency following nasally applied MPEG-PLA nanoparticles in rats. J Drug Target 2006;14:281-90
  • Al-Ghananeem AM, Saeed H, Florence R, Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain targeting; an attractive route against infections caused by AIDS viruses. J Drug Target 2010;18:381-8
  • Letvin NL. Correlates of immune protection and the development of a human immunodeficiency virus vaccine. Immunity 2007;27:366-9
  • Chun TW, Fauci AS. Latent reservoirs of HIV: obstacles to the eradication of virus. Proc Natl Acad Sci USA 1999;96:10958-61
  • Copland MJ, Rades T, Davies NM, Baird MA. Lipid based particulate formulations for the delivery of antigen. Immunol Cell Biol 2005;83:97-105
  • Saupe A, McBurney W, Rades T, Hook S. Immunostimulatory colloidal delivery systems for cancer vaccines. Expert Opin Drug Deliv 2006;3:345-54
  • Parren PWHI, Marx PA, Hessell AJ, Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro. J Virol 2001;75:8340-7
  • Gallichan WS, Rosenthal KL. Long-lived cytotoxic T lymphocyte memory in mucosal tissues after mucosal but not systemic immunization. J Exp Med 1996;184:1879-90
  • Vogel FR, Powell MF, Alving CR. A compendium of vaccine adjuvants and excipients. In: Powell MF, Newman MJ, editors, Vaccine design: the subunit and adjuvant approach. Plenum Press, New York; 1995
  • Simon JK, Edelman R. Clinical evaluation of adjuvants. In: Schijns VEJC, O'Hagan DT, editors, Immunopotentiators in modern vaccines. Academic Press, Burlington, MA; 2006
  • Peek LJ, Middaugh CR, Berkland C. Nanotechnology in vaccine delivery. Adv Drug Deliv Rev 2008;60:915-28
  • Wendorf J, Singh M, Chesko J, A practical approach to the use of nanoparticles for vaccine delivery. J Pharm Sci 2006;95:2738-50
  • He Q, Mitchell A, Morcol T, Bell SJD. Calcium phosphate nanoparticles induce mucosal immunity and protection against herpes simplex virus type 2. Clin Diagn Lab Immunol 2002;9:1021-4
  • Lutsiak ME, Kwon GS, Samuel J. Biodegradable nanoparticles delivery of a Th2-biased peptide for induction of Th1 immune responses. J Pharm Pharmacol 2006;58:739-47
  • Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 1997;28:5-24
  • O'Hagan DT, Singh M, Gupta RK. Poly(lactide-coglycolide) microparticles for the development of single-dose controlled-release vaccines. Adv Drug Deliv Rev 1998;32:225-46
  • Jiang W, Gupta RK, Deshpande MC, Schwendeman SP. Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv Drug Deliv Rev 2005;57:391-410
  • Sharp FA, Ruane D, Claass B, Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Natl Acad Sci USA 2009;106:870-5
  • Locher CP, Putnam D, Langer R, Enhancement of a human immunodeficiency virus env DNA vaccine using a novel polycationic nanoparticle formulation. Immunol Lett 2003;90:67-70
  • Cui Z, Patel J, Tuzova M, Strong T cell type-1 immune responses to HIV-1 Tat (1–72) protein-coated nanoparticles. Vaccine 2004;22:2631-40
  • Ataman-Onal Y, Munier S, Ganee A, Surfactant-free anionic PLA coated with HIV-1 p24 protein induced enhanced cellular and humoral immune responses in various animal models. J Control Release 2006;112:175-85
  • Lamalle-Bernard D, Munier S, Compagnon C, Coadsorption of HIV-1 p24 and gp120 proteins to surfactant-free anionic PLA nanoparticles preserves antigenicity and immunogenicity. J Control Release 2006;115:57-67
  • Guillon C, Mayol K, Terrat C, Formulation of HIV-1 Tat and p24 antigens by PLA nanoparticles or MF59 impacts the breadth, but not the magnitude, of serum and faecal antibody responses in rabbits. Vaccine 2007;25:7491-501
  • Castaldello A, Brocca-Cofano E, Voltan R, DNA prime and protein boost immunization with innovative polymeric cationic core-shell nanoparticles elicits broad immune responses and strongly enhance cellular responses of HIV-1 tat DNA vaccination. Vaccine 2006;24:5655-69
  • Wang X, Uto T, Sato K, Potent activation of antigen-specific T cells by antigen-loaded nanospheres. Immunol Lett 2005;98:123-30
  • Wang X, Uto T, Akagi T, Induction of potent CD8+ T-cell responses by novel biodegradable nanoparticles carrying human immunodeficiency virus type 1 gp120. J Virol 2007;81:10009-16
  • Wang X, Uto T, Akagi T, Poly(gamma-glutamic acid) nanoparticles as an efficient antigen delivery and adjuvant system: potential for an AIDS vaccine. J Med Virol 2008;80:11-9
  • Himeno A, Akagi T, Uto T, Evaluation of the immune response and protective effects of rhesus macaques vaccinated with biodegradable nanoparticles carrying gp120 of human immunodeficiency virus. Vaccine 2010;28:5377-85
  • Aline F, Brand D, Pierre J, Dendritic cells loaded with HIV-1 p24 proteins adsorbed on surfactant-free anionic PLA nanoparticles induce enhanced cellular immune responses against HIV-1 after vaccination. Vaccine 2009;27:5284-91

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.