554
Views
39
CrossRef citations to date
0
Altmetric
Reviews

Recent trends in cancer drug resistance reversal strategies using nanoparticles

, &
Pages 287-301 | Published online: 20 Feb 2012

Bibliography

  • Chabner BA, Roberts TG Jr. Timeline: chemotherapy and the war on cancer. Nat Rev Cancer 2005;5:65-72
  • Tomasetti C, Levy D. Role of symmetric and asymmetric division of stem cells in developing drug resistance. Proc Natl Acad Sci USA 2010;107:16766-71
  • Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 2009;9:665-74
  • Baird RD, Kaye SB. Drug resistance reversal–are we getting closer? Eur J Cancer 2003;39:2450-61
  • Fotoohi AK, Albertioni F. Mechanisms of antifolate resistance and methotrexate efficacy in leukemia cells. Leuk Lymphoma 2008;49:410-26
  • Galmarini CM, Warren G, Senanayake MT, Efficient overcoming of drug resistance to anticancer nucleoside analogs by nanodelivery of active phosphorylated drugs. Int J Pharm 2010;395:281-9
  • Dmitriev OY. Mechanism of tumor resistance to cisplatin mediated by the copper transporter ATP7B. Biochem Cell Biol 2011;89:138-47
  • Szakacs G, Paterson JK, Ludwig JA, Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006;5:219-34
  • Chen ZS, Tiwari AK. Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J 2011;278:3226-45
  • Coley HM. Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treat Rev 2008;34:378-90
  • Fojo T, Bates S. Strategies for reversing drug resistance. Oncogene 2003;22:7512-23
  • Tucker CA, Kapanen AI, Chikh G, Silencing Bcl-2 in models of mantle cell lymphoma is associated with decreases in cyclin D1, nuclear factor-kappaB, p53, bax, and p27 levels. Mol Cancer Ther 2008;7:749-58
  • Cao X, Rodarte C, Zhang L, Bcl2/bcl-xL inhibitor engenders apoptosis and increases chemosensitivity in mesothelioma. Cancer Biol Ther 2007;6:246-52
  • Wrzesien-Kus A, Smolewski P, Sobczak-Pluta A, The inhibitor of apoptosis protein family and its antagonists in acute leukemias. Apoptosis 2004;9:705-15
  • Mackay HJ, Cameron D, Rahilly M, Reduced MLH1 expression in breast tumors after primary chemotherapy predicts disease-free survival. J Clin Oncol 2000;18:87-93
  • Meng CF, Dai DQ, Guo KJ. Effects of 5-Aza-2'-deoxycytidine and trichostatin A on DNA methylation and expression of hMLH1 in ovarian cancer cell line COC1/DDP. Ai Zheng 2008;27:1251-5
  • Eich M, Roos WP, Dianov GL, Nijmegen breakage syndrome protein (NBN) causes resistance to methylating anticancer drugs such as temozolomide. Mol Pharmacol 2010;78:943-51
  • Fedier A, Schwarz VA, Walt H, Resistance to topoisomerase poisons due to loss of DNA mismatch repair. Int J Cancer 2001;93:571-6
  • Lai GM, Moscow JA, Alvarez MG, Contribution of glutathione and glutathione-dependent enzymes in the reversal of adriamycin resistance in colon carcinoma cell lines. Int J Cancer 1991;49:688-95
  • Bailey HH. L-S,R-buthionine sulfoximine: historical development and clinical issues. Chem Biol Interact 1998;111-112:239-54
  • Gartenhaus RB, Prachand SN, Paniaqua M, Arsenic trioxide cytotoxicity in steroid and chemotherapy-resistant myeloma cell lines: enhancement of apoptosis by manipulation of cellular redox state. Clin Cancer Res 2002;8:566-72
  • Guntur VP, Waldrep JC, Guo JJ, Increasing p53 protein sensitizes non-small cell lung cancer to paclitaxel and cisplatin in vitro. Anticancer Res 2010;30:3557-64
  • Naujokat C, Fuchs D, Opelz G. Salinomycin in cancer: a new mission for an old agent. Mol Med Rep 2010;3:555-9
  • Usmani SZ, Bona R, Li Z. 17 AAG for HSP90 inhibition in cancer–from bench to bedside. Curr Mol Med 2009;9:654-64
  • Liang XJ, Chen C, Zhao Y, Circumventing tumor resistance to chemotherapy by nanotechnology. Methods Mol Biol 2010;596:467-88
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46:6387-92
