632
Views
48
CrossRef citations to date
0
Altmetric
Reviews

Targeted prodrugs in oral drug delivery: the modern molecular biopharmaceutical approach

, , &
Pages 1001-1013 | Published online: 18 Jun 2012

Bibliography

  • Huttunen KM, Raunio H, Rautio J. Prodrugs – from serendipity to rational design. Pharmacol Rev 2011;63:750-71
  • Stella VJ. Prodrugs: some thoughts and current issues. J Pharm Sci 2010;99:4755-65
  • Beaumont K, Webster R, Gardner I, Dack K. Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: challenges to the discovery scientist. Curr Drug Metab 2003;4:461-85
  • Amidon GL, Leesman GD, Elliott RL. Improving intestinal absorption of water-insoluble compounds: a membrane metabolism strategy. J Pharm Sci 1980;69:1363-8
  • Fleisher D, Bong R, Stewart BH. Improved oral drug delivery: solubility limitations overcome by the use of prodrugs. Adv Drug Deliv Rev 1996;19:115-30
  • Stella VJ, Nti-Addae KW. Prodrug strategies to overcome poor water solubility. Adv Drug Deliv Rev 2007;59:677-94
  • Bernard T. Prodrugs: bridging pharmacodynamic/pharmacokinetic gaps. Curr Opin Chem Biol 2009;13:338-44
  • Ettmayer P, Amidon GL, Clement B, Testa B. Lessons learned from marketed and investigational prodrugs. J Med Chem 2004;47:2393-404
  • Rautio J, Kumpulainen H, Heimbach T, Prodrugs: design and clinical applications. Nat Rev Drug Discov 2008;7:255-70
  • Han HK, Amidon GL. Targeted prodrug design to optimize drug delivery. AAPS PharmSci 2000;2:E6
  • Majumdar S, Duvvuri S, Mitra AK. Membrane transporter/receptor-targeted prodrug design: strategies for human and veterinary drug development. Adv Drug Deliv Rev 2004;56:1437-52
  • Tamai I. Oral drug delivery utilizing intestinal OATP transporters. Adv Drug Deliv Rev 2012; In press
  • Jonker JW, Schinkel AH. Pharmacological and physiological functions of the polyspecific organic cation transporters: OCT1, 2, and 3 (SLC22A1-3). J Pharmacol Exp Ther 2004;308:2-9
  • Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 2007;24:1227-51
  • Balakrishnan A, Polli JE. Apical sodium dependent bile acid transporter (ASBT, SLC10A2): a potential prodrug target. Mol Pharm 2006;3:223-30
  • Cao X, Gibbs S, Fang L, Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm Res 2006;23:1675-86
  • Tsuji A. Tissue selective drug delivery utilizing carrier-mediated transport systems. J Control Release 1999;62:239-44
  • Varma M, Ambler C, Ullah M, Targeting intestinal transporters for optimizing oral drug absorption. Curr Drug Metab 2010;11:730-42
  • Anderson CMH, Grenade DS, Boll M, H+/amino acid transporter 1 (PAT1) is the imino acid carrier: an intestinal nutrient/drug transporter in human and rat. Gastroenterology 2004;127:1410-22
  • Thwaites DT, Anderson CMH. The SLC36 family of proton-coupled amino acid transporters and their potential role in drug transport. Br J Pharmacol 2011;164:1802-16
  • Ganapathy ME, Ganapathy V. Amino acid transporter ATB0, + as a delivery system for drugs and prodrugs. Curr Drug Targets Immune Endocr Metab Disord 2005;5:357-64
  • Hatanaka T, Haramura M, Fei Y-J, Transport of amino acid-based prodrugs by the Na+- and Cl– coupled amino acid transporter ATB0, + and expression of the transporter in tissues amenable for drug delivery. J Pharmacol Exp Ther 2004;308:1138-47
  • Qiu A, Jansen M, Sakaris A, Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 2006;127:917-28
  • Zhao R, Diop-Bove N, Visentin M, Goldman ID. Mechanisms of membrane transport of folates into cells and across epithelia. Annu Rev Nutr 2011;31:177-201
  • Bai JPF, Amidon GL. Structural specificity of mucosal-cell transport and metabolism of peptide drugs: implication for oral peptide drug delivery. Pharm Res 1992;9:969-78
  • Brandsch M, Knutter I, Bosse-Doenecke E. Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol 2008;60:543-85
  • Kikuchi A, Tomoyasu T, Tanaka M, Peptide derivation of poorly absorbable drug allows intestinal absorption via peptide transporter. J Pharm Sci 2009;98:1775-87
