294
Views
18
CrossRef citations to date
0
Altmetric
Reviews

Lipid nanoparticles for chemotherapeutic applications: strategies to improve anticancer efficacy

, , , , , , & show all
Pages 767-781 | Published online: 03 May 2012

Bibliography

  • Boyle P, Levin B. editors. Worldwide cancer burden. In: World Cancer Report 2008. International Agency for Research on Cancer; Lyon, France: 2008. p. 42-56
  • Jemal A, Bray F, Center MM, Global cancer statistics. CA Cancer J Clin 2011;61:69-90
  • Roland TS. editor. Selection of treatment for the patient with cancer. In: Handbook of Cancer Chemotherapy. Lippincott Williams & Wilkins Press; Philadeiphia, USA: 2007. p. 47-52
  • Boyle P, Levin B editors. Principles of cancer therapy: medical oncology. In: World Cancer Report 2008. International Agency for Research on Cancer; Lyon, France: 2008. p. 62-7
  • Roland TS, Samir NK. Biologic and pharmacologic basis of cancer chemotherapy and biotherapy. In: Roland TS, editor. Handbook of Cancer Chemotherapy. Lippincott Williams & Wilkins Press; Philadeiphia, USA: 2007. p. 1-31
  • Feng S-S, Chien S. Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem Eng Sci 2003;58:4087-114
  • Joshi MD, Muller RH. Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm 2009;71:161-72
  • Ho Lun W, Xiao Yu W, Reina B, editors. Solid lipid nanoparticles for anti-tumor drug delivery. In: Nanotechnology for Cancer Therapy. CRC Press; Florida, USA;2006. p. 741-76
  • Marcucci F, Corti A. How to improve exposure of tumor cells to drugs — Promoter drugs increase tumor uptake and penetration of effector drugs. Adv Drug Deliv Rev 2011; published online 28 September 2011; doi:10.1016/j.addr.2011.09.007
  • Jang SH, Wientjes MG, Lu D, Drug delivery and transport to solid tumors. Pharm Res 2003;20:1337-50
  • Padera TP, Stoll BR, Tooredman JB, Pathology: cancer cells compress intratumour vessels. Nature 2004;427:695
  • Ahlstrom H, Christofferson R, Lorelius LE. Vascularization of the continuous human colonic cancer cell line LS 174 T deposited subcutaneously in nude rats. APMIS 1988;96:701-10
  • Iyer AK, Khaled G, Fang J, Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006;11:812-18
  • Sim H, Bibee K, Wickline S, Pharmacokinetic modeling of tumor bioluminescence implicates efflux, and not influx, as the bigger hurdle in cancer drug therapy. Cancer Res 2011;71:686-92
  • Heldin CH, Rubin K, Pietras K, High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer 2004;4:806-13
  • Netti PA, Berk DA, Swartz MA, Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 2000;60:2497-503
  • Primeau AJ, Rendon A, Hedley D, The distribution of the anticancer drug Doxorubicin in relation to blood vessels in solid tumors. Clin Cancer Res 2005;11:8782-8
  • Biedler JL, Riehm H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies. Cancer Res 1970;30:1174-84
  • Gouaze V, Yu JY, Bleicher RJ, Overexpression of glucosylceramide synthase and P-glycoprotein in cancer cells selected for resistance to natural product chemotherapy. Mol Cancer Ther 2004;3:633-9
  • Szakacs G, Paterson JK, Ludwig JA, Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006;5:219-34
  • Gong J, Jaiswal R, Mathys JM, Microparticles and their emerging role in cancer multidrug resistance. Cancer Treat Rev 2011; published online 14 July 2011; doi:10.1016/j.bbr.2011.03.031
  • Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med 2002;53:615-27
  • Ak Y, Demirel G, Gulbas Z. MDR1, MRP1 and LRP expression in patients with untreated acute leukaemia: correlation with 99mTc-MIBI bone marrow scintigraphy. Nucl Med Commun 2007;28:541-6