  • Dufort S, Sancey L, Coll JL. Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution. Adv Drug Deliv Rev 2011 (In press)
  • Jabr-Milane LS, van Vlerken LE, Yadav S, Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev 2008;34:592-602
  • Dong X, Mumper RJ. Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine (Lond) 2010;5:597-615
  • Harris AL. Hypoxia–a key regulatory factor in tumour growth. Nat Rev Cancer 2002;2:38-47
  • Kizaka-Kondoh S, Inoue M, Harada H, Tumor hypoxia: a target for selective cancer therapy. Cancer Sci 2003;94:1021-8
  • Shannon AM, Bouchier-Hayes DJ, Condron CM, Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev 2003;29:297-307
  • Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003;3:721-32
  • Milane L, Duan Z, Amiji M. Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Mol Pharm 2011;8:185-203
  • Simon SM, Schindler M. Cell biological mechanisms of multidrug resistance in tumors. Proc Natl Acad Sci USA 1994;91:3497-504
  • Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. J control Release 2008;132(3):164-70
  • Lee ES, Shin HJ, Na K, Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization. J Control Release 2003;90:363-74
  • Lee ES, Gao Z, Kim D, Super pH-sensitive multifunctional polymeric micelle for tumor pH(e) specific TAT exposure and multidrug resistance. J Control Release 2008;129:228-36
  • Zhang H, Jiang H, Wang H, Ultrasound mediated drug-loaded nanoparticles crossing cell membranes as a new strategy to reverse cancer multidrug resistance. J Nanosci Nanotechnol 2011;11:1834-40
  • Bennis S, Chapey C, Couvreur P, Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres against multidrug-resistant tumour cells in culture. Eur J Cancer 1994;30A:89-93
  • Jiang Z, Chen BA, Xia GH, The reversal effect of magnetic Fe3O4 nanoparticles loaded with cisplatin on SKOV3/DDP ovarian carcinoma cells. Int J Nanomedicine 2009;4:107-14
  • Couvreur P, Stella B, Reddy LH, Squalenoyl nanomedicines as potential therapeutics. Nano Lett 2006;6:2544-8
  • Reddy LH, Dubernet C, Mouelhi SL, A new nanomedicine of gemcitabine displays enhanced anticancer activity in sensitive and resistant leukemia types. J Control Release 2007;124:20-7
  • Dosio F, Reddy LH, Ferrero A, Novel nanoassemblies composed of squalenoyl-paclitaxel derivatives: synthesis, characterization, and biological evaluation. Bioconjug Chem 2010;21:1349-61
  • Arias JL, Reddy LH, Othman M, Squalene based nanocomposites: a new platform for the design of multifunctional pharmaceutical theragnostics. ACS Nano 2011;5:1513-21
  • Shapira A, Livney YD, Broxterman HJ, Nanomedicine for targeted cancer therapy: towards the overcoming of drug resistance. Drug Resist Updat 2011;14:150-63
  • Moffitt KL, Martin SL, Walker B. From sentencing to execution–the processes of apoptosis. J Pharm Pharmacol 2010;62:547-62
  • Aas T, Borresen AL, Geisler S, Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 1996;2:811-14
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97
  • Cimmino A, Calin GA, Fabbri M, miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005;102:13944-9
  • He L, Thomson JM, Hemann MT, A microRNA polycistron as a potential human oncogene. Nature 2005;435:828-33
  • Hayashita Y, Osada H, Tatematsu Y, A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 2005;65:9628-32
  • Gandellini P, Profumo V, Folini M, MicroRNAs as new therapeutic targets and tools in cancer. Expert Opin Ther Targets 2011;15:265-79
  • Kovalchuk O, Filkowski J, Meservy J, Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther 2008;7:2152-9
  • Shi L, Chen J, Yang J, MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res 2010;1352:255-64
  • Zhao JJ, Lin J, Yang H, MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem 2008;283:31079-86
