695
Views
45
CrossRef citations to date
0
Altmetric
Reviews

Opportunities and challenges of the pulmonary route for vaccination

, PhD, , PhD & , MD
Pages 547-563 | Published online: 26 Mar 2011

Bibliography

  • Gehr P, Bachofen M, Weibel ER. The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol 1978;32:121-40
  • Schurch S, Gehr P, Im Hof V, Surfactant displaces particles toward the epithelium in airways and alveoli. Respir Physiol 1990;80:17-32
  • Chroneos ZC, Sever-Chroneos Z, Shepherd VL. Pulmonary surfactant: an immunological perspective. Cell Physiol Biochem 2010;25:13-26
  • Bals R, Hiemstra PS. Innate immunity in the lung: how epithelial cells fight against respiratory pathogens. Eur Respir J 2004;23:327-33
  • Kilburn KH. A hypothesis for pulmonary clearance and its implications. Am Rev Respir Dis 1968;98:449-63
  • Holt PG, Strickland DH, Wikstrom ME, Jahnsen FL. Regulation of immunological homeostasis in the respiratory tract. Nat Rev Immunol 2008;8:142-52
  • Peters-Golden M. The alveolar macrophage: the forgotten cell in asthma. Am J Respir Cell Mol Biol 2004;31:3-7
  • Holt PG, Stumbles PA. Characterization of dendritic cell populations in the respiratory tract. J Aerosol Med 2000;13:361-7
  • Vermaelen K, Pauwels R. Pulmonary dendritic cells. Am J Respir Crit Care Med 2005;172:530-51
  • von Garnier C, Nicod LP. Immunology taught by lung dendritic cells. Swiss Med Wkly 2009;139:186-92
  • von Garnier C, Filgueira L, Wikstrom M, Anatomical location determines the distribution and function of dendritic cells and other APCs in the respiratory tract. J Immunol 2005;175:1609-18
  • Stumbles PA, Upham JW, Holt PG. Airway dendritic cells: co-ordinators of immunological homeostasis and immunity in the respiratory tract. APMIS 2003;111:741-55
  • Patton JS. Mechanisms of macromolecule absorption by the lungs. Adv Drug Deliv Rev 1996;19:3-36
  • von Garnier C, Wikstrom ME, Zosky G, Allergic airways disease develops after an increase in allergen capture and processing in the airway mucosa. J Immunol 2007;179:5748-59
  • Fong L, Engleman EG. Dendritic cells in cancer immunotherapy. Annu Rev Immunol 2000;18:245-73
  • Banchereau J, Schuler-Thurner B, Palucka AK, Schuler G. Dendritic cells as vectors for therapy. Cell 2001;106:271-4
  • Zheng M, Shellito JE, Marrero L, CD4+ T cell-independent vaccination against Pneumocystis carinii in mice. J Clin Invest 2001;108:1469-74
  • Mansour HM, Rhee YS, Wu X. Nanomedicine in pulmonary delivery. Int J Nanomedicine 2009;4:299-319
  • Veres TZ, Shevchenko M, Krasteva G, Dendritic cell-nerve clusters are sites of T cell proliferation in allergic airway inflammation. Am J Pathol 2009;174:808-17
  • Wikstrom ME, Stumbles PA. Mouse respiratory tract dendritic cell subsets and the immunological fate of inhaled antigens. Immunol Cell Biol 2007;85:182-8
  • Beaty SR, Rose CE Jr, Sung SS. Diverse and potent chemokine production by lung CD11bhigh dendritic cells in homeostasis and in allergic lung inflammation. J Immunol 2007;178:1882-95
  • Sung SS, Fu SM, Rose CE Jr, A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J Immunol 2006;176:2161-72
  • del Rio ML, Bernhardt G, Rodriguez-Barbosa JI, Forster R. Development and functional specialization of CD103+ dendritic cells. Immunol Rev 2010;234:268-81
  • Sertl K, Takemura T, Tschachler E, Dendritic cells with antigen-presenting capability reside in airway epithelium, lung parenchyma, and visceral pleura. J Exp Med 1986;163:436-51
  • Cochand L, Isler P, Songeon F, Nicod LP. Human lung dendritic cells have an immature phenotype with efficient mannose receptors. Am J Respir Cell Mol Biol 1999;21:547-54
  • Demedts IK, Brusselle GG, Vermaelen KY, Pauwels RA. Identification and characterization of human pulmonary dendritic cells. Am J Respir Cell Mol Biol 2005;32:177-84