  • Lee VHL, Chu C, Mahlin ED, Biopharmaceutics of transmucosal peptide and protein drug administration: role of transport mechanisms with a focus on the involvement of PepT1. J Control Release 1999;62:129-40
  • Giacomini K, Huang S, Tweedie D, Membrane transporters in drug development. Nat Rev Drug Discov 2010;9:215-36
  • Mizuno N, Niwa T, Yotsumoto Y, Sugiyama Y. Impact of drug transporter studies on drug discovery and development. Pharmacol Rev 2003;55:425-61
  • Shugarts S, Benet L. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm Res 2009;26:2039-54
  • Martinez MN, Amidon GL. A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol 2002;42:620-43
  • Jappar D, Hu Y, Smith DE. Effect of dose escalation on the in vivo oral absorption and disposition of glycylsarcosine in wild-type and pept1 knockout mice. Drug Metab Dispos 2011;39:2250-7
  • Aoki FY, Doucette KE. Oseltamivir: a clinical and pharmacological perspective. Expert Opin Pharmacother 2001;2:1671-83
  • Le QM, Kiso M, Someya K, Avian flu: isolation of drug-resistant H5N1 virus. Nature 2005;437:1108-8
  • Cass L, Efthymiopoulos C, Bye A. Pharmacokinetics of zanamivir after intravenous, oral, inhaled or intranasal administration to healthy volunteers. Clin Pharmacokinet 1999;36:1-11
  • Varghese Gupta S, Gupta D, Sun J, Enhancing the intestinal membrane permeability of zanamivir: a carrier mediated prodrug approach. Mol Pharm 2011;8:2358-67
  • Miller JM, Dahan A, Gupta D, Enabling the intestinal absorption of highly polar antiviral agents: ion-pair facilitated membrane permeation of zanamivir heptyl ester and guanidino oseltamivir. Mol Pharm 2010;7:1223-34
  • Dawood F, Jain S, Finelli L, Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 2009;360:2605-15
  • Landowski CP, Vig BS, Song X, Amidon GL. Targeted delivery to PEPT1-overexpressing cells: acidic, basic, and secondary floxuridine amino acid ester prodrugs. Mol Cancer Ther 2005;4:659-67
  • Tsume Y, Hilfinger J, Amidon G. Potential of amino acid/dipeptide monoester prodrugs of floxuridine in facilitating enhanced delivery of active drug to interior sites of tumors: a two-tier monolayer in vitro study. Pharm Res 2011;28:2575-88
  • Tsume Y, Hilfinger JM, Amidon GL. Enhanced cancer cell growth inhibition by dipeptide prodrugs of floxuridine: increased transporter affinity and metabolic stability. Mol Pharm 2008;5:717-27
  • Han H-K, de Vrueh RLA, Rhie JK, 5′-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm Res 1998;15:1154-9
  • Li F, Maag H, Alfredson T. Prodrugs of nucleoside analogues for improved oral absorption and tissue targeting. J Pharm Sci 2008;97:1109-34
  • Mittal S, Song X, Vig BS, Prolidase, a potential enzyme target for melanoma: design of proline-containing dipeptide-like prodrugs. Mol Pharm 2005;2:37-46
  • Song X, Lorenzi PL, Landowski CP, Amino acid ester prodrugs of the anticancer agent gemcitabine: synthesis, bioconversion, metabolic bioevasion, and hPEPT1-mediated transport. Mol Pharm 2005;2:157-67
  • Tsuda M, Terada T, Irie M, Transport characteristics of a novel peptide transporter 1 substrate, antihypotensive drug midodrine, and its amino acid derivatives. J Pharmacol Exp Ther 2006;318:455-60
  • Ezra A, Hoffman A, Breuer E, A peptide prodrug approach for improving bisphosphonate oral absorption. J Med Chem 2000;43:3641-52
  • Halestrap A, Meredith D. The SLC16 gene family - from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 2004;447:619-28
  • Cundy KC, Annamalai T, Bu L, XP13512, a novel gabapentin prodrug: II. Improved oral bioavailability, dose proportionality, and colonic absorption compared with gabapentin in rats and monkeys. J Pharmacol Exp Ther 2004;311:324-33
  • Cundy KC, Sastry S, Luo W, Clinical pharmacokinetics of XP13512, a novel transported prodrug of gabapentin. J Clin Pharmacol 2008;48:1378-88
  • Cundy KC, Branch R, Chernov-Rogan T, XP13512, a novel gabapentin prodrug: I. Design, synthesis, enzymatic conversion to gabapentin, and transport by intestinal solute transporters. J Pharmacol Exp Ther 2004;311:315-23
