459
Views
39
CrossRef citations to date
0
Altmetric
Reviews

Micelle-like nanoassemblies based on polymer–drug conjugates as an emerging platform for drug delivery

, &
Pages 805-822 | Published online: 19 May 2012

Bibliography

  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005;5(3):161-71
  • Teli MK, Mutalik S, Rajanikant GK. Nanotechnology and nanomedicine: going small means aiming big. Curr Pharm Des 2010;16(16):1882-92
  • Seigneuric R, Markey L, Nuyten DS, From nanotechnology to nanomedicine: applications to cancer research. Curr Mol Med 2010;10(7):640-52
  • Venugopal J, Prabhakaran MP, Low S, Nanotechnology for nanomedicine and delivery of drugs. Curr Pharm Des 2008;14(22):2184-200
  • Vicent MJ, Duncan R. Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol 2006;24(1):39-47
  • Haag R, Kratz F. Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl 2006;45(8):1198-215
  • Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci Polym Symp 1975;51:135-53
  • Wieder KJ, Palczuk NC, van Es T, Davis FF. Some properties of polyethylene glycol: phenylalanine ammonia-lyase adducts. J Biol Chem 1979;254(24):12579-87
  • Davis FF. The origin of pegnology. Adv Drug Deliv Rev 2002;54(4):457-8
  • Vasey PA, Kaye SB, Morrison R, Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Clin Cancer Res 1999;5(1):83-94
  • Yokoyama M, Miyauchi M, Yamada N, Polymer micelles as novel drug carrier: adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. J Control Release 1990;11(1-3):269-78
  • Putnam D, Kopecek J. Polymer conjugates with anticancer activity. Adv Polym Sci 1995;122:55-123
  • Duncan R, Kopecek J. Soluble synthetic polymers as potential drug carriers. Adv Polym Sci 1984;57:51-101
  • Duncan R. Drug-polymer conjugates: potential for improved chemotherapy. Anticancer Drugs 1992;3(3):175-210
  • Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003;2(5):347-60
  • Thanou M, Duncan R. Polymer–protein and polymer–drug conjugates in cancer therapy. Curr Opin Investig Drugs 2003;4(6):701-9
  • Vicent MJ, Dieudonne L, Carbajo RJ, Pineda-Lucena A. Polymer conjugates as therapeutics: future trends, challenges and opportunities. Expert Opin Drug Deliv 2008;5(5):593-614
  • Greco F, Vicent MJ. Polymer–drug conjugates: current status and future trends. Front Biosci 2008;13:2744-56
  • Ulbrich K, Konak C, Tuzar Z, Kopecek J. Solution properties of drug carriers based on poly[N-(2-hydroxypropyl)methacrylamide] containing biodegradable bonds. Makromol Chem 1987;188(6):1261-72
  • Oerlemans C, Bult W, Bos M, Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 2010;27(12):2569-89
  • Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today 2005;10(21):1451-8
  • Pasut G, Veronese FM. PEG conjugates in clinical development or use as anticancer agents: an overview. Adv Drug Deliv Rev 2009;61(13):1177-88
  • Lee GY, Park K, Kim SY, Byun Y. MMPs-specific PEGylated peptide-DOX conjugate micelles that can contain free doxorubicin. Eur J Pharm Biopharm 2007;67(3):646-54
  • Melancon MP, Li C. Multifunctional synthetic poly(L-glutamic acid)-based cancer therapeutic and imaging agents. Mol imaging 2011;10(1):28-42
  • Singer JW, Bhatt R, Tulinsky J, Water-soluble poly-(L-glutamic acid)-Gly-camptothecin conjugates enhance camptothecin stability and efficacy in vivo. J Control Release 2001;74(1-3):243-7
  • Langer CJ. CT-2103: a novel macromolecular taxane with potential advantages compared with conventional taxanes. Clin Lung Cancer 2004;6(Suppl 2):S85-8