  • Schimmel KJ, Richel DJ, van den Brink RB, Cardiotoxicity of cytotoxic drugs. Cancer Treat Rev 2004;30:181-91
  • Pazdur R, Kudelka AP, Kavanagh JJ, The taxoids: paclitaxel (Taxol) and docetaxel (Taxotere). Cancer Treat Rev 1993;19:351-86
  • Cavalli R, Caputo O, Gasco MR. Solid lipospheres of doxorubicin and idarubicin. Int J Pharm 1993;89:R9-R12
  • Wissing SA, Kayser O, Muller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 2004;56:1257-72
  • Olbrich C, Gessner A, Kayser O, Lipid-drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate. J Drug Target 2002;10:387-96
  • Li Y, Taulier N, Rauth AM, Screening of lipid carriers and characterization of drug-polymer-lipid interactions for the rational design of polymer-lipid hybrid nanoparticles (PLN). Pharm Res 2006;23:1877-87
  • Wong HL, Bendayan R, Rauth AM, Development of solid lipid nanoparticles containing ionically complexed chemotherapeutic drugs and chemosensitizers. J Pharm Sci 2004;93:1993-2008
  • Wang JX, Sun X, Zhang ZR. Enhanced brain targeting by synthesis of 3',5'-dioctanoyl-5-fluoro-2'-deoxyuridine and incorporation into solid lipid nanoparticles. Eur J Pharm Biopharm 2002;54:285-90
  • Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 2002;54(Suppl 1):S131-55
  • Muller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002;242:121-8
  • Zhang XG, Miao J, Dai YQ, Reversal activity of nanostructured lipid carriers loading cytotoxic drug in multi-drug resistant cancer cells. Int J Pharm 2008;361:239-44
  • Arias JL, Clares B, Morales ME, Lipid-based drug delivery systems for cancer treatment. Curr Drug Targets 2011;12:1151-65
  • Irache JM, Esparza I, Gamazo C, Nanomedicine: novel approaches in human and veterinary therapeutics. Vet Parasitol 2011;180:47-71
  • Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010;148:135-46
  • Ali H, Shirode AB, Sylvester PW, Preparation and in vitro antiproliferative effect of tocotrienol loaded lipid nanoparticles. Colloid Surf A 2010;353:43-51
  • Liu D, Liu Z, Wang L, Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloid Surf B 2011;85:262-9
  • Yuan F, Dellian M, Fukumura D, Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 1995;55:3752-6
  • Zara GP, Cavalli R, Fundaro A, Pharmacokinetics of doxorubicin incorporated in solid lipid nanospheres (SLN). Pharmacol Res 1999;40:281-6
  • Yang SC, Lu LF, Cai Y, Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release 1999;59:299-307
  • Yang S, Zhu J, Lu Y, Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res 1999;16:751-7
  • Blasi P, Giovagnoli S, Schoubben A, Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev 2007;59:454-77
  • Kaur IP, Bhandari R, Bhandari S, Potential of solid lipid nanoparticles in brain targeting. J Control Release 2008;127:97-109
  • Tsai MJ, Wu PC, Huang YB, Baicalein loaded in tocol nanostructured lipid carriers (tocol NLCs) for enhanced stability and brain targeting. Int J Pharm 2012;423:461-70
  • Fundaro A, Cavalli R, Bargoni A, Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol Res 2000;42:337-43
  • Kabanov AV, Batrakova EV, Miller DW. Pluronic® block copolymers as modulators of drug efflux transporter activity in the blood–brain barrier. Adv Drug Deliv Rev 2003;55:151-64
  • Koziara JM, Lockman PR, Allen DD, Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release 2004;99:259-69
  • Goppert TM, Muller RH. Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 2005;13:179-87
  • Koziara JM, Lockman PR, Allen DD, In situ blood-brain barrier transport of nanoparticles. Pharm Res 2003;20:1772-8
