1,070
Views
69
CrossRef citations to date
0
Altmetric
Reviews

Drug targeting to brain: a systematic approach to study the factors, parameters and approaches for prediction of permeability of drugs across BBB

, &
Pages 927-955 | Published online: 21 Jan 2013

Bibliography

  • Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood–brain barrier by nanoparticles. J Control Release 2012;161:264-73
  • Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev 2012;64:640-65
  • Gloor SM, Wachtel M, Bolliger MF, et al. Molecular and cellular permeability control at the blood-brain barrier. Brain Res Brain Res Rev 2001;36:258-64
  • Blasi P, Giovagnoli S, Schoubben A, et al. Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev 2007;59:454-77
  • Pardridge WM. Brain drug targeting: the future of brain drug development. UK Cambridge University Press; Cambridge: 2001
  • Pardridge WM. Why is the global CNS pharmaceutical market so under-penetrated? Drug Discov Today 2002;7:5-7
  • Abbott NJ. Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 2002;200:629-38
  • Gee JR, Keller JN. Astrocytes: regulation of brain homeostasis via apolipoprotein E. Int J Biochem Cell Biol 2005;37:1145-50
  • Balabanov R, Dore-Duffy P. Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res 1998;53:637-44
  • Hauser PS, Narayanaswami V, Ryan RO. Apolipoprotein E: from lipid transport to neurobiology. Prog Lipid Res 2011;50:62-74
  • Leduc V, Domenger D, Beaumont LD, et al. Function and comorbidities of apolipoprotein E in Alzheimer's disease. Int J Alzheimers Dis 2011;2011:974361
  • Pardridge WM. Blood-brain barrier genomics. Stroke 2007;38(Suppl 2):686-90
  • Carman AJ, Mills JH, Krenz A, et al. Adenosine receptor signaling modulates permeability of the blood-brain barrier. J Neurosci 2011;31:13272-80
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approach to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 1997;23:3-25
  • Pavan B, Dalpiaz A, Ciliberti N, et al. Progress in drug delivery to the central nervous system by the prodrug approach. Molecules 2008;13:1035-65
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2012;64:4-17
  • Fischer H, Gottschlich R, Seelig A. Blood-brain barrier permeation: molecular parameters governing passive diffusion. J Membr Biol 1998;165:201-11
  • Marrink SJ, Jahnig F, Berendsen HJC. Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations. Biophys J 1996;71:632-47
  • Pardridge WM, Mietus LJ. Transport of steroid hormones through the rat blood-brain barrier. Primary role of albumin-bound hormone. J Clin Invest 1979;64:145-54
  • Diamond JM, Wright EM. Molecular forces governing non-electrolyte permeation through cell membranes. Proc R Soc Lond B Biol Sci 1969;171:273-16
  • Greig NH, Daly EM, Sweeney DJ, Rapoport SI. Pharmacokinetics of chlorambucil-tertiary butyl ester, a lipophilic chrambucil derivative that achieves and maintains high concentrations in brain. Cancer Chemother Pharmacol 1990;25:320-5
  • Tandon VR, Kapoor B, Bano G, et al. P-glycoprotein: pharmacological relevance. Int J Pharmacol 2006;38:13-24
  • Utreja S, Jain NK. Solid lipid nanoparticles. Advances in controlled and novel drug delivery. CBS Publishers & Distributors, New Delhi; 2001. p. 408-25
  • Van Vlerken LE, Vyas TK, Amiji MM. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res 2007;24:1405-14
  • Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res 2006;23:1417-50
  • Troster SD, Muller U, Kreuter J. Modification of the body distribution of poly(methyl methacrylate) nanoparticles in rats by coating with surfactants. Int J Pharm 1990;61:85-100
  • Gabathuler R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis 2010;37:48-57
  • Intakheb Alam M, Beg S, Samad A, et al. Strategy for effective brain drug delivery. Eur J Pharm Sci 2010;40:385-403
  • Rapoport SI, Robinson PJ. Tight-junctional modification as the basis of osmotic opening of the blood-brain barrier. Ann NY Acad Sci 1986;481:250-2567