  • Bonomi P. Paclitaxel poliglumex (PPX, CT-2103): macromolecular medicine for advanced non-small-cell lung cancer. Expert Rev Anticancer Ther 2007;7(4):415-22
  • Albain KS, Belani CP, Bonomi P, Pioneer: a phase III randomized trial of paclitaxel poliglumex versus paclitaxel in chemotherapy-naive women with advanced-stage non-small-cell lung cancer and performance status of 2. Clin Lung Cancer 2006;7(6):417-19
  • Homsi J, Simon GR, Garrett CR, Phase I trial of poly-L-glutamate camptothecin (CT-2106) administered weekly in patients with advanced solid malignancies. Clin Cancer Res 2007;13(19):5855-61
  • Li C, Wallace S. Polymer–drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev 2008;60(8):886-98
  • Lee YK. Preparation and characterization of folic acid linked poly(L-glutamate) nanoparticles for cancer targeting. Macromol Res 2006;14(3):387-93
  • Feng ZL, Zhao G, Yu L, Preclinical efficacy studies of a novel nanoparticle-based formulation of paclitaxel that out-performs Abraxane. Cancer Chemother Pharmacol 2010;65(5):923-30
  • Wang XH, Zhao G, Van S, Pharmacokinetics and tissue distribution of PGG-paclitaxel, a novel macromolecular formulation of paclitaxel, in nu/nu mice bearing NCI-460 lung cancer xenografts. Cancer Chemother Pharmacol 2010;65(3):515-26
  • Yang DB, Van S, Liu J, Physicochemical properties and biocompatibility of a polymer-paclitaxel conjugate for cancer treatment. Int J Nanomed 2011;6:2557-66
  • Van S, Das SK, Wang XH, Synthesis, characterization, and biological evaluation of poly(L-gamma-glutamyl-glutamine)-paclitaxel nanoconjugate. Int J Nanomed 2010;5:825-37
  • Brown MB, Jones SA. Hyaluronic acid: a unique topical vehicle for the localized delivery of drugs to the skin. J Eur Acad Dermatol Venereol 2005;19(3):308-18
  • Oh EJ, Park K, Kim KS, Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J Control Release 2010;141(1):2-12
  • Misra S, Heldin P, Hascall VC, Hyaluronan-CD44 interactions as potential targets for cancer therapy. FEBS J 2011;278(9):1429-43
  • Yang B, Zhang L, Turley EA. Identification of two hyaluronan-binding domains in the hyaluronan receptor RHAMM. J Biol Chem 1993;268(12):8617-23
  • Kouvidi K, Berdiaki A, Nikitovic D, Role of receptor for hyaluronic acid-mediated motility (RHAMM) in low molecular weight hyaluronan (LMWHA)-mediated fibrosarcoma cell adhesion. J Biol Chem 2011;286(44):38509-20
  • Murano E, Perin D, Khan R, Bergamin M. Hyaluronan: from biomimetic to industrial business strategy. Nat Prod Commun 2011;6(4):555-72
  • Ossipov DA. Nanostructured hyaluronic acid-based materials for active delivery to cancer. Expert Opin Drug Deliv 2010;7(6):681-703
  • Lee H, Lee K, Park TG. Hyaluronic acid-paclitaxel conjugate micelles: synthesis, characterization, and antitumor activity. Bioconjug Chem 2008;19(6):1319-25
  • Sasisekharan R, Venkataraman G. Heparin and heparan sulfate: biosynthesis, structure and function. Curr Opin Chem Biol 2000;4(6):626-31
  • Rabenstein DL. Heparin and heparan sulfate: structure and function. Nat Prod Rep 2002;19(3):312-31
  • Damus PS, Hicks M, Rosenberg RD. Anticoagulant action of heparin. Nature 1973;246(5432):355-7
  • Borsig L. Antimetastatic activities of heparins and modified heparins. Experimental evidence. Thromb Res 2010;125(Suppl 2):S66-71
  • Borsig L. Heparin as an inhibitor of cancer progression. Prog Mol Biol Transl Sci 2010;93:335-49