  • Reddy LH, Sharma RK, Chuttani K, Etoposide-incorporated tripalmitin nanoparticles with different surface charge: formulation, characterization, radiolabeling, and biodistribution studies. AAPS J 2004;6:e23
  • Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J Control Release 2005;107:215-28
  • Harivardhan Reddy L, Sharma RK, Chuttani K, Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton's lymphoma tumor bearing mice. J Control Release 2005;105:185-98
  • Wen CJ, Yen TC, Al-Suwayeh SA, In vivo real-time fluorescence visualization and brain-targeting mechanisms of lipid nanocarriers with different fatty ester:oil ratios. Nanomedicine (Lond) 2011;6:1545-59
  • Peer D, Karp JM, Hong S, Nanocarriers as an emerging platform for cancer therapy. Nat Nano 2007;2:751-60
  • Lu Y, Low PS. Immunotherapy of folate receptor-expressing tumors: review of recent advances and future prospects. J Control Release 2003;91:17-29
  • Stevens PJ, Sekido M, Lee RJ. A folate receptor-targeted lipid nanoparticle formulation for a lipophilic paclitaxel prodrug. Pharm Res 2004;21:2153-7
  • Stevens PJ, Sekido M, Lee RJ. Synthesis and evaluation of a hematoporphyrin derivative in a folate receptor-targeted solid-lipid nanoparticle formulation. Anticancer Res 2004;24:161-5
  • Hogemann-Savellano D, Bos E, Blondet C, The transferrin receptor: a potential molecular imaging marker for human cancer. Neoplasia 2003;5:495-506
  • Jain SK, Chaurasiya A, Gupta Y, Development and characterization of 5-FU bearing ferritin appended solid lipid nanoparticles for tumour targeting. J Microencapsul 2008;25:289-97
  • Wong HL, Bendayan R, Rauth AM, Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev 2007;59:491-504
  • Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 2003;42:463-78
  • Chen DB, Yang TZ, Lu WL, In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem Pharm Bull 2001;49:1444-7
  • Zara GP, Cavalli R, Bargoni A, Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. J Drug Target 2002;10:327-35
  • Reddy LH, Vivek K, Bakshi N, Tamoxifen citrate loaded solid lipid nanoparticles (SLN): preparation, characterization, in vitro drug release, and pharmacokinetic evaluation. Pharm Dev Technol 2006;11:167-77
  • Zhao X, Zhao Y, Geng L, Pharmacokinetics and tissue distribution of docetaxel by liquid chromatography-mass spectrometry: evaluation of folate receptor-targeting amphiphilic copolymer modified nanostructured lipid carrier. J Chromatogr B Analyt Technol Biomed Life Sci 2011;879:3721-7
  • Su Z, Niu J, Xiao Y, Effect of octreotide-polyethylene glycol(100) monostearate modification on the pharmacokinetics and cellular uptake of nanostructured lipid carrier loaded with hydroxycamptothecine. Mol Pharm 2011;8:1641-51
  • Lamberts SW, de Herder WW, Hofland LJ. Somatostatin analogs in the diagnosis and treatment of cancer. Trends Endocrinol Metab 2002;13:451-7
  • Fang C, Shi B, Pei YY, In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci 2006;27:27-36
  • Hu Y, Xie J, Tong YW, Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. J Control Release 2007;118:7-17
  • Xue HY, Wong HL. Solid lipid-PEI hybrid nanocarrier: an integrated approach to provide extended, targeted, and safer siRNA therapy of prostate cancer in an all-in-one manner. ACS Nano 2011;5:7034-47
  • Wong HL, Rauth AM, Bendayan R, A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res 2006;23:1574-85
  • Wong HL, Bendayan R, Rauth AM, A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J Pharmacol Exp Ther 2006;317:1372-81
  • Ma P, Dong X, Swadley CL, Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia. J Biomed Nanotechnol 2009;5:151-61