  • Schon-Hegrad MA, Oliver J, McMenamin PG, Holt PG. Studies on the density, distribution, and surface phenotype of intraepithelial class II major histocompatibility complex antigen (Ia)-bearing dendritic cells (DC) in the conducting airways. J Exp Med 1991;173:1345-56
  • Valladeau J, Duvert-Frances V, Pin JJ, The monoclonal antibody DCGM4 recognizes Langerin, a protein specific of Langerhans cells, and is rapidly internalized from the cell surface. Eur J Immunol 1999;29:2695-704
  • Masten BJ, Olson GK, Tarleton CA, Characterization of myeloid and plasmacytoid dendritic cells in human lung. J Immunol 2006;177:7784-93
  • del Rio ML, Rodriguez-Barbosa JI, Kremmer E, Forster R. CD103- and CD103+ bronchial lymph node dendritic cells are specialized in presenting and cross-presenting innocuous antigen to CD4+ and CD8+ T cells. J Immunol 2007;178:6861-6
  • Belz GT, Bedoui S, Kupresanin F, Minimal activation of memory CD8+ T cell by tissue-derived dendritic cells favors the stimulation of naive CD8+ T cells. Nat Immunol 2007;8:1060-6
  • Kim TS, Braciale TJ. Respiratory dendritic cell subsets differ in their capacity to support the induction of virus-specific cytotoxic CD8(+) T cell responses. PLoS One 2009;4(1):e4204
  • Jakubzick C, Tacke F, Llodra J, Modulation of dendritic cell trafficking to and from the airways. J Immunol 2006;176:3578-84
  • Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 2007;204:1757-64
  • Fujita S, Yamashita N, Ishii Y, Regulatory dendritic cells protect against allergic airway inflammation in a murine asthmatic model. J Allergy Clin Immunol 2008;121:95-104. e7
  • Henry E, Desmet CJ, Garze V, Dendritic cells genetically engineered to express IL-10 induce long-lasting antigen-specific tolerance in experimental asthma. J Immunol 2008;181:7230-42
  • Li X, Yang A, Huang H, Induction of type 2 T helper cell allergen tolerance by IL-10-differentiated regulatory dendritic cells. Am J Respir Cell Mol Biol 2010;42:190-9
  • Asselin-Paturel C, Boonstra A, Dalod M, Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2001;2:1144-50
  • Pascale F, Contreras V, Bonneau M, Plasmacytoid dendritic cells migrate in afferent skin lymph. J Immunol 2008;180:5963-72
  • de Heer HJ, Hammad H, Soullie T, Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J Exp Med 2004;200:89-98
  • Cella M, Facchetti F, Lanzavecchia A, Colonna M. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol 2000;1:305-10
  • Irla M, Kupfer N, Suter T, MHC class II-restricted antigen presentation by plasmacytoid dendritic cells inhibits T cell-mediated autoimmunity. J Exp Med 2010;207:1891-905
  • Sapoznikov A, Fischer JA, Zaft T, Organ-dependent in vivo priming of naive CD4+, but not CD8+, T cells by plasmacytoid dendritic cells. J Exp Med 2007;204:1923-33
  • GeurtsvanKessel CH, Willart MA, van Rijt LS, Clearance of influenza virus from the lung depends on migratory langerin+CD11b- but not plasmacytoid dendritic cells. J Exp Med 2008;205:1621-34
  • Kool M, van Nimwegen M, Willart MA, An anti-inflammatory role for plasmacytoid dendritic cells in allergic airway inflammation. J Immunol 2009;183:1074-82
  • Sorrentino R, Gray P, Chen S, Plasmacytoid dendritic cells prevent cigarette smoke and Chlamydophila pneumoniae-induced Th2 inflammatory responses. Am J Respir Cell Mol Biol 2010;43:422-31
  • Venet F, Huang X, Chung CS, Plasmacytoid dendritic cells control lung inflammation and monocyte recruitment in indirect acute lung injury in mice. Am J Pathol 2010;176:764-73
  • Hocking WG, Golde DW. The pulmonary-alveolar macrophage (first of two parts). N Engl J Med 1979;301:580-7
  • Corry D, Kulkarni P, Lipscomb MF. The migration of bronchoalveolar macrophages into hilar lymph-nodes. Am J Pathol 1984;115:321-8