  • Skidmore MA, Guimond SE, Rudd TR, The activities of heparan sulfate and its analogue heparin are dictated by biosynthesis, sequence, and conformation. Connect Tissue Res 2008;49(3):140-4
  • Wang Y, Xin DC, Liu KJ, Heparin-paclitaxel conjugates as drug delivery system: synthesis, self-assembly property, drug release, and antitumor activity. Bioconjug Chem 2009;20(12):2214-21
  • Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 2012;157(2):168-82
  • Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 2008;132(3):171-83
  • Miele E, Spinelli GP, Miele E, Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomed 2009;4:99-105
  • Esmaeili F, Dinarvand R, Ghahremani MH, Docetaxel-albumin conjugates: preparation, in vitro evaluation and biodistribution studies. J Pharm Sci 2009;98(8):2718-30
  • Tokiwa Y, Calabia BP. Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 2006;72(2):244-51
  • Tokiwa Y, Jarerat A. Biodegradation of poly(L-lactide). Biotechnol Lett 2004;26(10):771-7
  • Inkinen S, Hakkarainen M, Albertsson AC, Sodergard A. From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 2011;12(3):523-32
  • Zhang X, Li Y, Chen X, Synthesis and characterization of the paclitaxel/MPEG-PLA block copolymer conjugate. Biomaterials 2005;26(14):2121-8
  • Xu X, Zhang X, Wang X, Comparative study of paclitaxel physically encapsulated in and chemically conjugated with PEG-PLA. Polym Adv Technol 2009;20(11):843-8
  • Wang Z, Hu X, Yue J, Jing XB. Experimental study on biodegradable polymer-paclitaxel conjugate micelles for chemotherapy of C6 glioma. J Control Release 2011;152(Suppl 1):e41-2
  • Yoo HS, Park TG. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J Control Release 2001;70(1-2):63-70
  • Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release 2004;96(2):273-83
  • Jin C, Qian NS, Zhao W, Improved therapeutic effect of DOX-PLGA-PEG micelles decorated with bivalent fragment HAb18 F(ab′)(2) for hepatocellular carcinoma. Biomacromolecules 2010;11(9):2422-31
  • Jin C, Yang WQ, Bai L, Preparation and characterization of targeted DOX-PLGA-PEG micelles decorated with bivalent fragment HAb18 F(ab′)2 for treatment of hepatocellular carcinoma. J Control Release 2011;152(Suppl 1):e14-15
  • Mikhail AS, Allen C. Poly(ethylene glycol)-b-poly(epsilon-caprolactone) micelles containing chemically conjugated and physically entrapped docetaxel: synthesis, characterization, and the influence of the drug on micelle morphology. Biomacromolecules 2010;11(5):1273-80
  • Varnell DF, Moskala EJ, Painter PC, Coleman MM. On the application of fourier transform infrared spectroscopy to the elucidation of specific interactions in miscible polyester-poly(vinyl chloride) blends. Polym Eng Sci 1983;23(12):658-62
  • Surewicz WK, Mantsch HH, Chapman D. Determination of protein secondary structure by fourier transform infrared spectroscopy: a critical assessment. Biochemistry 1993;32(2):389-94
  • Kumirska J, Czerwicka M, Kaczynski Z, Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar drugs 2010;8(5):1567-636
  • Zhang WL, Huang J, Fan NQ, Nanomicelle with long-term circulation and enhanced stability of camptothecin based on mPEGylated alpha,-poly (L-aspartic acid)-camptothecin conjugate. Colloids Surf B Biointerfaces 2010;81(1):297-303
  • Li GL, Liu JY, Pang Y, Polymeric micelles with water-insoluble drug as hydrophobic moiety for drug delivery. Biomacromolecules 2011;12(6):2016-26
