196
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Pharmacogenomics-based RNA interference nanodelivery: focus on solid malignant tumors

, MD, , MD & , PhD
Pages 755-766 | Published online: 04 Jun 2012

Bibliography

  • Wang Y, Li Z, Han Y, Nanoparticle-based delivery system for application of siRNA in vivo. Curr Drug Metab 2010;11(2):182-96
  • Caldorera-Moore M, Guimard N, Shi L, Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv 2010;7(4):479-95
  • Hart SL. Multifunctional nanocomplexes for gene transfer and gene therapy. Cell Biol Toxicol 2010;26(1):69-81
  • Ozpolat B, Sood AK, Lopez-Berestein G. Nanomedicine based approaches for the delivery of siRNA in cancer. J Intern Med 2010;267(1):44-53
  • Wu SY, McMillan NA. Lipidic systems for in vivo siRNA delivery. AAPS J 2009;11(4):639-52
  • Davis ME, Zuckerman JE, Choi CH, Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010;464(7291):1067-70
  • Khurana B, Goyal AK, Budhiraja A, SiRNA delivery using nanocarriers - an efficient tool for gene silencing. Curr Gene Ther 2010;10(2):139-55
  • Sanguino A, Lopez-Berestein G, Sood AK. Strategies for in vivo siRNA delivery in cancer. Mini Rev Med Chem 2008;8(3):248-55
  • Gao W, Xiao Z, Radovic-Moreno A, Progress in siRNA delivery using multifunctional nanoparticles. Methods Mol Biol 2010;629:53-67
  • Dominska M, Dykxhoorn DM. Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci 2010;123(Pt 8):1183-9
  • De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 2008;3(2):133-49
  • Mu P, Nagahara S, Makita N, Systemic delivery of siRNA specific to tumor mediated by atelocollagen: combined therapy using siRNA targeting Bcl-xL and cisplatin against prostate cancer. Int J Cancer 2009;125(12):2978-90
  • DeVita VT, Lawrence TS, Rosenberg SA, DeVita, Hellman, and Rosenberg's Cancer: Principles and Practice of Oncology. 9th edition. Various pagings Lippincott Williams & Wilkins, North American; 2011
  • Longo D, Fauci A, Kasper D, Harrison's Principles of Internal Medicine. 18th edition. Various pagings McGraw-Hill Professional;New York, 2011
  • Pirollo KF, Rait A, Zhou Q, Materializing the potential of small interfering RNA via a tumor-targeting nanodelivery system. Cancer Res 2007;67(7):2938-43
  • Bagasra O, Prilliman KR. RNA interference: the molecular immune system. J Mol Histol 2004;35:545-53
  • Schroeder A, Levins CG, Cortez C, Lipid-based nanotherapeutics for siRNA delivery. J Intern Med 2010;267(1):9-21
  • Tokatlian T, Segura T. SiRNA applications in nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010;2(3):305-15
  • Bondi ML, Craparo EF. Solid lipid nanoparticles for applications in gene therapy: a review of the state of the art. Expert Opin Drug Deliv 2010;7(1):7-18
  • Lee JH, Choi YJ, Lim YB. Self-assembled filamentous nanostructures for drug/gene delivery applications. Expert Opin Drug Deliv 2010;7(3):341-51
  • Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009;8(2):129-38
  • Auguste DT, Furman K, Wong A, Triggered release of siRNA from poly(ethylene glycol)-protected, pH-dependent liposomes. J Control Release 2008;130(3):266-74
  • Martina MS, Nicolas V, Wilhelm C, The in vitro kinetics of the interactions between PEG-ylated magnetic-fluid-loaded liposomes and macrophages. Biomaterials 2007;28(28):4143-53
  • Kim EJ, Shim G, Kim K, Hyaluronic acid complexed to biodegradable poly L-arginine for targeted delivery of siRNAs. J Gene Med 2009;11(9):791-803
  • Zhang S, Uludag H. Nanoparticulate systems for growth factor delivery. Pharm Res 2009;26(7):1561-80
  • Goodsell DS. The molecular perspective: the ras oncogene. Oncologist 1999;4(3):263-4
