204
Views
19
CrossRef citations to date
0
Altmetric
Reviews

A feasible way to use carbon nanotubes to deliver drug molecules: transdermal application

&
Pages 991-999 | Published online: 05 Jun 2012

Bibliography

  • Hagens WI, Oomen AG, Jong VH, What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul Toxicol Pharmacol 2007;49:217-29
  • Nain JK. Pharmaceutical nanotechnology. 2007. Available from: http://nsdl.niscair.res.in/bitstream/12345...48/1/revised+Pharmaceutical+Nanotech.pdf [Last accessed 15 January 2012]
  • Wang B, Siahaan T, Soltero R. Drug delivery. principles and applications (textbook). Wiley-Interscience; NJ, USA: 2005
  • Shargel L, Yu ABC. Dekker pharmaceutical technology. biopharmaceutics. Encyclopedias. Taylor and Francis Books; NY–USA: 2002
  • Chellat F, Merhi Y, Moreau A, Yahia LH. Therapeutic potential of nanoparticulate systems for macrophage targeting. Biomaterials 2005;26:7260-75
  • Nagayasu A, Uchiyama K, Kiwada H. The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv Drug Deliv Rev 1999;40:75-87
  • Samuel AW, Gregory ML. Nanotechnology for molecular imaging and targeted therapy. Circulation 2003;107:1092-5
  • Abbott NJ. Physiology of the blood-brain barrier and its consequences for drug transport to the brain. Int Congress Series 2005;1277:3
  • Kreuter J. Application of nanoparticles for the delivery of drugs to the brain. Int Congress Series 2005;1277:85
  • Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nature Reviews Cancer 2006;6:583-92
  • Akerman ME, Chan WCW, Laakkonen P, Nanocrystal targeting in vivo. Proc Natl Acad Sci 2022;99:12617-21
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005;5:161-71
  • Peppas B, Blanchette L, James O. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004;56:1649-59
  • Kawasaki ES, Player A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine 2005;1:101-9
  • Doukas AG, Kollias N. Transdermal drug delivery with a pressure wave. Adv Drug Deliv Rev 2004;56(5):559-79
  • Degim T, Pugh WJ, Hadgraft J. Skin permeability data: anomalous results. Int J Pharmaceutics 1998;170:129-33
  • Degim T, Hadgraft J, Ilbasmis S, Ozkan Y. Prediction of skin penetration using artificial neural network (ANN) modelling. J Pharm Sci 2033;92:656-64
  • Degim T. New tools and approaches for predicting skin permeability. Drug Discov Today 2006;11:517-21
  • Degim IT. Understanding skin penetration: computer aided modeling and data interpretation. Curr Comput Aided Drug Des 2005;1:11-19
  • Barry BW. Drug delivery routes in skin: a novel approach. Adv Drug Deliv Rev 2002;54:S31
  • Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 2004;56:581-7
  • Yum K, Yu MF, Wang N, Xiang YK. Biofunctionalized nanoneedles for the direct and site-selective delivery of probes into living cells. Biochim Biophys Acta 2011;1810:330-8
  • Schein S, Sands-Kidner M. A geometric principle may guide self-assembly of fullerene cages from clathrin triskelia and from carbon atoms. Biophys J 2008;94:958-76
  • Schmalz TG, Seitz WA, Klein DJ, Hite GE. Elemental carbon cages. J Am Chem Soc 1988;110:1113-27
  • Isaacson CW, Kleber M, Field JA. Quantitative nanomaterials in environmental systems. Sci Technol 2009;43:6463-74
  • Levi N, Hantgan RR, Lively MO, C60-fullerenes: detection of intracellular photoluminescence and lack of cytotoxic effects. J Nanobiotechnology 2006;4:14
  • Rouse JG, Yang J, Barron AR, Monteiro-Riviere NA. Fullerene-based amino acid nanoparticle interactions with human keratinocytes. Toxicol In Vitro 2006;20:1313-20