  • Astafieva I, Zhong XF, Eisenberg A. Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules 1993;26(26):7339-52
  • Miyagishi S, Okada K, Asakawa T. Salt effect on critical micelle concentrations of nonionic surfactants, N-Acyl-N-methylglucamides (MEGA-n). J Colloid Interface Sci 2001;238(1):91-5
  • Al-Soufi W, Pineiro L, Novo M. A model for monomer and micellar concentrations in surfactant solutions: application to conductivity, NMR, diffusion, and surface tension data. J Colloid Interface Sci 2012;370(1):102-10
  • Alam MS, Ghosh G, Mandal AB, Kabir ud D. Aggregation behavior and interaction of an amphiphilic drug imipramine hydrochloride with cationic surfactant cetyltrimethylammonium bromide: light scattering studies. Colloids Surf B Biointerfaces 2011;88(2):779-84
  • Zhao CL, Winnik MA, Riess G, Croucher MD. Fluorescence probe techniques used to study micelle formation in water-soluble block copolymers. Langmuir 1990;6(2):514-16
  • Venkataraman S, Hedrick JL, Ong ZY, The effects of polymeric nanostructure shape on drug delivery. Adv Drug Deliv Rev 2011;63(14-15):1228-46
  • Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 2010;6(6):714-29
  • Wu LB, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev 2011;63(6):456-69
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46(12 Pt 1):6387-92
  • Kwon G, Suwa S, Yokoyama M, Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly (ethylene oxide-aspartate) block copolymer-adriamycin conjugates. J Control Release 1994;29(1-2):17-23
  • Lyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006;11(17-18):812-18
  • Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011;63(3):136-51
  • Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 2011;63(3):131-5
  • Hu XL, Jing XB. Biodegradable amphiphilic polymer–drug conjugate micelles. Expert Opin Drug Deliv 2009;6(10):1079-90
  • Das M, Mohanty C, Sahoo SK. Ligand-based targeted therapy for cancer tissue. Expert Opin Drug Deliv 2009;6(3):285-304
  • Park JH, Lee S, Kim JH, Polymeric nanomedicine for cancer therapy. Prog Polym Sci 2008;33(1):113-37
  • Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 2008;60(15):1615-26
  • Hilgenbrink AR, Low PS. Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 2005;94(10):2135-46
  • Scomparin A, Salmaso S, Bersani S, Novel folated and non-folated pullulan bioconjugates for anticancer drug delivery. Eur J Pharm Sci 2011;42(5):547-58
  • Yoo HS, Lee EA, Park TG. Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. J Control Release 2002;82(1):17-27
  • Vicent MJ, Ringsdorf H, Duncan R. Polymer therapeutics: clinical applications and challenges for development. Adv Drug Deliv Rev 2009;61(13):1117-20
  • Duncan R. Polymer therapeutics as nanomedicines: new perspectives. Curr Opin Biotechnol 2011;22(4):492-501
  • Tong R, Cheng JJ. Anticancer polymeric nanomedicines. Polym Rev 2007;47(3):345-81
  • Sanchis J, Canal F, Lucas R, Vicent MJ. Polymer–drug conjugates for novel molecular targets. Nanomedicine 2010;5(6):915-35
  • Yang DB, Van S, Jiang XG, Yu L. Novel free paclitaxel-loaded poly(L-gamma-glutamylglutamine)-paclitaxel nanoparticles. Int J Nanomed 2011;6:85-91
  • Yang DB, Van S, Shu YY, Synthesis, characterization, and in vivo efficacy evaluation of PGG-docetaxel conjugate for potential cancer chemotherapy. Int J Nanomed 2012;7:581-9
  • Galer CE, Sano D, Ghosh SC, Hyaluronic acid-paclitaxel conjugate inhibits growth of human squamous cell carcinomas of the head and neck via a hyaluronic acid-mediated mechanism. Oral Oncol 2011;47(11):1039-47
