1,065
Views
116
CrossRef citations to date
0
Altmetric
Reviews

Cell-penetrating peptides for the delivery of nucleic acids

, &
Pages 823-836 | Published online: 17 May 2012

Bibliography

  • Kaiser J. Clinical research. Gene therapists celebrate a decade of progress. Science 2011;334(6052):29-30
  • Kole R, Krainer AR, Altman S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 2012;2011(2):125-40
  • Bennett CF, Swayze EE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 2010;50:259-93
  • Kay MA. State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 2011;12(5):316-28
  • Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov 2005;4(7):581-93
  • Lindgren M, Langel U. Classes and prediction of cell-penetrating peptides. Methods Mol Biol 2011;683:3-19
  • Brasseur R, Divita G. Happy birthday cell penetrating peptides: already 20 years. Biochim Biophys Acta 2010;1798(12):2177-81
  • Hassane FS, Saleh AF, Abes R, Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci 2010;67(5):715-26
  • Fonseca SB, Pereira MP, Kelley SO. Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev 2009;61(11):953-64
  • Mae M, EL Andaloussi S, Lehto T, Langel U. Chemically modified cell-penetrating peptides for the delivery of nucleic acids. Expert Opin Drug Deliv 2009;6(11):1195-205
  • Ezzat K, EL Andaloussi S, Abdo R, Langel U. Peptide-based matrices as drug delivery vehicles. Curr Pharm Des 2010;16(9):1167-78
  • Nakase I, Tadokoro A, Kawabata N, Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochemistry 2007;46(2):492-501
  • Ezzat K, Helmfors H, Tudoran O, Scavenger receptor-mediated uptake of cell-penetrating peptide nanocomplexes with oligonucleotides. FASEB J 2012;26(3):1172-80
  • Futaki S, Nakase I, Tadokoro A, Arginine-rich peptides and their internalization mechanisms. Biochem Soc Trans 2007;35(Pt 4):784-7
  • EL Andaloussi S, Holm T, Langel U. Cell-penetrating peptides: mechanisms and applications. Curr Pharm Des 2005;11(28):3597-611
  • Rydstrom A, Deshayes S, Konate K, Direct translocation as major cellular uptake for CADY self-assembling peptide-based nanoparticles. PloS one 2011;6(10):e25924
  • Deshayes S, Konate K, Aldrian G, Structural polymorphism of non-covalent peptide-based delivery systems: highway to cellular uptake. Biochim Biophys Acta 2010;1798(12):2304-14
  • El-Sayed A, Futaki S, Harashima H. Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J 2009;11(1):13-22
  • Endoh T, Ohtsuki T. Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Adv Drug Deliv Rev 2009;61(9):704-9
  • Wadia JS, Stan RV, Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 2004;10(3):310-15
  • Lundberg P, El-Andaloussi S, Sutlu T, Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J 2007;21(11):2664-71
  • Lo SL, Wang S. An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection. Biomaterials 2008;29(15):2408-14
  • Khalil IA, Kogure K, Futaki S, Octaarginine-modified multifunctional envelope-type nanoparticles for gene delivery. Gene Ther 2007;14(8):682-9
  • Kogure K, Moriguchi R, Sasaki K, Development of a non-viral multifunctional envelope-type nano device by a novel lipid film hydration method. J Control Release 2004;98(2):317-23
  • EL Andaloussi S, Lehto T, Mager I, Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Res 2011;39(9):3972-87
  • Khalil IA, Futaki S, Niwa M, Mechanism of improved gene transfer by the N-terminal stearylation of octaarginine: enhanced cellular association by hydrophobic core formation. Gene Ther 2004;11(7):636-44
  • Futaki S, Suzuki T, Ohashi W, Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 2001;276(8):5836-40