  • Rosen Y, Elman NM. Carbon nanotubes in drug delivery: focus on infectious diseases. Expert Opin Drug Deliv 2009;6:517-30
  • Bianco A. Carbon nanotubes for the delivery of therapeutic molecules. Expert Opin Drug Deliv 2004;1:57-65
  • Tan F, Fan X, Zhang G, Zhang F. Coating and filling of carbon nanotubes with homogeneous magnetic nanoparticles. Mater Lett 2007;61:1805-8
  • Son SJ, Bai X, Nan A, Template synthesis of multifunctional nanotubes for controlled release. J Control Release 2006;114:143-52
  • Yang F, Fu DL, Long J, Ni QX. Magnetic lymphatic targeting drug delivery system using carbon nanotubes. Med Hypotheses 2008;70:765-7
  • Iijima S. Helical microtubules of graphitic carbon. Nature 1991;354:56-8
  • Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 2005;9:674-9
  • Bianco A, Sainz R, Li S, Biomedical applications of functionalised carbon nanotubes. In: Cataldo F, Ros T, editors. Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes, series: carbon materials: chemistry and physics. Springer: 2008;1:23-5
  • Menard-Moyon C. Biomedical Applications V: Influence of Carbon Nanotubes in Neuronal Living Networks. In: Pastorin G, Editor. Carbon nanotubes- From bench chemistry to promising biomedical applications. Pan Stanford publishing Pte. Ltd; Singapore: 2010;151-76
  • Vashist SK, Zheng D, Pastorin G, Delivery of drugs and biomolecules using carbon nanotubes. Carbon 2011;49:4077-97
  • Avouris P. Electronics with carbon nanotubes. Phys World 2004;40:40-5
  • Avouris P, Chen ZH, Perebeinos V. Carbon-based electronics. Nat Nanotechnol 2007;2:605-15
  • Sinnott SB, Andrews R. Carbon nanotubes: synthesis, properties and applications. Crit Rev Solid State 2001;262:145-249
  • Pastorin G. Crucial functionalizations of carbon nanotubes for improved drug delivery: a valuable option? Pharm Res 2009;26:746-69
  • Serag MF, Kaji N, Gaillard C, Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 2011;5:493-9
  • Ajima K, Yudasaka M, Maigne A, Effect of functional groups at hole edges on cisplatin release from inside single-wall carbon nanohorns. J Phys Chem B, 2006;110:5773-8
  • Martin CR, Kohli P. The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2003;2:29-37
  • Monteiro-Riviere NA, Inman AO, Wang YY, Nemanich RJ. Surfactant effects on carbon nanotube interactions with human epidermal keratinocytes. Nanomed Nanotechnol Biol Med 2005;1:293-9
  • Degim IT, Burgess DJ, Papadimitrakopoulos F. Carbon nanotubes for transdermal drug delivery. J Microencapsul 2010;27:669-81
  • Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliver Rev 2002;54:631-51
  • Chiannilkulchai N, Ammmoury N, Caillou B, Hepatic tissue distribution of doxorubicin-loaded nanoparticles after i.v. administration in reticulosarcoma M 5076 metastasis-bearing mice. Cancer Chemother Pharmacol 1990;26:122-6
  • Khwaja F, Allen J, Lynch J, Ibuprofen inhibits survival of ladder cancer cells by induced expression of the p75NTR tumor suppressor protein. Cancer Res 2004;64:6207-13
  • Eli Y, Przedecki F, Levin G, Comparative effects of indomethacin on cell proliferation and cell cycle progression in tumor cells grown in vitro and in vivo. Biochem Pharmacol 2001;61:565-71
  • Helland A, Wick P, Koehler A, Reviewing the environmental and human health knowledge base of carbon nanotubes. Enviro Health Perspect 2007;115(8):1125-31
  • Muller J, Huaux F, Lison D. Respiratory toxicity of carbon nanotubes: how worried should we be? Carbon 2006;44:1048-56
