400
Views
30
CrossRef citations to date
0
Altmetric
Reviews

Targeted nanotheranostics for personalized cancer therapy

, &
Pages 1475-1487 | Published online: 23 Oct 2012

Bibliography

  • Ponce AM, Viglianti BL, Yu D, Magnetic resonance imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects. J Natl Cancer Inst 2007;99(1):53-63
  • de Smet M, Heijman E, Langereis S, Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J Control Release 2011;150(1):102-10
  • Bates S. Progress towards personalized medicine. Drug Discov Today 2010;15(3-4):115-20
  • Barreto JA, O'Malley W, Kubeil M, Nanomaterials: applications in cancer imaging and therapy. Adv Mater 2011;23(12):H18-40
  • Bae KH, Chung HJ, Park TG. Nanomaterials for cancer therapy and imaging. Mol Cells 2011;31(4):295-302
  • Kateb B, Chiu K, Black KL, Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy? Neuroimage 2011;54(Suppl 1):S106-24
  • Keupp J, Rahmer J, Grasslin I, Simultaneous dual-nuclei imaging for motion corrected detection and quantification of 19F imaging agents. Magn Reson Med 2011;66(4):1116-22
  • Hu L, Hockett FD, Chen J, A generalized strategy for designing (19)F/(1)H dual-frequency MRI coil for small animal imaging at 4.7 Tesla. J Magn Reson Imaging 2011;34(1):245-52
  • Neubauer AM, Myerson J, Caruthers SD, Gadolinium-modulated 19F signals from perfluorocarbon nanoparticles as a new strategy for molecular imaging. Magn Reson Med 2008;60(5):1066-72
  • Fang C, Bhattarai N, Sun C, Functionalized nanoparticles with long-term stability in biological media. Small 2009;5(14):1637-41
  • Bhadra D, Bhadra S, Jain NK. Pegylated lysine based copolymeric dendritic micelles for solubilization and delivery of artemether. J Pharm Pharm Sci 2005;8(3):467-82
  • Alhareth K, Vauthier C, Bourasset F, Conformation of surface-decorating dextran chains affects the pharmacokinetics and biodistribution of doxorubicin-loaded nanoparticles. Eur J Pharm Biopharm 2012;81(2):453-7
  • Amoozgar Z, Park J, Lin Q, Low molecular-weight chitosan as a pH-sensitive stealth coating for tumor-specific drug delivery. Mol Pharm 2012;9(5):1262-70
  • Jokerst JV, Lobovkina T, Zare RN, Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond) 2011;6(4):715-28
  • Kenny GD, Kamaly N, Kalber TL, Novel multifunctional nanoparticle mediates siRNA tumour delivery, visualisation and therapeutic tumour reduction in vivo. J Control Release 2011;149(2):111-16
  • Du W, Nystrom AM, Zhang L, Amphiphilic hyperbranched fluoropolymers as nanoscopic 19F magnetic resonance imaging agent assemblies. Biomacromolecules 2008;9(10):2826-33
  • Du W, Xu Z, Nystrom AM, 19F- and fluorescently labeled micelles as nanoscopic assemblies for chemotherapeutic delivery. Bioconjug Chem 2008;19(12):2492-8
  • Nystrom AM, Bartels JW, Du W, Perfluorocarbon-loaded shell crosslinked knedel-like nanoparticles: lessons regarding polymer mobility and self assembly. J Polym Sci A Polym Chem 2009;47(4):1023-37
  • Diou O, Tsapis N, Giraudeau C, Long-circulating perfluorooctyl bromide nanocapsules for tumor imaging by 19FMRI. Biomaterials 2012;33(22):5593-602
  • Kuznetsov AA, Filippov VI, Alyautdin RN, Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs. J Magn Magn Mater 2001;225(1-2):95-100
  • Fortin-Ripoche JP, Martina MS, Gazeau F, Magnetic targeting of magnetoliposomes to solid tumors with MR imaging monitoring in mice: feasibility. Radiology 2006;239(2):415-24
  • Gultepe E, Reynoso FJ, Jhaveri A, Monitoring of magnetic targeting to tumor vasculature through MRI and biodistribution. Nanomedicine (Lond) 2010;5(8):1173-82
  • Medarova Z, Rashkovetsky L, Pantazopoulos P, Multiparametric monitoring of tumor response to chemotherapy by noninvasive imaging. Cancer Res 2009;69(3):1182-9