  • Neuwelt E, Abbott NJ, Abrey L, et al. Strategies to advance translational research into brain barriers. Lancet Neurol 2008;7:84-96
  • Muldoon LL, Nilaver G, Kroll RA, et al. Comparison of intracerebral inoculation and osmotic blood-brain barrier disruption for delivery of adenovirus, herpes virus, and iron oxide particles to normal rat brain. Am J Pathol 1995;147:1840-51
  • Doolittle ND, Abrey L, Shenkier T, et al. Brain parenchyma involvement as isolated CNS relapse of systemic non-Hodgkin lymphoma: an International Primary CNS Lymphoma Collaborative Group report. Blood 2008;111:1085-93
  • Soussain C, Muldoon LL, Varallyay C, et al. Characterization and magnetic resonance imaging of a rat model of human B-cell central nervous system lymphoma. Clin Cancer Res 2007;13:2504-11
  • Jahnke K, Kraemer DF, Knight K, et al. Intra-arterial chemotherapy and osmotic blood–brain barrier disruption for patients with embryonal germ cell tumors of the central nervous system. Cancer 2008;112:581-8
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001;47:65-81
  • Tsaia MJ, Wuc PC, Huangd YB, et al. Baicalein loaded in tocol nanostructured lipid carriers (tocol NLCs) for enhanced stability and brain targeting. Int J Pharm 2012;423:461-70
  • Salama HA, Mahmoud AA, Kamel AO, et al. Phospholipid based colloidal poloxamer–nanocubic vesicles for brain targeting via the nasal route. Colloids Surfaces B Biointerfaces 2012;100:146-54
  • Kreuter J, Shamenkov D, Petrov V, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 2002;10:317-25
  • Ramge P, Unger RE, Oltrogge JB, et al. Polysorbate 80-coating enhances uptake of polybutylcyano-acrylate (PBCA)-nanoparticles by human, bovine and murine primary brain capillary endothelial cells. Eur J Neurosci 2000;12:1931-40
  • Dehouck B, Fenart L, Dehouck MP, et al. A new function for the LDL receptor: transcytosis of LDL across the blood–brain barrier. J Cell Biol 1997;138:877-89
  • Zensi A, Begley D, Pontikis C, et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurons. J Control Release 2009;137:78-86
  • Rempe R, Cramer S, Huwel S, Galla HJ. Transport of Poly(n-butylcyano-acrylate) nanoparticles across the blood–brain barrier in vitro and their influence on barrier integrity. Biochem Biophys Res Commun 2011;406:64-9
  • Kong SD, Lee J, Ramachandran S, et al. Magnetic targeting of nanoparticles across the intact blood–brain barrier. J Control Release 2012;164:49-57
  • Ren J, Zou M, Gao P, et al. Tissue distribution of borneol-modified ganciclovir-loaded solid lipid nanoparticles in mice after intravenous administration. Eur J Pharm Biopharm 2012; In press
  • Kam NWS, Liu Z, Dai H. Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed 2006;45:577-81
  • Thurn KT, Arora H, Paunesku T, et al. Endocytosis of titanium dioxide nanoparticles in prostate cancer PC-3M cells. Nanomedicine Nanotechnol Biol Med 2011;7:123-30
  • Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release 2010;145:182-95
  • Serda RE, Gu J, Bhavane RC, et al. The association of silicon microparticles with endothelial cells in drug delivery to the vasculature. Biomaterials 2009;30:2440-8
  • Martins S, Costa-Lima S, Carneiro T, et al. Solid lipid nanoparticles as intracellular drug transporters: an investigation of the uptake mechanism and pathway. Int J Pharm 2012;430:216-27
  • Venishetty VK, Samala R, Komuravelli R, et al. β-Hydroxybutyric acid grafted solid lipid nanoparticles: a novel strategy to improve drug delivery to brain. Nanomedicine 2012; In press
  • Venishetty VK, Komuravelli R, Kuncha M, et al. Increased brain uptake of docetaxel and ketoconazole loaded folate-grafted solid lipid nanoparticles. Nanomedicine 2012; In press
  • Wang S, Jianga T, Ma M, et al. Preparation and evaluation of anti-neuroexcitation peptide (ANEP) loaded N-trimethyl chitosan chloride nanoparticles for brain-targeting. Int J Pharm 2010;386:249-55
  • Illum L. Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol 2004;56:3-17
  • Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 2012;64:686-700
  • Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 2009;379:146-57
  • van Rooy I, Cakir-Tascioglu S, Hennink WE, et al. In Vivo Methods to Study Uptake of Nanoparticles into the Brain. Pharm Res 2011;28:456-71
  • Barchet TM, Amiji M. Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opin Drug Deliv 2009;6:211-25
  • Zhang QZ, Zha LS, Zhang Y, et al. The brain targeting efficiency following nasally applied MPEG-PLA nanoparticles in rats. J Drug Target 2006;14:281-90
  • Gao X, Tao W, Lu W, et al. Lectin-conjugated PEGPLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials 2006;27:3482-90
  • Wang X, Chi N, Tang X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm 2008;70:735-40
  • Patel S, Chavhan S, Soni H, et al. Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route. J Drug Target 2011;19:468-74
  • Fazil MMS, Haque S, Kumar M, et al. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci 2012;47:6-15
  • Haque S, Md S, Fazil M, et al. Venlafaxine loaded chitosan NPs for brain targeting: pharmacokinetic and pharmacodynamic evaluation. Carbohydr Polym 2012;89:72-9
  • Nagpal K, Singh SK, Mishra DN. Nanoparticle mediated brain targeted delivery of Gallic Acid: in vivo behavioral and biochemical studies for improved antioxidant and antidepressant-like activity. Drug Deliv 2012;19:378-91
  • Nagpal K, Singh SK, Mishra DN. Formulation, optimization, in vivo pharmacokinetic, behavioral and biochemical estimations of minocycline loaded chitosan nanoparticles for enhanced brain uptake. Chem Pharm Bull 2012; In press
  • Bickel U. How to measure drug transport across the blood-brain barrier. NeuroRx 2005;2:15-26
  • Tega Y, Akanuma S-i, Kubo Y, et al. Blood-to-brain influx transport of nicotine at the rat blood-brain barrier: involvement of a pyrilamine-sensitive organic cation transport process. Neurochem Int 2012; In press
  • Pardridge WM. Log(BB), PS products and in silico models of drug brain penetration. Drug Discov Today 2004;9:392-3
  • Chikhale EG, Chikhale PJ, Borchardt RT. Carrier-mediated transport of the antitumor agent acivicin across the blood-brain barrier. Biochem Pharmacol 1995;49:941-5
  • Reichel A. Addressing central nervous system (CNS) penetration in drug discovery: basics and implications of the evolving new concept. Chem Biodivers 2009;6:2030-49
  • Doran A, Obach RS, Smith BJ, et al. The impact of P-gp on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos 2005;33:165-74
  • Al-Ghananeem AM, Saeed H, Florence R, et al. Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain targeting; an attractive route against infections caused by AIDS viruses. J Drug Target 2010;18:381-8
  • Maurer TS, Debartolo DB, Tess DA, Scott DO. Relationship between exposure and nonspecific binding of thirty-three central nervous system drugs in mice. Drug Metab Dispos 2005;33:175-81
  • Bonate PL. Animal models for studying transport across the blood-brain barrier. J Neurosci Methods 1995;56:1-15
  • Oldendorf WH. Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain Res 1970;24:372-6
  • Mehdipour AR, Hamidi M. Brain drug targeting: a computational approach for overcoming blood–brain. Drug Discov Today 2009;14:1030-6
  • Boriss H. Brain availability is the key parameter for optimising the permeability of central nervous system drugs. Drug Discov 2010;7:58-62
  • van de Waterbeemd H, Smith DA, Jones BC. Lipophilicity in PK design: methyl, ethyl, futile. J Comput Aid Mol Des 2001;15:273-86
  • Hammarlund-Udenaes M, Fridén M, Syvänen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharm Res 2008;25:1737-50
  • Liu X, Vilenski O, Kwan J, et al. Unbound brain concentration determines receptor occupancy: a correlation of drug concentration and brain serotonin and dopamine reuptake transporter occupancy for eighteen compounds in rats. Drug Metab Dispos 2009;37:1548-56
  • Artursson P. Epithelial transport of drugs in cell culture. I: a model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells. J Pharm Sci 1990;79:476-82