  • Fujita Y, Kojima K, Hamada N, Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun 2008;377:114-19
  • Yang H, Kong W, He L, MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 2008;68:425-33
  • Boni V, Zarate R, Villa JC, Role of primary miRNA polymorphic variants in metastatic colon cancer patients treated with 5-fluorouracil and irinotecan. Pharmacogenomics J 2010;11:429-36
  • Ji J, Shi J, Budhu A, MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med 2009;361:1437-47
  • Trang P, Wiggins JF, Daige CL, Systemic Delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther 2011;61(19):1116-22
  • Liu XQ, Song WJ, Sun TM, Targeted delivery of antisense inhibitor of miRNA for antiangiogenesis therapy using cRGD-functionalized nanoparticles. Mol Pharm 2011;8:250-9
  • Su J, Baigude H, McCarroll J, Silencing microRNA by interfering nanoparticles in mice. Nucleic Acids Res 2011;39:e38
  • Fire A, Xu S, Montgomery MK, Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature 1998;391:806-11
  • Gottesman MM, Hrycyna CA, Schoenlein PV, Genetic analysis of the multidrug transporter. Annu Rev Genet 1995;29:607-49
  • Donmez Y, Akhmetova L, Iseri OD, Effect of MDR modulators verapamil and promethazine on gene expression levels of MDR1 and MRP1 in doxorubicin-resistant MCF-7 cells. Cancer Chemother Pharmacol 2011;67:823-8
  • Kim JW, Sahm H, You J, Knock-down of superoxide dismutase 1 sensitizes cisplatin-resistant human ovarian cancer cells. Anticancer Res 2010;30:2577-81
  • Song X, Wang JB, Yin DL, Down-regulation of lung resistance related protein by RNA interference targeting survivin induces the reversal of chemoresistances in hepatocellular carcinoma. Chin Med J (Engl) 2009;122:2636-42
  • Prud'homme GJ, Glinka Y, Khan AS, Electroporation-enhanced nonviral gene transfer for the prevention or treatment of immunological, endocrine and neoplastic diseases. Curr Gene Ther 2006;6:243-73
  • Mangala LS, Zuzel V, Schmandt R, Therapeutic Targeting of ATP7B in Ovarian Carcinoma. Clin Cancer Res 2009;15:3770-80
  • Abbasi M, Lavasanifar A, Berthiaume LG, Cationic polymer-mediated small interfering RNA delivery for P-glycoprotein down-regulation in tumor cells. Cancer 2010;116:5544-54
  • List AF, Kopecky KJ, Willman CL, Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood 2001;98:3212-20
  • Daenen S, van der Holt B, Verhoef GE, Addition of cyclosporin A to the combination of mitoxantrone and etoposide to overcome resistance to chemotherapy in refractory or relapsing acute myeloid leukaemia: a randomised phase II trial from HOVON, the Dutch-Belgian Haemato-Oncology Working Group for adults. Leuk Res 2004;28:1057-67
  • Hollt V, Kouba M, Dietel M, Stereoisomers of calcium antagonists which differ markedly in their potencies as calcium blockers are equally effective in modulating drug transport by P-glycoprotein. Biochem Pharmacol 1992;43:2601-8
  • Baer MR, George SL, Dodge RK, Phase III study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: cancer and Leukemia Group B Study 9720. Blood 2002;100:1224-32
  • Guns ES, Denyssevych T, Dixon R, Drug interaction studies between paclitaxel (Taxol) and OC144-093–a new modulator of MDR in cancer chemotherapy. Eur J Drug Metab Pharmacokinet 2002;27:119-26
  • Minderman H, O'Loughlin KL, Pendyala L, VX-710 (biricodar) increases drug retention and enhances chemosensitivity in resistant cells overexpressing P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Clin Cancer Res 2004;10:1826-34
  • Dong X, Mattingly CA, Tseng MT, Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res 2009;69:3918-26
  • Liu Y, Huang L, Liu F. Paclitaxel nanocrystals for overcoming multidrug resistance in cancer. Mol Pharm 2010;7:863-9