  • Harmsen AG, Muggenburg BA, Snipes MB, Bice DE. The role of macrophages in particle translocation from lungs to lymph-nodes. Science 1985;230:1277-80
  • Thepen T, Claassen E, Hoeben K, Migration of alveolar macrophages from alveolar space to paracortical T-cell area of the draining lymph-node. Adv Exp Med Biol 1993;329:305-10
  • Kirby AC, Coles MC, Kaye PM. Alveolar macrophages transport pathogens to lung draining lymph nodes. J Immunol 2009;183:1983-9
  • Bilyk N, Holt PG. Inhibition of the immunosuppressive activity of resident pulmonary alveolar macrophages by granulocyte-macrophage colony-stimulating factor. J Exp Med 1993;177:1773-7
  • Bingisser RM, Tilbrook PA, Holt PG, Kees UR. Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol 1998;160:5729-34
  • Holt PG, Oliver J, Bilyk N, Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J Exp Med 1993;177:397-407
  • Kradin RL, Liu HW, van Rooijen N, Pulmonary immunity to Listeria is enhanced by elimination of alveolar macrophages. Am J Respir Crit Care 1999;159:1967-74
  • Tang CB, Inman MD, van Rooijen N, Th type 1-stimulating activity of lung macrophages inhibits Th2-mediated allergic airway inflammation by an IFN-gamma-dependent mechanism. J Immunol 2001;166:1471-81
  • Thepen T, McMenamin C, Girn B, Regulation of IgE production in pre-sensitized animals: in vivo elimination of alveolar macrophages preferentially increases IgE responses to inhaled allergen. Clin Exp Allergy 1992;22:1107-14
  • van Iwaarden JF, Claassen E, Jeurissen SH, Alveolar macrophages, surfactant lipids, and surfactant protein B regulate the induction of immune responses via the airways. Am J Respir Cell Mol Biol 2001;24:452-8
  • Careau E, Bissonnette EY. Adoptive transfer of alveolar macrophages abrogates bronchial hyperresponsiveness. Am J Respir Cell Mol Biol 2004;31:22-7
  • Vissers JL, van Esch BC, Hofman GA, van Oosterhout AJ. Macrophages induce an allergen-specific and long-term suppression in a mouse asthma model. Eur Respir J 2005;26:1040-6
  • Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 2009;27:451-83
  • Zhu Z, Zheng T, Homer RJ, Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science 2004;304:1678-82
  • Melgert BN, Oriss TB, Qi Z, Macrophages: regulators of sex differences in asthma? Am J Respir Cell Mol Biol 2010;42:595-603
  • Julia V, Hessel EM, Malherbe L, A restricted subset of dendritic cells captures airborne antigens and remains able to activate specific T cells long after antigen exposure. Immunity 2002;16:271-83
  • Matthews KE, Karabeg A, Roberts JM, Long-term deposition of inhaled antigen in lung resident CD11b-CD11c+ cells. Am J Respir Cell Mol Biol 2007;36:435-41
  • Wikstrom ME, Batanero E, Judd SR, Lung homing T-cell generation is dependent on strength and timing of antigen delivery to lymph nodes. Immunol Cell Biol 2010;88:658-66
  • Chvatchko Y, KoscoVilbois MH, Herren S, Germinal center formation and local immunoglobulin E (IgE) production in the lung after an airway antigenic challenge. J Exp Med 1996;184:2353-60
  • Burrows B, Martinez FD, Halonen M, Association of asthma with serum ige levels and skin-test reactivity to allergens. N Engl J Med 1989;320:271-7
  • Lindell DM, Berlin AA, Schaller MA, Lukacs NW. B cell antigen presentation promotes Th2 responses and immunopathology during chronic allergic lung disease. PLoS One 2008;3(9):e3129
  • Lundy SK, Berlin AA, Martens TF, Lukacs NW. Deficiency of regulatory B cells increases allergic airway inflammation. Inflamm Res 2005;54:514-21
  • Corry DB, Grunig G, Hadeiba H, Requirements for allergen-induced airway hyperreactivity in T and B cell-deficient mice. Mol Med 1998;4:344-55