  • Xin DC, Wang Y, Xiang JN. The use of amino acid linkers in the conjugation of paclitaxel with hyaluronic acid as drug delivery system: synthesis, self-assembled property, drug release, and in vitro efficiency. Pharm Res 2010;27(2):380-9
  • Manju S, Sreenivasan K. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability. J Colloid Interface Sci 2011;359(1):318-25
  • Wang Y, Xin DC, Liu KJ, Xiang JN. Heparin-paclitaxel conjugates using mixed anhydride as intermediate: synthesis, influence of polymer structure on drug release, anticoagulant activity and in vitro efficiency. Pharm Res 2009;26(4):785-93
  • Fitzpatrick JJ, Garnett MC. Studies on the mechanism of action of an MTX-HSA-MoAb conjugate. Anticancer Drug Des 1995;10(1):11-24
  • Schmid B, Chung DE, Warnecke A, Albumin-binding prodrugs of camptothecin and doxorubicin with an Ala-Leu-Ala-Leu-linker that are cleaved by cathepsin B: synthesis and antitumor efficacy. Bioconjug Chem 2007;18(3):702-16
  • Qu XL, Yang C, Zhang J, In vitro evaluation of a Folate-bovine serum albumin-doxorubicin conjugate. J Drug Target 2010;18(5):351-61
  • Xu R, Fisher M, Juliano RL. Targeted albumin-based nanoparticles for delivery of amphipathic drugs. Bioconjug Chem 2011;22(5):870-8
  • Xie ZG, Lu TC, Chen XS, Synthesis, self-assembly in water, and cytotoxicity of MPEG-block-PLLA/DX conjugates. J Biomed Mater Res A 2009;88(1):238-45
  • Xie ZG, Hu XL, Chen XS, A biodegradable diblock copolymer poly(ethylene glycol)-block-poly(L-lactide-co-2-methyl-2-carboxyl-propylene carbonate): docetaxel and RGD conjugation. J Appl Polym Sci 2008;110:2961-70
  • Hu XL, Liu S, Huang YB, Biodegradable block copolymer-doxorubicin conjugates via different linkages: preparation, characterization, and in vitro evaluation. Biomacromolecules 2010;11(8):2094-102
  • Xie ZG, Lu TC, Chen XS, Triblock poly(lactic acid)-b-poly(ethylene glycol)-b-poly(lactic acid)/paclitaxel conjugates: synthesis, micellization, and cytotoxicity. J Appl Polym Sci 2007;105:2271-9
  • Nakanishi T, Fukushima S, Okamoto K, Development of the polymer micelle carrier system for doxorubicin. J Control Release 2001;74(1-3):295-302
  • Bae Y, Jang WD, Nishiyama N, Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol Biosyst 2005;1(3):242-50
  • Bae Y, Nishiyama N, Kataoka K. In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjug Chem 2007;18(4):1131-9
  • Bae Y, Kataoka K. Significant enhancement of antitumor activity and bioavailability of intracellular pH-sensitive polymeric micelles by folate conjugation. J Control Release 2006;116(2):e49-50
  • Fan NQ, Duan KR, Wang CY, Fabrication of nanomicelle with enhanced solubility and stability of camptothecin based on alpha,-poly[(N-carboxybutyl)-L-aspartamide]-camptothecin conjugate. Colloids Surf B Biointerfaces 2010;75(2):543-9
  • Hruby M, Konak C, Ulbrich K. Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J Control Release 2005;103(1):137-48
  • Lee Y, Park SY, Mok H, Park TG. Synthesis, characterization, antitumor activity of pluronic mimicking copolymer micelles conjugated with doxorubicin via acid-cleavable linkage. Bioconjug Chem 2008;19(2):525-31
  • Zhao YZ, Sun CZ, Lu CT, Characterization and anti-tumor activity of chemical conjugation of doxorubicin in polymeric micelles (DOX-P) in vitro. Cancer Lett 2011;311(2):187-94

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.