  • Gaillard PJ, de Boer AG. Relationship between permeability status of the blood–brain barrier and in vitro permeability coefficient of a drug. Eur J Pharm Sci 2000;12:95-102
  • Saiyed ZM, Gandhi NH, Nair MPN. Magnetic nanoformulation of azidothymidine 5'-triphosphate for targeted delivery across the blood–brain barrier. Int J Nanomedicine 2010;5:157-66
  • Kakee A, Terasaki T, Sugiyama Y. Brain efflux index as a novel method of analyzing efflux transport at the blood-brain barrier. J Pharmacol Exp Ther 1996;277:1550-9
  • Martin I. Prediction of blood–brain barrier penetration: are we missing the point? Drug Discov Today 2004;9:161-2
  • Wan H, Rehngren M, Giordanetto F, et al. High-throughput screening of drug–brain tissue binding and in silico prediction for assessment of central nervous system drug delivery. J Med Chem 2007;50:4606-15
  • Costantino L, Gandolfi F, Tosi G, et al. Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier. J Control Release 2005;108:84-96
  • Weiss CK, Kohnle MV, Landfester K, et al. The first step into the brain: uptake of NIO-PBCA nanoparticles by endothelial cells in vitro and in vivo, and direct evidence for their blood-brain barrier permeation. ChemMedChem 2008;3:1395-403
  • Ke W, Shao K, Huang R, et al. Gene delivery targeted to the brain using an Angiopep-conjugated polyethylene glycol-modified polyamido amine dendrimer. Biomaterials 2009;30:6976-85
  • Huang R, Ke W, Han L, et al. Lactoferrin-modified nanoparticles could mediate efficient gene delivery to the brain in vivo. Brain Res Bull 2010;81:600-4
  • Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 2007;18:17-25
  • Frangioni JV. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 2003;7:626-34
  • Gaydess A, Duysen E, Li Y, et al. Visualization of exogenous delivery of nanoformulated butyrylcholinesterase to the central nervous system. Chem Biol Interact 2010;187:295-8
  • Alyautdin RN, Petrov VE, Langer K, et al. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 1997;14:325-8
  • Ulbrich K, Hekmatara T, Herbert E, Kreuter J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood-brain barrier (BBB). Eur J Pharm Biopharm 2008;71:251-6
  • Alyautdin R, Gothier D, Petrov V, et al. Analgesic activity of the hexapeptide dalargin adsorbed on the surface of polysorbate 80-coated poly(butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm 1995;41:44-8
  • Das D, Lin S. Double-coated poly (butylcynanoacrylate) nanoparticulate delivery systems for brain targeting of dalargin via oral administration. J Pharm Sci 2005;94:1343-53
  • Joshi SA, Chavhan SS, Sawant KK. Rivastigmine-loaded PLGA and PBCA nanoparticles: preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur J Pharm Biopharm 2010;76:189-99
  • Jogani VV, Shah PJ, Mishra P, et al. Alzheimer Dis Assoc Disord 2008;22:116-24
  • Patel D, Naik S, Misra S. Improved transnasal transport and brain uptake of tizanidine HCl-loaded thiolated chitosan nanoparticles for alleviation of pain. J Pharm Sci 2012;101:690-706
  • Kumar M, Misra A, Babbar AK, et al. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharm 2008;358:285-91
  • Eskandari S, Varshosaz J, Minaiyan M, Tabbakhian M. Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model. Int J Nanomedicine 2011;6:363-71
  • Xie Y, Ye L, Zhang X, et al. Transport of nerve growth factor encapsulated into liposomes across the blood brain barrier: in vitro and in vivo studies. J Control Release 2005;105:106-19
  • Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, et al. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target 2009;17:564-74
  • Scholtzova H, Wadghiri YZ, Douadi M, et al. Memantine leads to behavioral improvement and amyloid reduction in Alzheimer's-disease-model transgenic mice shown as by micromagnetic resonance imaging. J Neurosci Res 2008;86:2784-91
  • Kulkarni PV, Roney CA, Antich PP, et al. Quinoline-n-butylcyanoacrylate-based nanoparticles for brain targeting for the diagnosis of Alzheimer's disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010;2:35-47