  • Mae M, El Andaloussi S, Lundin P, A stearylated CPP for delivery of splice correcting oligonucleotides using a non-covalent co-incubation strategy. J Control Release 2009;134(3):221-7
  • Nakamura Y, Kogure K, Futaki S, Octaarginine-modified multifunctional envelope-type nano device for siRNA. J Control Release 2007;119(3):360-7
  • Tonges L, Lingor P, Egle R, Stearylated octaarginine and artificial virus-like particles for transfection of siRNA into primary rat neurons. RNA 2006;12(7):1431-8
  • Simeoni F, Morris MC, Heitz F, Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res 2003;31(11):2717-24
  • Kilk K, EL Andaloussi S, Jarver P, Evaluation of transportan 10 in PEI mediated plasmid delivery assay. J Control Release 2005;103(2):511-23
  • Liu Z, Li M, Cui D, Fei J. Macro-branched cell-penetrating peptide design for gene delivery. J Control Release 2005;102(3):699-710
  • Ignatovich IA, Dizhe EB, Pavlotskaya AV, Complexes of plasmid DNA with basic domain 47-57 of the HIV-1 Tat protein are transferred to mammalian cells by endocytosis-mediated pathways. J Biol Chem 2003;278(43):42625-36
  • Trabulo S, Mano M, Faneca H, S4(13)-PV cell penetrating peptide and cationic liposomes act synergistically to mediate intracellular delivery of plasmid DNA. J Gene Med 2008;10(11):1210-22
  • Fujita T, Furuhata M, Hattori Y, High gene delivery in tumor by intratumoral injection of tetraarginine-PEG lipid-coated protamine/DNA. J Control Release 2008;129(2):124-7
  • Wyman TB, Nicol F, Zelphati O, Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. Biochemistry 1997;36(10):3008-17
  • Morris MC, Vidal P, Chaloin L, A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res 1997;25(14):2730-6
  • Morris MC, Chaloin L, Mery J, A novel potent strategy for gene delivery using a single peptide vector as a carrier. Nucleic Acids Res 1999;27(17):3510-17
  • Rittner K, Benavente A, Bompard-Sorlet A, New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo. Mol Ther 2002;5(2):104-14
  • Johnson LN, Cashman SM, Kumar-Singh R. Cell-penetrating peptide for enhanced delivery of nucleic acids and drugs to ocular tissues including retina and cornea. Mol Ther 2008;16(1):107-14
  • Read SP, Cashman S, Kumar-Singh R. A poly(ethylene) glycolylated peptide for ocular delivery compacts DNA into nanoparticles for gene delivery to post-mitotic tissues in vivo. J Gene Med 2010;12(1):86-96
  • Read SP, Cashman SM, Kumar-Singh R. POD nanoparticles expressing GDNF provide structural and functional rescue of light-induced retinal degeneration in an adult mouse. Mol Ther 2010;18(11):1917-26
  • Futaki S, Ohashi W, Suzuki T, Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjug Chem 2001;12(6):1005-11
  • Wang H-Y, Chen J-X, Sun Y-X, Construction of cell penetrating peptide vectors with N-terminal stearylated nuclear localization signal for targeted delivery of DNA into the cell nuclei. J Control Release 2010;155(1):26-33
  • Lehto T, Abes R, Oskolkov N, Delivery of nucleic acids with a stearylated (RxR)4 peptide using a non-covalent co-incubation strategy. J Control Release 2010;141(1):42-51
  • Lehto T, Simonson OE, Mager I, A Peptide-based vector for efficient gene transfer in vitro and in vivo. Mol Ther 2011;19(8):1457-67
  • Govindarajan S, Sivakumar J, Garimidi P, Targeting human epidermal growth factor receptor 2 by a cell-penetrating peptide-affibody bioconjugate. Biomaterials 2012;33(8):2570-82
  • Sazani P, Kole R. Therapeutic potential of antisense oligonucleotides as modulators of alternative splicing. J Clin Invest 2003;112(4):481-6
  • Wood MJ, Gait MJ, Yin H. RNA-targeted splice-correction therapy for neuromuscular disease. Brain 2010;133:957-72