  • Shvedova AA, Kisin ER, Mercer R, Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 2005;289:L698-708
  • Warheit DB, Laurence BR, Reed KL, Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 2004;77:117-25
  • Lam CW, James JT, Mccluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 2004;77:126-34
  • Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: II. drug delivery and biocompatibility issues. Nanomedicine 2008;4:183-200
  • Sato Y, Yokoyama A, Shibata K, Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP- 1 in vitro and subcutaneous tissue of rats in vivo. Mol Biosyst 2005;1:176-82
  • Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 2005;9:674-9
  • Chattopadhyay J, Cortez FJ, Chakraborty S, Synthesis of water-soluble PEGylated single-walled carbon nanotubes. Chem Mater 2006;18:5864-8
  • Shieh Y-T, Liu G-L, Wu H-H, Lee C-C. Effects of polarity and pH on the solubility of acid-treated carbon nanotubes in different media. Carbon 2007;45:1880-90
  • Kam NWS, Jessop TC, Wender PA, Dai H. Nanotube molecular transporters: internalization of carbon nanotube: protein conjugates into mammalian cells. J Am Chem Soc 2004;126:6850-1
  • Pantarotto D, Singh R, McCarthy D, Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed 2004;43:5242-6
  • Cai D, Huang Z, Carnahan D, Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Methods 2005;2:44954
  • Klumpp C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta 2006;1758:404-12
  • Lacerda L, Raffa V, Prato M, Cell-penetrating carbon nanotubes in the delivery of therapeutics. Nano Today 2007;2:38-43
  • Monteiro-Riviere NA, Inman AO, Wang YY, Nemanich RJ. Surfactant effects on carbon nanotube interactions with human epidermal keratinocytes. Nanomed Nanotechnol Biol Med 2005;1:293-9
  • Shvedova AA, Castranova V, Kisin ER, Exposure to carbon nanotubes material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health Part A, 2003;66:1909-26
  • Cunningham MJ, Magnuson SR, Falduto MT. Gene expression profiling of nanoscale materials using a systems biology approach. Toxicologist 2005;84(S-1):9
  • Huczko A, Lange H. Carbon nanotubes: experimental evidence for a null risk of skin irritation and allergy. Fuller Sci Technol 2001;9:247-50
  • Wu W, Wieckowski S, Pastorin G, Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed Engl 2005;44:6358-62
  • Dumortier H, Lacotte S, Pastorin G, Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 2006;6:1522-8
  • Guo J, Zhang X, Li Q, Li W. Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl Med Biol 2007;34:579-83
  • Zerda ADL, Zavaleta C, Keren S, Photoacoustic molecular imaging in living mice utilizing targeted carbon nanotubes. Nat Nanotechnol 2008;3:557-62
  • Mcdevitt MR, Chattopadhyay D, Jaggi JS, PET imaging of soluble Yttrium-86-labeled carbon nanotubes in mice. PLoS One 2007;2:E907
  • Yoshida NH, Roberts MS. Solute molecular size and transdermal iontophoresis across excised human skin. J Control Release 1993;25:177-95
  • Aguilella V, Kontturi K, Murtomaki L, Ramirez P. Estimation of the pore size and charge density in human cadaver skin. J Control Release 1994;32:249-57
  • Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Delivery Rev 2004;56:675-711
  • Degim Z, Degim IT. Penetration of nanosized matter. In: Nalwa HS, editor. Encyclopedia nanoscience and nanotechnology. Volume 20 American scientific publishers; USA: 2011. p. 475-93
  • Pugh WJ, Degim T, Hadgraft J. Epidermal permeability-penetrant structure relationships: 4. QSAR of permeant diffusion across human stratum corneum in terms of molecular weight, H-bonding and electronic charge. Int J Pharm 2000;197:203-11