  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004;56:1649-59
  • Miglietta A, Cavalli R, Bocca C, Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel. Int J Pharm 2000;210:61-7
  • Serpe L, Catalano MG, Cavalli R, Cytotoxicity of anticancer drugs incorporated in solid lipid nanoparticles on HT-29 colorectal cancer cell line. Eur J Pharm Biopharm 2004;58:673-80
  • Bogman K, Erne-Brand F, Alsenz J, The role of surfactants in the reversal of active transport mediated by multidrug resistance proteins. J Pharm Sci 2003;92:1250-61
  • Alakhov V, Moskaleva E, Batrakova EV, Hypersensitization of multidrug resistant human ovarian carcinoma cells by pluronic P85 block copolymer. Bioconjug Chem 1996;7:209-16
  • Venne A, Li S, Mandeville R, Hypersensitizing effect of pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug-resistant cells. Cancer Res 1996;56:3626-9
  • Batrakova EV, Li S, Elmquist WF, Mechanism of sensitization of MDR cancer cells by Pluronic block copolymers: selective energy depletion. Br J Cancer 2001;85:1987-97
  • Batrakova E, Lee S, Li S, Fundamental relationships between the composition of pluronic block copolymers and their hypersensitization effect in MDR cancer cells. Pharm Res 1999;16:1373-9
  • Dong X, Mattingly CA, Tseng MT, Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res 2009;69:3918-26
  • Wong HL, Bendayan R, Rauth AM, Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. J Control Release 2006;116:275-84
  • Ying X-Y, Cui D, Yu L, Solid lipid nanoparticles modified with chitosan oligosaccharides for the controlled release of doxorubicin. Carbohydr Polym 2011;84:1357-64
  • Dharmala K, Yoo JW, Lee CH. Development of chitosan-SLN microparticles for chemotherapy: in vitro approach through efflux-transporter modulation. J Control Release 2008;131:190-7
  • Liu YY, Han TY, Giuliano AE, Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells. J Biol Chem 1999;274:1140-6
  • Liu YY, Han TY, Yu JY, Oligonucleotides blocking glucosylceramide synthase expression selectively reverse drug resistance in cancer cells. J Lipid Res 2004;45:933-40
  • Siddiqui A, Patwardhan GA, Liu YY, Mixed backbone antisense glucosylceramide synthase oligonucleotide (MBO-asGCS) loaded solid lipid nanoparticles: in vitro characterization and reversal of multidrug resistance in NCI/ADR-RES cells. Int J Pharm 2010;400:251-9
  • Bondi ML, Craparo EF. Solid lipid nanoparticles for applications in gene therapy: a review of the state of the art. Expert Opin Drug Deliv 2010;7:7-18
  • Tseng YC, Mozumdar S, Huang L. Lipid-based systemic delivery of siRNA. Adv Drug Deliv Rev 2009;61:721-31
  • del Pozo-Rodriguez A, Delgado D, Solinis MA, Solid lipid nanoparticles as potential tools for gene therapy: In vivo protein expression after intravenous administration. Int J Pharm 2010;385:157-62
  • Choi SH, Jin SE, Lee MK, Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells. Eur J Pharm Biopharm 2008;68:545-54
  • Yu YH, Kim E, Park DE, Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA. Eur J Pharm Biopharm 2012;80:268-73
  • Vighi E, Ruozi B, Montanari M, pDNA condensation capacity and in vitro gene delivery properties of cationic solid lipid nanoparticles. Int J Pharm 2010;389:254-61
  • del Pozo-Rodriguez A, Solinis MA, Gascon AR, Short- and long-term stability study of lyophilized solid lipid nanoparticles for gene therapy. Eur J Pharm Biopharm 2009;71:181-9
  • O'Brien ME, Wigler N, Inbar M, Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 2004;15:440-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.