  • Rotblat B, Ehrlich M, Haklai R, The Ras inhibitor farnesylthiosalicylic acid (Salirasib) disrupts the spatiotemporal localization of active Ras: a potential treatment for cancer. Methods Enzymol 2008;439:467-89
  • Blum R, Kloog Y. Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1, causing glycolysis shutdown and cell death. Cancer Res 2005;65:999-1006
  • Gearhart J, Pashos EE, Prasad MK. Pluripotency redeux – advances in stem-cell research. N Engl J Med 2007;357(15):1469
  • Laura S, Whitfield J, Martins CP, Modelling Myc inhibition as a cancer therapy. Nature (London, UK: Nature Publishing Group) 2008;455(7213):679-83
  • David D-S, Ying CY, Grandori C, Non-transcriptional control of DNA replication by c-Myc. Nature (London, UK: Nature Publishing Group) 2007;448(7152):445-51
  • Denis N, Kitzis A, Kruh J, Dautry F, Corcos D. Stimulation of methotrexate resistance and dihydrofolate reductase gene amplification by c-myc. Oncogene 1991;6(8):1453-7
  • Spencer CA, Groudine M. Control of c-myc regulation in normal and neoplastic cells. Adv Cancer Res 1991;56:1-48
  • Walker WL, Fernandez S, Hurlin PJ. Targeting Myc function in cancer therapy. Gene Ther Mol Biol 2004;8:361-8
  • Thomas DL, Thio CL, Martin MP, Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 2009;461(7265):798-801
  • Park IH, Lee YS, Lee KS, Single nucleotide polymorphisms of CYP19A1 predict clinical outcomes and adverse events associated with letrozole in patients with metastatic breast cancer. Cancer Chemother Pharmacol 2011;68(5):1263-71
  • Hasan W, Chu K, Gullapalli A, Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett 2012;12(1):287-92
  • Li L, Wang R, Zhao X, Tumor vasculature is a key determinant for the efficiency of nanoparticle-mediated siRNA delivery. Gene Ther 2011:1-6
  • Lu ZX, Liu L-T, Qi X-R, Development of small interfering RNA delivery system using PEI-PEG-APRPG polymer for antiangiogenic vascular endothelial growth factor tumor-targeted therapy. Int J Nanomedicine 2011;6:1661-73
  • Hatakeyama H, Akita H, Ito E, Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid. Biomaterials 2011;32(18):4306-16
  • Sun T-M, Du J-Z, Yao Y-D, Simultaneous delivery of siRNA and paclitaxel via a “two-in-one” micelleplex promotes synergistic tumor suppression. ACS Nano 2011;5(2):1483-94
  • Peer D, Karp JM, Hong S, Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2(12):751-60
  • Fenske DB, Chonn A, Cullis PR. Liposomal nanomedicines: an emerging field. Toxicol Pathol 2008;36(1):21-9
  • Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003;2(5):347-60
  • Jeonga JH, Kima SW, Park TG. Molecular design of functional polymers for gene therapy. Prog Polym Sci 2007;32(11):1239-74
  • Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv 2007;4(4):297-305
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4(2):145-60
  • Torchilin VP, Levchenko TS, Rammohan R, Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc Natl Acad Sci USA 2003;100(4):1972-7
  • Kumar P, Wu H, McBride JL, Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007;448(7149):39-43
  • McNamara JO II, Andrechek ER, Wang Y, Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 2006;24(8):1005-15
  • MacDiarmid JA, Mugridge NB, Weiss JC, Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics. Cancer Cell 2007;11(5):431-45
  • Kumar P, Ban HS, Kim SS, T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 2008;134(4):577-86
  • Gao J, Sun J, Li H, Lyophilized HER2-specific PEGylated immunoliposomes for active siRNA gene silencing. Biomaterials 2010;31(9):2655-64
  • Waite CL, Roth CM. PAMAM-RGD conjugates enhance siRNA delivery through a multicellular spheroid model of malignant glioma. Bioconjug Chem 2009;20(10):1908-16