  • Kumar M, Yigit M, Dai G, Image-guided breast tumor therapy using a small interfering RNA nanodrug. Cancer Res 2010;70(19):7553-61
  • Bartlett DW, Su H, Hildebrandt IJ, Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci USA 2007;104(39):15549-54
  • Wang AZ, Bagalkot V, Vasilliou CC, Superparamagnetic iron oxide nanoparticle-aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 2008;3(9):1311-15
  • Yang X, Grailer JJ, Rowland IJ, Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging. Biomaterials 2010;31(34):9065-73
  • Takaoka Y, Kiminami K, Mizusawa K, Systematic study of protein detection mechanism of self-assembling 19F NMR/MRI nanoprobes toward rational design and improved sensitivity. J Am Chem Soc 2011;133(30):11725-31
  • Waters EA, Chen J, Yang X, Detection of targeted perfluorocarbon nanoparticle binding using 19F diffusion weighted MR spectroscopy. Magn Reson Med 2008;60(5):1232-6
  • Anderson CR, Hu X, Zhang H, Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent. Invest Radiol 2011;46(4):215-24
  • Marsh JN, Partlow KC, Abendschein DR, Molecular imaging with targeted perfluorocarbon nanoparticles: quantification of the concentration dependence of contrast enhancement for binding to sparse cellular epitopes. Ultrasound Med Biol 2007;33(6):950-8
  • Kok MB, de Vries A, Abdurrachim D, Quantitative (1)H MRI, (19)F MRI, and (19)F MRS of cell-internalized perfluorocarbon paramagnetic nanoparticles. Contrast Media Mol Imaging 2011;6(1):19-27
  • Jokerst JV, Gambhir SS. Molecular imaging with theranostic nanoparticles. Acc Chem Res 2011;44(10):1050-60
  • Park JO, Stephen Z, Sun C, Glypican-3 targeting of liver cancer cells using multifunctional nanoparticles. Mol Imaging 2011;10(1):69-77
  • El-Haibi CP, Karnoub AE. Mesenchymal stem cells in the pathogenesis and therapy of breast cancer. J Mammary Gland Biol Neoplasia 2010;15(4):399-409
  • Chen R, Yu H, Jia ZY, Efficient nano iron particle-labeling and noninvasive MR imaging of mouse bone marrow-derived endothelial progenitor cells. Int J Nanomedicine 2011;6:511-19
  • Partlow KC, Chen J, Brant JA, 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J 2007;21(8):1647-54
  • Ruiz-Cabello J, Walczak P, Kedziorek DA, In vivo “hot spot” MR imaging of neural stem cells using fluorinated nanoparticles. Magn Reson Med 2008;60(6):1506-11
  • de Vries IJM, Lesterhuis WJ, Barentsz JO, Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 2005;23(11):1407-13
  • Bonetto F, Srinivas M, Heerschap A, A novel (19)F agent for detection and quantification of human dendritic cells using magnetic resonance imaging. Int J Cancer 2011;129(2):365-73
  • Hitchens TK, Ye Q, Eytan DF, 19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells. Magn Reson Med 2011;65(4):1144-53
  • Kornmann LM, Curfs DM, Hermeling E, Perfluorohexane-loaded macrophages as a novel ultrasound contrast agent: a feasibility study. Mol Imaging Biol 2008;10(5):264-70
  • Kircher MF, Mahmood U, King RS, A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res 2003;63(23):8122-5
  • Davda S, Bezabeh T. Advances in methods for assessing tumor hypoxia in vivo: implications for treatment planning. Cancer Metastasis Rev 2006;25(3):469-80
  • Parhami P, Fung BM. F-19 Relaxation study of perfluoro chemicals as oxygen carriers. J Phys Chem Us 1983;87(11):1928-31
  • Liu S, Shah SJ, Wilmes LJ, Quantitative tissue oxygen measurement in multiple organs using 19F MRI in a rat model. Magn Reson Med 2011;66(6):1722-30
  • Diepart C, Magat J, Jordan BF, In vivo mapping of tumor oxygen consumption using (19)F MRI relaxometry. NMR Biomed 2011;24(5):458-63