  • Korsgren M, Erjefalt JS, Korsgren O, Allergic eosinophil-rich inflammation develops in lungs and airways of B cell-deficient mice. J Exp Med 1997;185:885-92
  • MacLean JA, Sauty A, Luster AD, Antigen-induced airway hyperresponsiveness, pulmonary eosinophilia, and chemokine expression in B cell-deficient mice. Am J Respir Cell Mol 1999;20:379-87
  • Saoudi A, Simmonds S, Huitinga I, Mason D. Prevention of experimental allergic encephalomyelitis in rats by targeting autoantigen to B cells: evidence that the protective mechanism depends on changes in the cytokine response and migratory properties of the autoantigen-specific T cells. J Exp Med 1995;182:335-44
  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245-52
  • Demedts IK, Bracke KR, Maes T, Different roles for human lung dendritic cell subsets in pulmonary immune defense mechanisms. Am J Respir Cell Mol Biol 2006;35:387-93
  • Iwasaki A. Role of autophagy in innate viral recognition. Autophagy 2007;3:354-6
  • Xia W, Pinto CE, Kradin RL. The antigen-presenting activities of Ia+ dendritic cells shift dynamically from lung to lymph node after an airway challenge with soluble antigen. J Exp Med 1995;181:1275-83
  • Nicod LP, Lipscomb MF, Weissler JC, Toews GB. Mononuclear cells from human lung parenchyma support antigen-induced T lymphocyte proliferation. J Leukoc Biol 1989;45:336-44
  • Villadangos JA, Shortman K. Found in translation: the human equivalent of mouse CD8(+) dendritic cells. J Exp Med 2010;207:1131-4
  • Bachem A, Guttler S, Hartung E, Superior antigen cross-presentation and XCR1 expression define human CD11c(+)CD141(+) cells as homologues of mouse CD8(+) dendritic cells. J Exp Med 2010;207:1273-81
  • Crozat K, Guiton R, Contreras V, The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8 alpha(+) dendritic cells. J Exp Med 2010;207:1283-92
  • Jongbloed SL, Kassianos AJ, McDonald KJ, Human CD141(+) (BDCA-3)(+) dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 2010;207:1247-60
  • Poulin LF, Salio M, Griessinger E, Characterization of human DNGR-1(+) BDCA3(+) leukocytes as putative equivalents of mouse CD8 alpha(+) dendritic cells. J Exp Med 2010;207:1261-71
  • Holt PG, Schonhegrad MA, Phillips MJ, Mcmenamin PG. Ia-positive dendritic cells form a tightly meshed network within the human airway epithelium. Clin Exp Allergy 1989;19:597-601
  • Gallucci S, Matzinger P. Danger signals: SOS to the immune system. Curr Opin Immunol 2001;13:114-19
  • Holt PG, Schon-Hegrad MA. Localization of T cells, macrophages and dendritic cells in rat respiratory tract tissue: implications for immune function studies. Immunology 1987;62:349-56
  • Constant SL, Brogdon JL, Piggott DA, Resident lung antigen-presenting cells have the capacity to promote Th2 T cell differentiation in situ. J Clin Invest 2002;110:1441-8
  • Moyron-Quiroz JE, Rangel-Moreno J, Kusser KR, Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med 2004;10:927-34
  • Sminia T, Vanderbruggegamelkoorn GJ, Jeurissen SHM. Structure and function of bronchus-associated lymphoid-tissue (Balt). Crit Rev Immunol 1989;9:119-50
  • Bienenstock J, Johnston N. Morphologic study of rabbit bronchial lymphoid aggregates and lymphoepithelium. Lab Invest 1976;35:343-8
  • Didierlaurent A, Goulding J, Hussell T. The impact of successive infections on the lung microenvironment. Immunology 2007;122:457-65
  • Wikstrom ME, Batanero E, Smith M, Influence of mucosal adjuvants on antigen passage and CD4+ T cell activation during the primary response to airborne allergen. J Immunol 2006;177:913-24
  • Itano AA, Jenkins MK. Antigen presentation to naive CD4 T cells in the lymph node. Nat Immunol 2003;4:733-9
  • LiCalsi C, Maniaci MJ, Christensen T, A powder formulation of measles vaccine for aerosol delivery. Vaccine 2001;19:2629-36