  • Heidel JD, Yu Z, Liu JY, Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci USA 2007;104(14):5715-21
  • Yoshizawa T, Hattori Y, Hakoshima M, Folate-linked lipid-based nanoparticles for synthetic siRNA delivery in KB tumor xenografts. Eur J Pharm Biopharm 2008;70(3):718-25
  • Senior JH, Trimble KR, Maskiewicz R. Interaction of positively-charged liposomes with blood: implications for their application in vivo. Biochim Biophys Acta 1991;1070(1):173-9
  • Sakurai F, Nishioka T, Saito H, Interaction between DNA-cationic liposome complexes and erythrocytes is an important factor in systemic gene transfer via the intravenous route in mice: the role of the neutral helper lipid. Gene Ther 2001;8(9):677-86
  • Oyewumi MO, Yokel RA, Jay M, Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J Control Release 2004;95(3):613-26
  • Chollet P, Favrot MC, Hurbin A, Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. J Gene Med 2002;4(1):84-91
  • Richardson SC, Kolbe HV, Duncan R. Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int J Pharm 1999;178(2):231-43
  • Li S, Wu SP, Whitmore M, Effect of immune response on gene transfer to the lung via systemic administration of cationic lipidic vectors. Am J Physiol 1999;276(5 Pt 1):L796-804
  • Dokka S, Toledo D, Shi X, Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm Res 2000;17(5):521-5
  • Aberle AM, Tablin F, Zhu J, A novel tetraester construct that reduces cationic lipid-associated cytotoxicity. Implications for the onset of cytotoxicity. Biochemistry 1998;37(18):6533-40
  • Zimmermann TS, Lee AC, Akinc A, RNAi-mediated gene silencing in non-human primates. Nature 2006;441(7089):111-14
  • Howard KA, Paludan SR, Behlke MA, Chitosan/siRNA nanoparticle-mediated TNF-alpha knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol Ther 2009;17(1):162-8
  • Alshamsan A, Hamdy S, Samuel J, The induction of tumor apoptosis in B16 melanoma following STAT3 siRNA delivery with a lipid-substituted polyethylenimine. Biomaterials 2010;31(6):1420-8
  • Zhu C, Jung S, Luo S, Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA-PCL-PDMAEMA triblock copolymers. Biomaterials 2010;31(8):2408-16
  • Watanabe K, Harada-Shiba M, Suzuki A, In vivo siRNA delivery with dendritic poly(L-lysine) for the treatment of hypercholesterolemia. Mol Biosyst 2009;5(11):1306-10
  • Woodrow KA, Cu Y, Booth CJ, Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Mater 2009;8(6):526-33
  • Lee JH, Lee K, Moon SH, All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed Engl 2009;48(23):4174-9
  • Jiang G, Park K, Kim J, Target specific intracellular delivery of siRNA/PEI-HA complex by receptor mediated endocytosis. Mol Pharm 2009;6(3):727-37
  • Yang R, Yang X, Zhang Z, Retraction. Single-walled carbon nanotubes-mediated in vivo and in vitro delivery of siRNA into antigen-presenting cells. Gene Ther 2007;14(11):920
  • Bonoiu AC, Mahajan SD, Ding H, Nanotechnology approach for drug addiction therapy: gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proc Natl Acad Sci USA 2009;106(14):5546-50
  • Di Guglielmo GM, Le Roy C, Goodfellow AF, Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 2003;5(5):410-21
  • Feldhahn N, Klein F, Mooster JL, Mimicry of a constitutively active pre-B cell receptor in acute lymphoblastic leukemia cells. J Exp Med 2005;201(11):1837-52
  • Available from: www.clinicaltrials.gov
  • Davis ME, Zuckerman JE, Choi CH, Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010;464(7291):1067-70
  • Heidel JD, Liu JY, Yen Y, Potent siRNA inhibitors of ribonucleotide reductase subunit RRM2 reduce cell proliferation in vitro and in vivo. Clin Cancer Res 2007;13(7):2207-15