  • Tolle-Sander S, Lentz KA, Maeda DY, Increased acyclovir oral bioavailability via a bile acid conjugate. Mol Pharm 2004;1:40-8
  • Rais R, Fletcher S, Polli JE. Synthesis and in vitro evaluation of gabapentin prodrugs that target the human apical sodium-dependent bile acid transporter (hASBT). J Pharm Sci 2011;100:1184-95
  • Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995;12:413
  • Dahan A, Miller JM, Amidon GL. Prediction of solubility and permeability class membership: provisional BCS classification of the world's top oral drugs. AAPS J 2009;11:740-6
  • Dahan A, Miller JM, Hilfinger JM, High-permeability criterion for BCS classification: segmental/pH dependent permeability considerations. Mol Pharm 2010;7:1827-34
  • Lennernas H. Human intestinal permeability. J Pharm Sci 1998;87:403-10
  • Sun D, Yu L, Hussain M, In vitro testing of drug absorption for drug ‘developability’ assessment: forming an interface between in vitro preclinical data and clinical outcome. Curr Opin Drug Discov Devel 2004;7:75-85
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46:3-26
  • Landowski CP, Lorenzi PL, Song X, Amidon GL. Nucleoside ester prodrug substrate specificity of liver carboxylesterase. J Pharmacol Exp Ther 2006;316:572-80
  • Liederer BM, Borchardt RT. Enzymes involved in the bioconversion of ester-based prodrugs. J Pharm Sci 2006;95:1177-95
  • Satoh T, Hosokawa M. The mammalian carboxylesterases: from molecules to functions. Annu Rev Pharmacol Toxicol 1998;38:257-88
  • Weller S, Blum M, Doucette M, Pharmacokinetics of the acyclovir pro-drug valacyclovir after escalating single- and multiple-dose administration to normal volunteers. Clin Pharmacol Ther 1993;54:595-605
  • Balimane PV, Tamai I, Guo A, Direct evidence for peptide transporter (PepT1)-mediated uptake of a nonpeptide prodrug, valacyclovir. Biochem Biophys Res Commun 1998;250:246-51
  • Burnette TC, de Miranda P. Metabolic disposition of the acyclovir prodrug valacyclovir in the rat. Drug Metab Dispos 1994;22:60-4
  • de Miranda P, Burnette TC. Metabolic fate and pharmacokinetics of the acyclovir prodrug valacyclovir in cynomolgus monkeys. Drug Metab Dispos 1994;22:55-9
  • Soul-Lawton J, Seaber E, On N, Absolute bioavailability and metabolic disposition of valacyclovir, the L-valyl ester of acyclovir, following oral administration to humans. Antimicrob Agents Chemother 1995;39:2759-64
  • Sinko PJ, Balimane PV. Carrier-mediated intestinal absorption of valacyclovir, the L-valyl ester prodrug of acyclovir. 1. Interactions with peptides, organic anions and organic cations in rats. Biopharm Drug Dispos 1998;19:209-17
  • Burnette TC, Harrington JA, Reardon JE, Purification and characterization of a rat liver enzyme that hydrolyzes valacyclovir, the L-valyl ester prodrug of acyclovir. J Biol Chem 1995;270:15827-31
  • Kim I, Chu X-Y, Kim S, Identification of a human valacyclovirase. J Biol Chem 2003;278:25348-56
  • Lai L, Xu Z, Zhou J, Molecular basis of prodrug activation by human valacyclovirase, an alpha-amino acid ester hydrolase. J Biol Chem 2008;283:9318-27
  • Gupta D, Gupta SV, Lee K-D, Amidon GL. Chemical and enzymatic stability of amino acid prodrugs containing methoxy, ethoxy and propylene glycol linkers. Mol Pharm 2009;6:1604-11
  • Kim I, Crippen GM, Amidon GL. Structure and specificity of a human valacyclovir activating enzyme: a homology model of BPHL. Mol Pharm 2004;1:434-46
  • Kim I, Song X, Vig BS, A novel nucleoside prodrug-activating enzyme: substrate specificity of biphenyl hydrolase-like protein. Mol Pharm 2004;1:117-27
  • Sun J, Dahan A, Walls ZF, Specificity of a prodrug-activating enzyme hVACVase: the leaving group effect. Mol Pharm 2010;7:2362-8
  • Sun J, Miller JM, Beig A, Mechanistic enhancement of the intestinal absorption of drugs containing the polar guanidino functionality. Expert Opin Drug Metab Toxicol 2011;7:313-23
  • Li W, Escarpe PA, Eisenberg EJ, Identification of GS 4104 as an orally bioavailable prodrug of the influenza virus neuraminidase inhibitor GS 4071. Antimicrob Agents Chemother 1998;42:647-53