  • Ilbasmis Tamer S, Yilmaz S, Carbon nanotubes to deliver drug molecules. J Biomed Nanotechnol 2010;6:20-7
  • Cheng C, Porter AE, Muller K, Imaging carbon nanoparticles and related cytotoxicity. J Phys Conf Series 2009;151:012030
  • Lamprecht C, Danzberger J, Lukanov P, AFM imaging of functionalized double-walled carbon nanotubes. Ultramicroscopy 2009;109:899-906
  • Chen J, Gao F, Zhang L, Huang S. Catalyst-free growth of oriented single-walled carbon nanotubes on mica by ethanol chemical vapor deposition. Mater Lett 2009;63:721-3
  • Rice NA, Soper K, Zhou N, Dispersing as-prepared single-walled carbon nanotube powders with linear conjugated polymers. Chem Commun 2006;1:4937-9
  • Yalovenko AU. AFM Investigation of carbon nanotubes. Moscow state institute of electronic engineering (Technical University), 124498, Moscow, K-498, Russia: 171-173
  • Cao Y, Liang Y, Dong S, Wang Y. A multi-wall carbon nanotube (MWCNT) relocation technique for atomic force microscopy (AFM) samples. Ultramicroscopy 2005;103:103-8
  • Kuwahara S, Akita S, Shirakihara M, Fabrication and characterization of high-resolution AFM tips with high-quality double-wall carbon nanotubes. Chem Phys Lett 2006;429:581-5
  • Hilding J, Grulke EA, Zhang ZG, Lockwood F. Dispersion of carbon nanotubes in liquids. J Dıspersıon Scı Technol 2003;24:1-41
  • Safarova K, Dvorak A, Kubinek R, SEM and TEM for research of carbon nanotubes. Mod Res Educ Top Microsc 2007;2:513-19
  • Zhao B, Hu H, Yu A, Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers. J Am Chem Soc 2005;127:8197-203
  • Ilbasmis Tamer S. Investigations on nanotube containing drug delivery systems. PHD thesis, Gazi University Faculty of Pharmacy, Department of Pharmaceutical Technology; Ankara, Turkey; 2011
  • Li F, Wang Y, Wang D, Wei F. Characterization of single-wall carbon nanotubes by N2 adsorption. Carbon 2004;42:2375-83
  • Roberts MS, Pugh WJ, Hadgraft J, Watkinson AC. Epidermal solutes from aqueous solutions. Int J Pharm 1995;126:219-33
  • Yanagi K, Miyata Y, Kataura H. Highly stabilized b-carotene in carbon nanotubes. Adv Mater 2006;18:437-41
  • Simonyan VV, Johnson JK, Kuznetsova A, Yates JT Jr. Molecular simulation of xenon adsorption on single-walled carbon nanotubes. J Chem Phys 2001;114:4180-5
  • Yudasaka M, Aijima K, Suenaga K, Nano-extraction and nano-condensation for C60 incorporation into single-wall carbon nanotubes in liquid phases. Chem Phys Lett 2003;380:42-6
  • Walters DA, Casavant MJ, Qin XC, Smalley. In-plane–aligned membranes of carbon nanotubes. Chem Phys Lett 2001;338:14-20
  • Sun X, Su X, Wu J, Hinds BJ. Electrophoretic transport of biomolecules through carbon nanotube membranes. Langmuir 2011;27:3150-6
  • Conductive Adhesives Tabs, Tapes and Sheets Carbon, Aluminum, Copper, Silver. 2011. Available from: http://www.tedpella.com/SEMmisc_html/SEMadhes.htm [Last accessed 3 February 2012]
  • Wu J, Paudel KS, Strasinger C, Programmable transdermal drug delivery of nicotine using carbon nanotube membranes. Proc Natl Acad Sci USA 2010;26:11698-702
  • Wu J, Gerstandt K, Zhang H, Electrophoretically induced aqueous flow through single-walled carbon nanotubes membranes. Nat Nanotechnology 2012; Published online 15 January 2012; doi:10.1038/nnano.2011.240
  • Majumder M, Chopra N, Hinds BJ. Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano 2011;5:3867-77

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.