  • Yao KS, Godwin AK, Johnson SW, Evidence for altered regulation of gamma-glutamylcysteine synthetase gene expression among cisplatin-sensitive and cisplatin-resistant human ovarian cancer cell lines. Cancer Res 1995;55:4367-74
  • Benderra Z, Trussardi A, Morjani H, Regulation of cellular glutathione modulates nuclear accumulation of daunorubicin in human MCF7 cells overexpressing multidrug resistance associated protein. Eur J Cancer 2000;36:428-34
  • Griffith OW, Meister A. Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 1979;254:7558-60
  • Byun SS, Kim SW, Choi H, Augmentation of cisplatin sensitivity in cisplatin-resistant human bladder cancer cells by modulating glutathione concentrations and glutathione-related enzyme activities. BJU Int 2005;95:1086-90
  • Chen D, Chan R, Waxman S, Buthionine sulfoximine enhancement of arsenic trioxide-induced apoptosis in leukemia and lymphoma cells is mediated via activation of c-Jun NH2-terminal kinase and up-regulation of death receptors. Cancer Res 2006;66:11416-23
  • Bailey HH, Mulcahy RT, Tutsch KD, Phase I clinical trial of intravenous L-buthionine sulfoximine and melphalan: an attempt at modulation of glutathione. J Clin Oncol 1994;12:194-205
  • Seefeldt T, Zhao Y, Chen W, Characterization of a novel dithiocarbamate glutathione reductase inhibitor and its use as a tool to modulate intracellular glutathione. J Biol Chem 2009;284:2729-37
  • Mahoney BP, Raghunand N, Baggett B, Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol 2003;66:1207-18
  • Vaananen HK, Karhukorpi EK, Sundquist K, Evidence for the presence of a proton pump of the vacuolar H(+)-ATPase type in the ruffled borders of osteoclasts. J Cell Biol 1990;111:1305-11
  • Martinez-Zaguilan R, Lynch RM, Martinez GM, Vacuolar-type H(+)-ATPases are functionally expressed in plasma membranes of human tumor cells. Am J Physiol 1993;265:C1015-29
  • Murakami T, Shibuya I, Ise T, Elevated expression of vacuolar proton pump genes and cellular PH in cisplatin resistance. Int J Cancer 2001;93:869-74
  • Brown DP, Chin-Sinex H, Nie B, Targeting superoxide dismutase 1 to overcome cisplatin resistance in human ovarian cancer. Cancer Chemother Pharmacol 2009;63:723-30
  • Omura S, Fujimoto T, Otoguro K, Lactacystin, a novel microbial metabolite, induces neuritogenesis of neuroblastoma cells. J Antibiot (Tokyo) 1991;44:113-16
  • Kane RC, Farrell AT, Sridhara R, United States food and drug administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin Cancer Res 2006;12:2955-60
  • Landis-Piwowar KR, Milacic V, Chen D, The proteasome as a potential target for novel anticancer drugs and chemosensitizers. Drug Resist Updat 2006;9:263-73
  • Katsman A, Umezawa K, Bonavida B. Reversal of resistance to cytotoxic cancer therapies: DHMEQ as a chemo-sensitizing and immuno-sensitizing agent. Drug Resist Updat 2007;10:1-12
  • Imamura M, Seki T, Kunieda K, Enhancement by hyperthermia of the in vivo antitumour effect of doxorubicin hydrochloride (DOX) and buthionine sulfoximine (BSO)-hydroxyapatite (HAP) complex. Int J Oncol 1997;10:961-4
  • Song XR, Zheng Y, He G, Development of PLGA nanoparticles simultaneously loaded with vincristine and verapamil for treatment of hepatocellular carcinoma. J Pharm Sci 2010;99:4874-9
  • Khati M. The future of aptamers in medicine. J Clin Pathol 2010;63:480-7
  • Cerchia L, de Franciscis V. Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol 2010;28:517-25
  • Kunz C, Borghouts C, Buerger C, Peptide aptamers with binding specificity for the intracellular domain of the ErbB2 receptor interfere with AKT signaling and sensitize breast cancer cells to Taxol. Mol Cancer Res 2006;4:983-98
  • Dhar S, Gu FX, Langer R, Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci USA 2008;105:17356-61
  • Nakanishi C, Toi M. Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 2005;5:297-309