  • Astriab-Fisher A, Sergueev D, Fisher M, Conjugates of antisense oligonucleotides with the Tat and antennapedia cell-penetrating peptides: effects on cellular uptake, binding to target sequences, and biologic actions. Pharm Res 2002;19(6):744-54
  • Moulton HM, Hase MC, Smith KM, Iversen PL. HIV Tat peptide enhances cellular delivery of antisense morpholino oligomers. Antisense Nucleic Acid Drug Dev 2003;13(1):31-43
  • Wolf Y, Pritz S, Abes S, Structural requirements for cellular uptake and antisense activity of peptide nucleic acids conjugated with various peptides. Biochemistry 2006;45(50):14944-54
  • El-Andaloussi S, Johansson HJ, Lundberg P, Langel U. Induction of splice correction by cell-penetrating peptide nucleic acids. J Gene Med 2006;8(10):1262-73
  • El-Andaloussi S, Johansson HJ, Holm T, Langel U. A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. Mol Ther 2007;15(10):1820-6
  • Abes S, Moulton HM, Clair P, Vectorization of morpholino oligomers by the (R-Ahx-R)4 peptide allows efficient splicing correction in the absence of endosomolytic agents. J Control Release 2006;116(3):304-13
  • Moulton HM, Fletcher S, Neuman BW, Cell-penetrating peptide-morpholino conjugates alter pre-mRNA splicing of DMD (Duchenne muscular dystrophy) and inhibit murine coronavirus replication in vivo. Biochem Soc Trans 2007;35(Pt 4):826-8
  • Abes R, Moulton HM, Clair P, Delivery of steric block morpholino oligomers by (R-X-R)4 peptides: structure-activity studies. Nucleic Acids Res 2008;36(20):6343-54
  • McClorey G, Moulton HM, Iversen PL, Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD. Gene Ther 2006;13(19):1373-81
  • Jearawiriyapaisarn N, Moulton HM, Buckley B, Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol Ther 2008;16(9):1624-9
  • Fletcher S, Honeyman K, Fall AM, Morpholino oligomer-mediated exon skipping averts the onset of dystrophic pathology in the mdx mouse. Mol Ther 2007;15(9):1587-92
  • Burrer R, Neuman BW, Ting JP, Antiviral effects of antisense morpholino oligomers in murine coronavirus infection models. J Virol 2007;81(11):5637-48
  • Abes S, Turner JJ, Ivanova GD, Efficient splicing correction by PNA conjugation to an R6-Penetratin delivery peptide. Nucleic Acids Res 2007;35(13):4495-502
  • Ivanova GD, Arzumanov A, Abes R, Improved cell-penetrating peptide-PNA conjugates for splicing redirection in HeLa cells and exon skipping in mdx mouse muscle. Nucleic Acids Res 2008;36(20):6418-28
  • Yin H, Moulton HM, Seow Y, Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function. Hum Mol Genet 2008;17(24):3909-18
  • Jearawiriyapaisarn N, Moulton HM, Sazani P, Long-term improvement in mdx cardiomyopathy after therapy with peptide-conjugated morpholino oligomers. Cardiovasc Res 2010;85(3):444-53
  • Moulton HM, Wu B, Jearawiriyapaisarn N, Peptide-morpholino conjugate: a promising therapeutic for Duchenne muscular dystrophy. Ann NY Acad Sci 2009;1175:55-60
  • Yin H, Moulton HM, Betts C, Functional rescue of dystrophin-deficient mdx mice by a chimeric peptide-PMO. Mol Ther 2010;18(10):1822-9
  • Yin H, Moulton HM, Betts C, A fusion peptide directs enhanced systemic dystrophin exon skipping and functional restoration in dystrophin-deficient mdx mice. Hum Mol Genet 2009;18(22):4405-14
  • Andaloussi S, Lehto T, Lundin P, Langel U. Application of PepFect peptides for the delivery of splice-correcting oligonucleotides. Methods Mol Biol 2011;683:361-73
  • Oskolkov N, Arukuusk P, Copolovici DM, NickFects, phosphorylated derivatives of transportan 10 for cellular delivery of oligonucleotides. Int J Pept Res Ther 2011;17(2):147-57
  • Hassane FS, Abes R, El Andaloussi S, Insights into the cellular trafficking of splice redirecting oligonucleotides complexed with chemically modified cell-penetrating peptides. J Control Release 2011;153(2):163-72