  • Mittal G, Carswell H, Brett R, et al. Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of Alzheimer's pathology. J Control Release 2011;150:220-8
  • Riviere JE. Pharmacokinetics of nanomaterials: an overview of carbon nanotubes, fullerenes and quantum dots. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009;1:26-34
  • Mishra V, Mahor S, Rawat A, et al. Targeted brain delivery of AZT via transferrin anchored pegylated albumin nanoparticles. J Drug Target 2006;14:45-53
  • Lode J, Fichtner I, Kreuter J, et al. Influence of surface-modifying surfactants on the pharmacokinetic behavior of 14C-poly (methylmethacrylate) nanoparticles in experimental tumor models. Pharm Res 2001;18:1613-19
  • Wang JX, Sun X, Zhang ZR. Enhanced brain targeting by synthesis of 3', 5'-dioctanoyl-5-fluoro-2'-deoxyuridine and incorporation into solid lipid nanoparticles. Eur J Pharm Biopharm 2002;54:285-90
  • Chen H, Tang L, Qin Y, et al. Lactoferrin-modified procationic liposomes as a novel drug carrier for brain delivery. Eur J Pharm Sci 2010;40:94-102
  • Xu F, Lu W, Wu H, et al. Brain delivery and systemic effect of cationic albumin conjugated PLGA nanoparticles. J Drug Target 2009;17:423-34
  • de Lange EC, de Boer BA, Breimer DD. Microdialysis for pharmacokinetic analysis of drug transport to the brain. Adv Drug Deliv Rev 1999;36:211-27
  • de Lange EC, Danhof M, de Boer AG, Breimer DD. Methodological considerations of intracerebral microdialysis in pharmacokinetic studies on drug transport across the blood–brain barrier. Brain Res Brain Res Rev 1997;25:27-49
  • Welty DF, Schielke GP, Vartanian MG, Taylor CP. Gabapentin anticonvulsant action in rats: disequilibrium with peak drug concentrations in plasma and brain dialysate. Epilepsy Res 1993;16:175-81
  • Lemaire M, Desrayaud S. The priorities/needs of the pharmaceutical industry in drug delivery to the brain. Int Congr Ser 2005;1277:32-46
  • Schlageter NL, Carson RE, Rapoport SI. Examination of blood brain barrier permeability in dementia of the Alzheimer type with [68 Ga]EDTA and positron emission tomography. J Cereb Blood Flow Metab 1987;7:1-8
  • Agon P, Goethals P, Van Haver D, Kaufman JM. Permeability of BBB for atenolol studies by positron emission tomography. J Pharm Pharmacol 1991;43:597-600
  • Urakami T, Sakai K, Asai T, et al. Evaluation of O-[(18)F]fluoromethyl-D-tyrosine as a radiotracer for tumor imaging with positron emission tomography. Nucl Med Biol 2009;36:295-303
  • Emond P, Guilloteau D, Chalon S. PE2I: a radio pharmaceutical or in vivo exploration of the dopamine transporter. CNS Neurosci Ther 2008;14:47-64
  • Doorduin J, Klein HC, de Jong JR, et al. Evaluation of [11C]-DAA1106 for imaging and quantification of neuroinflammation in a rat model of herpes encephalitis. Nucl Med Biol 2010;37:9-15
  • Naik P, Cucullo L. In vitro Blood–Brain Barrier Models: current and Perspective Technologies. J Pharm Sci 2012;101:1337-54
  • Seelig A, Gottschlich R, Devant RM. A Method to determine the ability of drugs to diffuse through the blood-brain barrier. Proc Natl Acad Sci USA 1994;91:68-72
  • Abraham MH, Chadha HS, Mitchell RC. Hydrogen-bonding. Part 36. Determination of blood brain distribution using octanol-water partition coefficients. Drug Des Discov 1995;13:123-31
  • Oliveira CR, Lima MCP, Carvalho CAM, et al. Partition coefficients of dopamine antagonists in brain membranes and liposomes. Biochem Pharmacol 1989;38:2113-20
  • Surewicz WK, Leyko W. Interaction of propranolol with model phospholipid membranes. Monolayer, spin layer and fluorescence spectroscopy studies. Biochim Biophys Acta 1981;643:387-97
  • Seelig A. The use of monolayers for simple and quantitative analysis of lipid–drug interactions exemplified with dibucaine and substance P. Cell Biol Int Rep 1990;14:369-80
  • Lundquist S, Renftel M, Brillault J, et al. Prediction of drug transport through the blood–brain barrier in vivo: a comparison between two in vitro cell models. Pharm Res 2002;19:976-81