  • Sabin AB, Arechiga AF, Decastro JF, Successful immunization of children with and without maternal antibody by aerosolized measles-vaccine 1. Different results with undiluted human-diploid cell and chick-embryo fibroblast vaccines. JAMA 1983;249:2651-62
  • Khanum S, Uddin N, Garelick H, Comparison of Edmonston-Zagreb and Schwarz strains of measles vaccine given by aerosol or subcutaneous injection. Lancet 1987;1:150-3
  • Hiremath GS, Omer SB. A meta-analysis of studies comparing the respiratory route with the subcutaneous route of measles vaccine administration. Hum Vaccin 2005;1:30-6
  • Low N, Kraemer S, Schneider M, Restrepo AM. Immunogenicity and safety of aerosolized measles vaccine: systematic review and meta-analysis. Vaccine 2008;26:383-98
  • Omer SB, Hiremath GS, Halsey NA. Respiratory administration of measles vaccine. Lancet 2010;375:706-8
  • Fernandez-de Castro J, Kumate-Rodriguez J, Sepulveda J, Measles vaccination by the aerosol method in Mexico. Salud Publica Mex 1997;39:53-60
  • Tosh PK, Boyce TG, Poland GA. Flu myths: dispelling the myths associated with live attenuated influenza vaccine. Mayo Clin Proc 2008;83:77-84
  • Wareing MD, Tannock GA. Live attenuated vaccines against influenza; an historical review. Vaccine 2001;19:3320-30
  • Belshe R, Lee MS, Walker RE, Safety, immunogenicity and efficacy of intranasal, live attenuated influenza vaccine. Expert Rev Vaccines 2004;3:643-54
  • Geisbert TW, Bausch DG, Feldmann H. Prospects for immunisation against Marburg and Ebola viruses. Rev Med Virol 2010;20:344-57
  • DiNapoli JM, Yang L, Samal SK, Respiratory tract immunization of non-human primates with a Newcastle disease virus-vectored vaccine candidate against Ebola virus elicits a neutralizing antibody response. Vaccine 2010;29:17-25
  • DiNapoli JM, Ward JM, Cheng L, Delivery to the lower respiratory tract is required for effective immunization with Newcastle disease virus-vectored vaccines intended for humans. Vaccine 2009;27:1530-9
  • Graham BS. Biological challenges and technological opportunities for respiratory syncytial virus vaccine development. Immunol Rev 2011;239:149-66
  • Tebbey PW, Unczur CA, LaPierre NA, Hancock GE. A novel and effective intranasal immunization strategy for respiratory syncytial virus. Viral Immunol 1999;12:41-5
  • Belshe RB, Newman FK, Anderson EL, Evaluation of combined live, attenuated respiratory syncytial virus and parainfluenza 3 virus vaccines in infants and young children. J Infect Dis 2004;190:2096-103
  • Kim S, Jang JE, Yu JR, Chang J. Single mucosal immunization of recombinant adenovirus-based vaccine expressing F1 protein fragment induces protective mucosal immunity against respiratory syncytial virus infection. Vaccine 2010;28:3801-8
  • Mapletoft JW, Latimer L, Babiuk LA, van Drunen Littel-van den Hurk S. Intranasal immunization of mice with a bovine respiratory syncytial virus vaccine induces superior immunity and protection compared to those by subcutaneous delivery or combinations of intranasal and subcutaneous prime-boost strategies. Clin Vaccine Immunol 2010;17:23-35
  • Du L, Zhao G, Lin Y, Intranasal vaccination of recombinant adeno-associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-term protection against SARS-CoV infection. J Immunol 2008;180:948-56
  • Thomas C, Gupta V, Ahsan F. Particle size influences the immune response produced by hepatitis B vaccine formulated in inhalable particles. Pharm Res 2010;27:905-19
  • Balmelli C, Demotz S, Acha-Orbea H, Trachea, lung, and tracheobronchial lymph nodes are the major sites where antigen-presenting cells are detected after nasal vaccination of mice with human papillomavirus type 16 virus-like particles. J Virol 2002;76:12596-602