  • Ezzat K, EL Andaloussi S, Zaghloul EM, PepFect 14, a novel cell-penetrating peptide for oligonucleotide delivery in solution and as solid formulation. Nucleic Acids Res 2011;39(12):5284-98
  • Turner JJ, Jones S, Fabani MM, RNA targeting with peptide conjugates of oligonucleotides, siRNA and PNA. Blood Cells Mol Dis 2007;38(1):1-7
  • Moschos SA, Jones SW, Perry MM, Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem 2007;18(5):1450-9
  • Muratovska A, Eccles MR. Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett 2004;558(1-3):63-8
  • Davidson TJ, Harel S, Arboleda VA, Highly efficient small interfering RNA delivery to primary mammalian neurons induces MicroRNA-like effects before mRNA degradation. J Neurosci 2004;24(45):10040-6
  • Kim WJ, Christensen LV, Jo S, Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol Ther 2006;14(3):343-50
  • Kumar P, Wu H, McBride JL, Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007;448(7149):39-43
  • Crombez L, Morris MC, Dufort S, Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Res 2009;37(14):4559-69
  • Crombez L, Aldrian-Herrada G, Konate K, A new potent secondary amphipathic cell-penetrating peptide for siRNA delivery into mammalian cells. Mol Ther 2009;17(1):95-103
  • Eguchi A, Meade BR, Chang YC, Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat Biotechnol 2009;27(6):567-71
  • Michiue H, Eguchi A, Scadeng M, Dowdy SF. Induction of in vivo synthetic lethal RNAi responses to treat glioblastoma. Cancer Biol Ther 2009;8(23):2306-13
  • Hatakeyama H, Ito E, Akita H, A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. J Control Release 2009;139(2):127-32
  • Derossi D, Joliot AH, Chassaing G, Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 1994;269(14):10444-50
  • Edinger D, Wagner E. Bioresponsive polymers for the delivery of therapeutic nucleic acids. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2011;3(1):33-46
  • Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009;8(2):129-38
  • Lehto T, Ezzat K, Langel U. Peptide nanoparticles for oligonucleotide delivery. Progress in molecular biology and translational. Science 2011;104:397-426
  • Whitney MA, Crisp JL, Nguyen LT, Fluorescent peptides highlight peripheral nerves during surgery in mice. Nat Biotechnol 2011;29(4):352-6
  • Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008;7(9):771-82
  • Maeda H, Matsumura Y. EPR effect based drug design and clinical outlook for enhanced cancer chemotherapy. Adv Drug Deliv Rev 2011;63(3):129-30
  • Meyer M, Wagner E. pH-responsive shielding of non-viral gene vectors. Expert Opin Drug Deliv 2006;3(5):563-71
  • Ogris M, Wagner E. To be targeted: is the magic bullet concept a viable option for synthetic nucleic acid therapeutics? Hum Gene Ther 2011;22(7):799-807
  • Nakase I, Akita H, Kogure K, Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides. Acc Chem Res 2011; In press
  • Pooga M, Hallbrink M, Zorko M, Langel U. Cell penetration by transportan. FASEB J 1998;12(1):67-77
  • Soomets U, Lindgren M, Gallet X, Deletion analogues of transportan. Biochim Biophys Acta 2000;1467(1):165-76
  • Morris MC, Depollier J, Mery J, A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol 2001;19(12):1173-6
  • Oehlke J, Scheller A, Wiesner B, Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta 1998;1414(1-2):127-39
  • Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 1997;272(25):16010-17
  • Svasti S, Suwanmanee T, Fucharoen S, RNA repair restores hemoglobin expression in IVS2-654 thalassemic mice. Proc Natl Acad Sci USA 2009;106(4):1205-10

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.