  • Lohmann C, Huwel S, Galla HJ. Predicting blood–brain barrier permeability of drugs: evaluation of different in vitro assays. J Drug Target 2002;10:263-76
  • Ribeiro MMB, Castanho MARB, Serrano I. In vitro blood-brain barrier models – latest advances and therapeutic applications in a chronological perspective. Mini Rev Med Chem 2010;10:263-71
  • Audus KL, Borchardt RT. Characterization of an in vitro blood-brain barrier model system for studying drug transport and metabolism. Pharm Res 1986;3:81-7
  • Pardridge WM, Triguero D, Yang J, Cancilla PA. Comparison of in vitro and in vivo models of drug transcytosis through the blood–brain barrier. J Pharmacol Exp Ther 1990;253:884-91
  • Rubin LL, Staddon JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci 1999;22:11-28
  • Santaguida S, Janigro D, Hossain M, et al. Side by side comparison between dynamic versus static models of blood-brain barrier in vitro: a permeability study. Brain Res 2006;1:1-13
  • Lin K, Hsu PP, Chen BP, et al. Molecular mechanism of endothelial growth arrest by laminar shear stress. Proc Natl Acad Sci USA 2000;17:9385-9
  • Ziegler T, Nerem RM. Effect of flow on the process of endothelial cell division. Arterioscler Thromb 1994;4:636-43
  • Stanness KA, Guatteo E, Janigro D. A dynamic model of the blood-brain barrier "in vitro". Neurotoxicology 1996;2:481-96
  • Bussolari SR, Dewey CF Jr, Gimbrone MA Jr. Apparatus for subjecting living cells to fluid shear stress. Rev Sci Instrum 1982;53:1851-4
  • Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF. The dynamic response to vascular endothelial cells to fluid shear stress. J Biomech Eng 1981;103:177-85
  • Mei H, Xia T, Feng G. Opportunities in systems biology to discover mechanisms and repurpose drugs for CNS diseases. Drug Discov Today 2012;17:1208-16
  • Charman WN, Chan HK, Finnin BC, Charman SA. Drug delivery: a key factor in realising the full therapeutic potential of drugs. Drug Dev Res 1999;46:316-27
  • Manabe T, Okino H, Maeyama R, et al. Novel strategic therapeutic approaches for prevention of local recurrence of pancreatic cancer after resection: trans-tissue, sustained local drug-delivery systems. J Control Release 2004;100:317-30
  • Ziaie B, Baldi A, Lei M, et al. Hard and soft micromachining for biomems: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Deliv Rev 2004;56:145-72
  • Byrne ME, Park K, Peppas N, et al. Molecular imprinting within hydrogels. Adv Drug Deliv Rev 2002;54:149-61
  • Pardridge WM. BBB-genomics: creating new openings for brain-drug targeting. Drug Discov Today 2001;6:381-3
  • Nishikawa R, Ji XD, Harmon RC, et al. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci USA 1994;91:7727-31
  • Wong AJ, Bigner SH, Bigner DD, et al. Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 1987;84:6899-903
  • Douglas SJ, Davis SS, Illum L. Biodistribution of poly(butyl 2-cyanoacrylate) nanoparticles in rabbits. Int J Pharm 1986;34:145-52
  • Verdun C, Brasseur F, Vranckx H, et al. Tissue distribution of doxorubicin associated with polyisohexylcyanoacrylate nanoparticles. Cancer Chemother Pharmacol 1990;26:13-18
  • Kattan J, Droz JP, Couvreur P, et al. Phase I clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles. Invest New Drugs 1992;10:191-9
  • Bazile DV, Ropert C, Huve P, et al. Body distribution of fully biodegradable [14C]-poly(lactic acid) nanoparticles coated with albumin after parenteral administration to rats. Biomaterials 1992;13:1093-102
  • Borchard G, Audus KL, Shi F, Kreuter J. Uptake of surfactant-coated poly(methyl methacrylate)-nanoparticles by bovine brain microvessel endothelial cell monolayers. Int J Pharm 1994;110:29-35
  • Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res 1995;674:171-4
  • Schroeder U, Sabel BA. Nanoparticles, a drug carrier system to pass the blood-brain barrier, permit central analgesic effects of i.v. dalargin injections. Brain Res 1996;710:121-4