  • Mi J, Zhang X, Rabbani ZN, RNA aptamer-targeted inhibition of NF-kappa B suppresses non-small cell lung cancer resistance to doxorubicin. Mol Ther 2008;16:66-73
  • Prestegarden L, Enger PO. Cancer stem cells in the central nervous system–a critical review. Cancer Res 2010;70:8255-8
  • Monzani E, Facchetti F, Galmozzi E, Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 2007;43:935-46
  • La Porta CA. Mechanism of drug sensitivity and resistance in melanoma. Curr Cancer Drug Targets 2009;9:391-7
  • Calabrese C, Poppleton H, Kocak M, A perivascular niche for brain tumor stem cells. Cancer Cell 2007;11:69-82
  • Donnenberg VS, Donnenberg AD. Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 2005;45:872-7
  • Wang Y, Wei YT, Zu ZH, Combination of hyaluronic acid hydrogel scaffold and PLGA microspheres for supporting survival of neural stem cells. Pharm Res 2011;28:1406-14
  • Toma C, Fisher A, Wang J, Vascular endoluminal delivery of mesenchymal stem cells using acoustic radiation force. Tissue Eng Part A 2011;17:1457-64
  • Peer D, Karp JM, Hong S, Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2:751-60
  • Zhang H, Jiang H, Wang X, Reversion of multidrug resistance in tumor by biocompatible nanomaterials. Mini Rev Med Chem 2010;10:737-45
  • Xiao L, Xiong X, Sun X, Role of cellular uptake in the reversal of multidrug resistance by PEG-b-PLA polymeric micelles. Biomaterials 2011;32:5148-57
  • Chen BA, Mao PP, Cheng J, Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and MDR1 shRNA expression vector in leukemia cells. Int J Nanomedicine 2010;5:437-44
  • Song XR, Cai Z, Zheng Y, Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles. Eur J Pharm Sci 2009;37:300-5
  • Patel NR, Rathi A, Mongayt D, Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. Int J Pharm 2011;416:296-9
  • Song M, Guo D, Pan C, The application of poly(N-isopropylacrylamide)-co-polystyrene nanofibers as an additive agent to facilitate the cellular uptake of an anticancer drug. Nanotechnology 2008;19:165102
  • Ren F, Chen R, Wang Y, Paclitaxel-loaded poly(n-butylcyanoacrylate) nanoparticle delivery system to overcome multidrug resistance in ovarian cancer. Pharm Res 2011;28:897-906
  • Song SU, Boyce FM. Combination treatment for osteosarcoma with baculoviral vector mediated gene therapy (p53) and chemotherapy (adriamycin). Exp Mol Med 2001;33:46-53
  • Trepel M, Groscurth P, Malipiero U, Chemosensitivity of human malignant glioma: modulation by p53 gene transfer. J Neurooncol 1998;39:19-32
  • Xie YS, Zhang YH, Liu SP, Synergistic gastric cancer inhibition by chemogenetherapy with recombinant human adenovirus p53 and epirubicin: an in vitro and in vivo study. Oncol Rep 2010;24:1613-20
  • Gjerset RA, Turla ST, Sobol RE, Use of wild-type p53 to achieve complete treatment sensitization of tumor cells expressing endogenous mutant p53. Mol Carcinog 1995;14:275-85
  • Barberi-Heyob M, Vedrine PO, Merlin JL, Wild-type p53 gene transfer into mutated p53 HT29 cells improves sensitivity to photodynamic therapy via induction of apoptosis. Int J Oncol 2004;24:951-8
  • Xu L, Pirollo KF, Chang EH. Tumor-targeted p53-gene therapy enhances the efficacy of conventional chemo/radiotherapy. J Control Release 2001;74:115-28
  • Huang Q, Xia Z, You Y, Wild Type p53 gene sensitizes rat C6 glioma cells to HSV-TK/ACV treatment in vitro and in vivo. Pathol Oncol Res 2010;16:509-14
  • Krutzfeldt J, Rajewsky N, Braich R, Silencing of microRNAs in vivo with 'antagomirs'. Nature 2005;438:685-9
  • Akinc A, Zumbuehl A, Goldberg M, A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 2008;26:561-9
  • Chen Y, Zhu X, Zhang X, Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 2010;18:1650-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.