  • Bartlett DW, Davis ME. Impact of tumor-specific targeting and dosing schedule on tumor growth inhibition after intravenous administration of siRNA-containing nanoparticles. Biotechnol Bioeng 2008;99(4):975-85
  • Heidel JD. Linear cyclodextrin-containing polymers and their use as delivery agents. Expert Opin Drug Deliv 2006;3(5):641-6; Review
  • Steegmaier M, Hoffmann M, Baum A, BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr Biol 2007;17(4):316-22
  • Barr FA, Sillje HH, Nigg EA. Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol 2004;5(6):429-40. Review
  • Strebhardt K, Ullrich A. Targeting polo-like kinase 1 for cancer therapy. Nat Rev Cancer 2006;6(4):321-30; Review
  • Kim TH, Kim M, Park HS, Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res A 2012; Epub ahead of print
  • Hong SC, Lee JH, Lee J, Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups. Int J Nanomed 2011;6:3219-31
  • Akhtar S, Benter IF. Nonviral delivery of synthetic siRNAs in vivo. J Clin Invest 2007;117(12):3623-32
  • Akhtar S, Benter I. Toxicogenomics of non-viral drug delivery systems for RNAi: potential impact on siRNA-mediated gene silencing activity and specificity. Adv Drug Deliv Rev 2007;59:164-82
  • Fedorov Y, Anderson EM, Birmingham A, Off-target effects by siRNA can induce toxic phenotype. RNA 2006;12(7):1188-96
  • Centinkaya C, Hultquist A, Su Y, Combined IFN-gamma and retinoic acid treatment targets the N-Myc/Max/Mad1 network resulting in repression of N-Myc target genes in MYCN-amplified neuroblastoma cells. Mol Cancer Ther 2007;6(10):2634-41
  • Ellwood-Yen K, Graeber TG, Wongvipat J, Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 2003;4(3):223-38
  • D'Cruz CM, Gunther EJ, Boxer RB, c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nat Med 2001;7(2):235-9
  • Morello D, Fitzgerald MJ, Babinet C, Fausto N. c-myc, c-fos, and c-jun Regulation in the regenerating livers of normal and H-2K/c-myc transgenic mice. Mol Cell Biol 1990;10(6):3185-93
  • Pelengaris S, Abouna S, Cheung L, Brief inactivation of c-Myc is not sufficient for sustained regression of c-Myc-induced tumours of pancreatic islets and skin epidermis. BMC Biol 2004;2:26
  • Ge D, Fellay J, Thompson AJ, Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 2009;461(7262):399-401
  • Croce CM. Oncogenes and cancer. N Engl J Med 2008;358(5):502-11
  • Emery Alan EH, Mueller RF, Young IT, Oncogene. Emery's Elements of Medical Genetics. Churchill Livingstone, Edinburgh; 2001
  • Moutushy M, Dilnawaz F, Misra R, Toxicogenomics of nanoparticulate delivery of etoposide: potential impact on nanotechnology in retinoblastoma therapy. Cancer Nanotechnol 2010;2(1-6):21-36
  • Sartori MT, Della Puppa A, Ballin A, Prothrombotic state in glioblastoma multiforme: an evaluation of the procoagulant activity of circulating microparticles. J Neurooncol 2011;104(1):225-31
  • DiMasi J. The value of improving the productivity of the drug development process: faster times and better decisions. Pharmacoeconomics 2002;20(Suppl 3):1-10
  • Ming-Cheng Cheng M, Cuda G, Bunimovich YL, Nanotechnologies for biomolecular detection and medical Diagnostics. Curr Opin Chem Biol 2006;10:11-19
  • Smidt M, Dumanski JP, Collins VP, Structure and expression of the c-sis gene and its relationship to sporadic meningiomas. Cancer Res 1991;51:4295-8
  • Doroshow J. Targeting EGFR in non–small-cell lung cancer. NEJM 2005;353(2):200-2
  • Tsukada S, Saffran DC, Rawlings DJ, Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 1993;72(2):279-90
  • Davies H, Bignell GR, Cox C, Mutations of the BRAF gene in human cancer. Nature 2002;417(6892):949-54

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.