  • Alyautdin RN, Petrov VE, Ivanov AA, et al. Transport of the hexapeptide dalargin across the hematoencephalic barrier into the brain using polymer nanoparticles. Eksp Klin Farmakol 1996;59:57-60
  • Kreuter J, Petrov VE, Kharkevich DA, Alyautdin RN. Influence of the type of surfactant on the analgesic effects induced by the peptide dalargin after its delivery across the blood brain barrier using surfactant-coated nanoparticles. J Control Release 1997;49:81-7
  • Schroeder U, Sommerfeld P, Sabel BA. Efficacy of oral dalargin-loaded nanoparticle delivery across the blood-brain barrier. Peptides 1998;19:777-80
  • Lobenberg R, Araujo L, von Briesen H, et al. Body distribution of azidothymidine bound to hexyl-cyanoacrylate nanoparticles after i.v. injection to rats. J Control Release 1998;50:21-30
  • Alyautdin RN, Tezikov EB, Ramge P, et al. Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J Microencapsul 1998;15:67-74
  • Yang SC, Lu LF, Cai Y, et al. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release 1999;59:299-307
  • Gulyaev AE, Gelperina SE, Skidan IN, et al. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 1999;16:1564-9
  • Olivier JC, Fenart L, Chauvet R, et al. Indirect evidence that drug brain targeting using polysorbate 80-coated polybutylcyanoacrylate nanoparticles is related to toxicity. Pharm Res 1999;16:1836-42
  • Araujo L, Lobenberg R, Kreuter J. Influence of the surfactant concentration on the body distribution of nanoparticles. J Drug Target 1999;6:373-85
  • Fenart L, Casanova A, Dehouck B, et al. Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood-brain barrier. J Pharmacol Exp Ther 1999;291:1017-22
  • Fundaro A, Cavalli R, Bargoni A, et al. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol Res 2000;42:337-43
  • Friese A, Seiller E, Quack G, et al. Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system. Eur J Pharm Biopharm 2000;49:103-9
  • Schroeder U, Schroeder H, Sabel BA. Body distribution of 3H-labelled dalargin bound to poly(butyl cyanoacrylate) nanoparticles after i.v. injections to mice. Life Sci 2000;66:495-502
  • Darius J, Meyer FP, Sabel BA, Schroeder U. Influence of nanoparticles on the brain-to-serum distribution and the metabolism of valproic acid in mice. J Pharm Pharmacol 2000;52:1043-7
  • Calvo P, Gouritin B, Chacun H, et al. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res 2001;18:1157-66
  • Olbrich C, Gessner A, Kayser O, Muller RH. Lipid-drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazene diaceturate. J Drug Target 2002;10:387-96
  • Harivardhan Reddy L, Sharma RK, Chuttani K, et al. Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton's lymphoma tumor bearing mice. J Control Release 2005;105:185-98
  • Kreuter J, Ramge P, Petrov V, et al. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 2003;20:409-16
  • Koziara JM, Lockman PR, Allen DD, Mumper RJ. Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release 2004;99:259-69
  • Vinogradov SV, Batrakova EV, Kabanov AV. Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem 2004;15:50-60
  • Steiniger SC, Kreuter J, Khalansky AS, et al. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer 2004;109:759-67
  • Costantino L, Gandolfi F, Tosi G, et al. Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier. J Control Release 2005;108:84-96
  • Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, et al. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target 2009;17(8):564-74
  • Aktas Y, Yemisci M, Andrieux K, et al. Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug Chem 2005;16:1503-11
  • Manninger SP, Muldoon LL, Nesbit G, et al. An exploratory study of ferumoxtran-10 nanoparticles as a blood-brain barrier imaging agent targeting phagocytic cells in CNS inflammatory lesions. AJNR Am J Neuroradiol 2005;26:2290-300
  • Soni S, Babbar AK, Sharma RK, Maitra A. Delivery of hydrophobised 5-fluorouracil derivative to brain tissue through intravenous route using surface modified nanogels. J Drug Target 2006;14:87-95