  • Clement B, Mau S, Deters S, Havemeyer A. Hepatic, extrahepatic, microsomal, and mitochondrial activation of the N-hydroxylated prodrugs benzamidoxime, guanoxabenz, and Ro 48-3656 ([[1-[(2s)-2-[[4-[(hydroxyamino)iminomethyl]benzoyl]amino]-1-oxopropyl]-4-piperidinyl]oxy]-acetic acid). Drug Metab Dispos 2005;33:1740-7
  • Huttunen KM, Mannila A, Laine K, The first bioreversible prodrug of metformin with improved lipophilicity and enhanced intestinal absorption. J Med Chem 2009;52:4142-8
  • Maryanoff BE, McComsey DF, Costanzo MJ, Exploration of potential prodrugs of RWJ-445167, an oxyguanidine-based dual inhibitor of thrombin and factor Xa. Chem Biol Drug Des 2006;68:29-36
  • Saulnier MG, Frennesson DB, Deshpande MS, An efficient method for the synthesis of guanidino prodrugs. Bioorg Med Chem Lett 1994;4:1985-90
  • Sun J, Dahan A, Amidon GL. Enhancing the intestinal absorption of molecules containing the polar guanidino functionality: a double-targeted prodrug approach. J Med Chem 2010;53:624-32
  • Dahan A, Duvdevani R, Dvir E, A novel mechanism for oral controlled release of drugs by continuous degradation of a phospholipid prodrug along the intestine: in-vivo and in-vitro evaluation of an indomethacin–lecithin conjugate. J Control Release 2007;119:86-93
  • Dahan A, Duvdevani R, Shapiro I, The oral absorption of phospholipid prodrugs: in vivo and in vitro mechanistic investigation of trafficking of a lecithin-valproic acid conjugate following oral administration. J Control Release 2008;126:1-9
  • Dahan A, Hoffman A. Mode of administration-dependent brain uptake of indomethacin: sustained systemic input increases brain influx. Drug Metab Dispos 2007;35:321-4
  • Dvir E, Elman A, Simmons D, DP-155, a lecithin derivative of indomethacin, is a novel nonsteroidal antiinflammatory drug for analgesia and Alzheimer's disease therapy. CNS Drug Rev 2007;13:260-77
  • Dvir E, Friedman JE, Lee JY, A novel phospholipid derivative of indomethacin, DP-155, shows superior safety and similar efficacy in reducing brain amyloid beta in an Alzheimer's disease model. J Pharmacol Exp Ther 2006;318:1248-56
  • Kurz M, Scriba GKE. Drug–phospholipid conjugates as potential prodrugs: synthesis, characterization, and degradation by pancreatic phospholipase A2. Chem Phys Lipids 2000;107:143-57
  • Reddy M, Erion M. Free energy calculations in rational drug design. Kluwer/Plenum Press; New York: 2001
  • Schrodinger E. Quantisierung als eigenwertproblem. Ann Phys 1926;79:361-76
  • Dewar MJS, Thiel W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. J Am Chem Soc 1977;99:4899-907
  • Parr R, Yang W. Density functional theory of atoms and molecules. Oxford University Press; Oxford: 1989
  • Burkert U, Allinger NL. Molecular mechanics. In: ACS Monograph 177. American Chemical Society; Washington DC:1982. p. 339
  • Karaman R. Analysis of Menger's ‘spatiotemporal hypothesis'. Tetrahedron Lett 2008;49:5998-6002
  • Karaman R. Cleavage of Menger's aliphatic amide: a model for peptidase enzyme solely explained by proximity orientation in intramolecular proton transfer. J Mol Struct 2009;910:27-33
  • Karaman R. The efficiency of proton transfer in Kirby's enzyme model, a computational approach. Tetrahedron Lett 2010;51:2130-5
  • Karaman R, Hallak H. Computer-assisted design of pro-drugs for antimalarial atovaquone. Chem Biol Drug Des 2010;76:350-60
  • Karaman R. Analyzing the efficiency in intramolecular amide hydrolysis of Kirby's N-alkylmaleamic acids – a computational approach. Comput Theor Chem 2011;974:133-42
  • Hejaz H, Karaman R, Khamis M. Computer-assisted design for paracetamol masking bitter taste prodrugs. J Mol Model 2012;18:103-14
  • Karaman R. Computational-aided design for dopamine prodrugs based on novel chemical approach. Chem Biol Drug Des 2011;78:853-63
  • Karaman R, Dajani KK, Qtait A, Khamis M. Prodrugs of acyclovir – a computational approach. Chem Biol Drug Des 2012;79:819-34

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.