  • Arevalo MT, Xu Q, Paton JC, Mucosal vaccination with a multicomponent adenovirus-vectored vaccine protects against Streptococcus pneumoniae infection in the lung. FEMS Immunol Med Microbiol 2009;55:346-51
  • Giri PK, Khuller GK. Is intranasal vaccination a feasible solution for tuberculosis? Expert Rev Vaccines 2008;7:1341-56
  • Bivas-Benita M, Lin MY, Bal SM, Pulmonary delivery of DNA encoding Mycobacterium tuberculosis latency antigen Rv1733c associated to PLGA-PEI nanoparticles enhances T cell responses in a DNA prime/protein boost vaccination regimen in mice. Vaccine 2009;27:4010-17
  • Bumann D, Behre C, Behre K, Systemic, nasal and oral live vaccines against Pseudomonas aeruginosa: a clinical trial of immunogenicity in lower airways of human volunteers. Vaccine 2010;28:707-13
  • Bodhankar S, Woolard MD, Sun XL, Simecka JW. NK cells interfere with the generation of resistance against mycoplasma respiratory infection following nasal-pulmonary immunization. J Immunol 2009;183:2622-31
  • Bertot GM, Becker PD, Guzman CA, Grinstein S. Intranasal vaccination with recombinant P6 protein and adamantylamide dipeptide as mucosal adjuvant confers efficient protection against otitis media and lung infection by nontypeable Haemophilus influenzae. J Infect Dis 2004;189:1304-12
  • Chiavolini D, Rangel-Moreno J, Berg G, Bronchus-associated lymphoid tissue (BALT) and survival in a vaccine mouse model of tularemia. PLoS One 2010;5(6):e11156
  • Qiu J, Yan L, Chen J, Intranasal vaccination with recombinant Listeria {Delta}actA prfA* elicited robust systemic and pulmonary cellular responses, and secretory mucosal IgA. Clin Vaccine Immunol 26 Jan 2011. [Epub ahead of print]
  • Heyder J. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc Am Thorac Soc 2004;1:315-20
  • Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov 2007;6:67-74
  • Dames P, Gleich B, Flemmer A, Targeted delivery of magnetic aerosol droplets to the lung. Nat Nanotechnol 2007;2:495-9
  • Kumar A, El-Badri N, Glaum M, Cameron DF. Initial observations of cell mediated drug delivery to the deep lung. Cell Transplant 5 Nov 2010. [Epub ahead of print] doi: 10.3727/096368910X536491
  • Shephard MJ, Todd D, Adair BM, Immunogenicity of bovine parainfluenza type 3 virus proteins encapsulated in nanoparticle vaccines, following intranasal administration to mice. Res Vet Sci 2003;74:187-90
  • Byron PR. Prediction of drug residence times in regions of the human respiratory tract following aerosol inhalation. J Pharm Sci 1986;75:433-8
  • Jennings GT, Bachmann MF. Designing recombinant vaccines with viral properties: a rational approach to more effective vaccines. Curr Mol Med 2007;7:143-55
  • Singh M, Chakrapani A, O'Hagan D. Nanoparticles and microparticles as vaccine-delivery systems. Expert Rev Vaccines 2007;6:797-808
  • Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 2010;10:787-96
  • Reddy ST, van der Vlies AJ, Simeoni E, Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 2007;25:1159-64
  • Unanue ER. The regulatory role of macrophages in antigenic stimulation. Part two: symbiotic relationship between lymphocytes and macrophages. Adv Immunol 1981;31:1-136
  • Kovacsovics-Bankowski M, Clark K, Benacerraf B, Rock KL. Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. Proc Natl Acad Sci USA 1993;90:4942-6
  • Choi HS, Ashitate Y, Lee JH, Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol 2010;28:1300-3
  • Tsapis N, Bennett D, Jackson B, Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci USA 2002;99:12001-5
  • Blank F, von Garnier C, Obregon C, Role of dendritic cells in the lung: in vitro models, animal models and human studies. Expert Rev Respir Med 2008;2:215-33

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.