  • Giraudeau C, Djemai B, Ghaly MA, High sensitivity 19F MRI of a perfluorooctyl bromide emulsion: application to a dynamic biodistribution study and oxygen tension mapping in the mouse liver and spleen. NMR Biomed 2012;25(4):654-60
  • Mason RP, Antich PP. Tumor oxygen tension: measurement using oxygent as a 19F NMR probe at 4.7 T. Artif Cells Blood Substit Immobil Biotechnol 1994;22(4):1361-7
  • Aguilera TA, Olson ES, Timmers MM, Systemic in vivo distribution of activatable cell penetrating peptides is superior to that of cell penetrating peptides. Integr Biol (Camb) 2009;1(5-6):371-81
  • Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989;49(23):6449-65
  • Oishi M, Sumitani S, Nagasaki Y. On-off regulation of 19F magnetic resonance signals based on pH-sensitive PEGylated nanogels for potential tumor-specific smart 19F MRI probes. Bioconjug Chem 2007;18(5):1379-82
  • Mizukami S, Takikawa R, Sugihara F, Paramagnetic relaxation-based 19f MRI probe to detect protease activity. J Am Chem Soc 2008;130(3):794-5
  • Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003;4(7):517-29
  • Atanasijevic T, Shusteff M, Fam P, Calcium-sensitive MRI contrast agents based on superparamagnetic iron oxide nanoparticles and calmodulin. Proc Natl Acad Sci USA 2006;103(40):14707-12
  • Orsi F, Arnone P, Chen W, High intensity focused ultrasound ablation: a new therapeutic option for solid tumors. J Cancer Res Ther 2010;6(4):414-20
  • McDannold NJ, Vykhodtseva NI, Hynynen K. Microbubble contrast agent with focused ultrasound to create brain lesions at low power levels: MR imaging and histologic study in rabbits. Radiology 2006;241(1):95-106
  • Huang J, Xu JS, Xu RX. Heat-sensitive microbubbles for intraoperative assessment of cancer ablation margins. Biomaterials 2010;31(6):1278-86
  • Lartigue L, Innocenti C, Kalaivani T, Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties. J Am Chem Soc 2011;133(27):10459-72
  • Rachakatla RS, Balivada S, Seo GM, Attenuation of mouse melanoma by A/C magnetic field after delivery of bi-magnetic nanoparticles by neural progenitor cells. ACS Nano 2010;4(12):7093-104
  • Hilger I, Hiergeist R, Hergt R, Thermal ablation of tumors using magnetic nanoparticles: an in vivo feasibility study. Invest Radiol 2002;37(10):580-6
  • Gneveckow U, Jordan A, Scholz R, Description and characterization of the novel hyperthermia- and thermoablation-system MFH 300F for clinical magnetic fluid hyperthermia. Med Phys 2004;31(6):1444-51
  • Waite CL, Roth CM. Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: current progress and opportunities. Crit Rev Biomed Eng 2012;40(1):21-41
  • Blanco E, Hsiao A, Ruiz-Esparza GU, Molecular-targeted nanotherapies in cancer: enabling treatment specificity. Mol Oncol 2011;5(6):492-503
  • Yang J, Lee CH, Ko HJ, Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew Chem Int Ed Engl 2007;46(46):8836-9
  • Yu MK, Kim D, Lee IH, Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 2011;7(15):2241-9
  • Rapoport N, Nam KH, Gupta R, Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J Control Release 2011;153(1):4-15
  • Soman NR, Lanza GM, Heuser JM, Synthesis and characterization of stable fluorocarbon nanostructures as drug delivery vehicles for cytolytic peptides. Nano Lett 2008;8(4):1131-6
  • Soman NR, Baldwin SL, Hu G, Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J Clin Invest 2009;119(9):2830-42
  • Eisenbrey JR, Huang P, Hsu J, Ultrasound triggered cell death in vitro with doxorubicin loaded poly lactic-acid contrast agents. Ultrasonics 2009;49(8):628-33
  • Gautier J, Munnier E, Paillard A, A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting. Int J Pharm 2012;423(1):16-25
  • Kamm YJ, Heerschap A, Rosenbusch G, 5-Fluorouracil metabolite patterns in viable and necrotic tumor areas of murine colon carcinoma determined by 19F NMR spectroscopy. Magn Reson Med 1996;36(3):445-50
  • Onuki Y, Jacobs I, Artemov D, Noninvasive visualization of in vivo release and intratumoral distribution of surrogate MR contrast agent using the dual MR contrast technique. Biomaterials 2010;31(27):7132-8
  • Viglianti BL, Ponce AM, Michelich CR, Chemodosimetry of in vivo tumor liposomal drug concentration using MRI. Magn Reson Med 2006;56(5):1011-18
  • Castelletto V, McKendrick JE, Hamley IW, PEGylated amyloid peptide nanocontainer delivery and release system. Langmuir 2010;26(14):11624-7
  • Criscione JM, Le BL, Stern E, Self-assembly of pH-responsive fluorinated dendrimer-based particulates for drug delivery and noninvasive imaging. Biomaterials 2009;30(23-24):3946-55
  • Zou P, Yu Y, Wang YA, Superparamagnetic iron oxide nanotheranostics for targeted cancer cell imaging and pH-dependent intracellular drug release. Mol Pharm 2010;7(6):1974-84
  • Du L, Jin Y, Zhou W, Ultrasound-triggered drug release and enhanced anticancer effect of doxorubicin-loaded poly(D,L-lactide-co-glycolide)-methoxy-poly(ethylene glycol) nanodroplets. Ultrasound Med Biol 2011;37(8):1252-8
  • Chappell JC, Song J, Burke CW, Targeted delivery of nanoparticles bearing fibroblast growth factor-2 by ultrasonic microbubble destruction for therapeutic arteriogenesis. Small 2008;4(10):1769-77
  • Klibanov AL, Shevchenko TI, Raju BI, Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: a tool for targeted drug delivery. J Control Release 2010;148(1):13-17
  • Schroeder A, Kost J, Barenholz Y. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem Phys Lipids 2009;162(1-2):1-16
  • Fabiilli ML, Lee JA, Kripfgans OD, Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions. Pharm Res 2010;27(12):2753-65
  • Fang JY, Hung CF, Hua SC, Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: drug release and cytotoxicity against cancer cells. Ultrasonics 2009;49(1):39-46
  • Dromi S, Frenkel V, Luk A, Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res 2007;13(9):2722-7
  • Negussie AH, Yarmolenko PS, Partanen A, Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound. Int J Hyperther 2011;27(2):140-55
  • Babincova M, Cicmanec P, Altanerova V, AC-magnetic field controlled drug release from magnetoliposomes: design of a method for site-specific chemotherapy. Bioelectrochemistry 2002;55(1-2):17-19
  • Langereis S, Keupp J, van Velthoven JL, A temperature-sensitive liposomal 1H CEST and 19F contrast agent for MR image-guided drug delivery. J Am Chem Soc 2009;131(4):1380-1
  • Grull H, Langereis S. Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. J Control Release 2012;161(2):317-27
  • Kievit FM, Zhang M. Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater 2011;23(36):H217-47
  • Veiseh O, Kievit FM, Fang C, Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials 2010;31(31):8032-42
  • Liu G, Swierczewska M, Lee S, Functional nanoparticles for molecular imaging guided gene delivery. Nano Today 2010;5(6):524-39
  • Bartusik D, Tomanek B. Application of 19F magnetic resonance to study the efficacy of fluorine labeled drugs in the three-dimensional cultured breast cancer cells. Arch Biochem Biophys 2010;493(2):234-41
  • Bartusik D, Tomanek B. Detection of fluorine labeled herceptin using cellular (19)F MRI ex vivo. J Pharm Biomed Anal 2010;51(4):894-900
  • Lee JH, Lee K, Moon SH, All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed Engl 2009;48(23):4174-9
  • Valencia PM, Basto PA, Zhang L, Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano 2010;4(3):1671

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.