  • Michaelis K, Hoffmann MM, Dreis S, et al. Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther 2006;317:1246-53
  • Madhusudhan B, Rambhau D, Apte SS, Gopinath D. 1-O-alkylglycerol stabilized carbamazepine intravenous o/w nanoemulsions for drug targeting in mice. J Drug Target 2007;15:154-61
  • Kuoand YC, Su FL. Transport of stavudine, delavirdine, and saquinavir across the blood-brain barrier by polybutylcyanoacrylate, methylmethacrylate-sulfopropylmethacrylate, and solid lipid nanoparticles. Int J Pharm 2007;340:143-52
  • Bhavna VS, Ali M, Baboota S, Ali J. Preparation and characterization of chitosan nanoparticles for nose to brain delivery of a cholinesterase inhibitor. Indian J Pharm Sci 2007;719:712-13
  • Tosi G, Costantino L, Rivasi F, et al. Targeting the central nervous system: in vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. J Control Release 2007;122:1-9
  • Gao X, Chen J, Tao W, et al. UEA I-bearing nanoparticles for brain delivery following intranasal administration. Int J Pharm 2006;340:207-15
  • Huang G, Zhang N, Bi X, Dou M. Solid lipid nanoparticles of temozolomide: potential reduction of cardial and nephric toxicity. Int J Pharm 2008;355:314-20
  • Desai A, Vyas T, Amiji M. Cytotoxicity and apoptosis enhancement in brain tumor cells upon coadministration of paclitaxel and ceramide in nanoemulsion formulations. J Pharm Sci 2008;97:2745-56
  • Selvi BR, Jagadeesan D, Suma BS, et al. Intrinsically fluorescent carbon nanospheres as a nuclear targeting vector: delivery of membrane-impermeable molecule to modulate gene expression in vivo. Nano Lett 2008;8:3182-8
  • Vyas TK, Shahiwala A, Amiji MM. Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. Int J Pharm 2008;347:93-101
  • Panand J, Feng SS. Targeted delivery of paclitaxel using folate-decorated poly(lactide)-vitamin E TPGS nanoparticles. Biomaterials 2008;29:2663-72
  • Wang YC, Wu YT, Huang HY, et al. Sustained intraspinal delivery of neurotrophic factor encapsulated in biodegradable nanoparticles following contusive spinal cord injury. Biomaterials 2008;29:4546-53
  • Pulkkinen M, Pikkarainen J, Wirth T, et al. Three-step tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin biotin technology: formulation development and in vitro anticancer activity. Eur J Pharm Biopharm 2008;70:66-74
  • Wilson B, Samanta MK, Santhi K, et al. Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur J Pharm Biopharm 2008;70:75-84
  • Wilson B, Samanta MK, Santhi K, et al. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer's disease. Brain Res 2008;1200:159-68
  • Liu L, Guo K, Lu J, et al. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier. Biomaterials 2008;29:1509-17
  • Agyare EK, Curran GL, Ramakrishnan M, et al. Development of a smart nano-vehicle to target cerebrovascular amyloid deposits and brain parenchymal plaques observed in Alzheimer's disease and cerebral amyloid angiopathy. Pharm Res 2008;25:2674-84
  • You JO, Auguste DT. Feedback-regulated paclitaxel delivery based on poly(N,N-dimethylaminoethyl methacrylate-co-2-hydroxyethyl methacrylate) nanoparticles. Biomaterials 2008;29:1950-7
  • Kreuter J, Gelperina S. Use of nanoparticles for cerebral cancer. Tumori 2008;94:271-7
  • Kalaria DR, Sharma G, Beniwal V, Ravi Kumar MN. Design of biodegradable nanoparticles for oral delivery of doxorubicin: in vivo pharmacokinetics and toxicity studies in rats. Pharm Res 2009;26:492-501
  • Ren T, Xu N, Cao C, et al. Preparation and therapeutic efficacy of polysorbate-80-coated amphotericin B/PLA-b-PEG nanoparticles. J Biomater Sci Polym Ed 2009;20:1369-80
  • Zhang L, Yu F, Cole AJ, et al. Gum arabic-coated magnetic nanoparticles for potential application in simultaneous magnetic targeting and tumor imaging. AAPS J 2009;11:693-9
  • Dou H, Grotepas CB, McMillan JM, et al. Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 2009;183:661-9
  • Shubar HM, Dunay IR, Lachenmaier S, et al. The role of apolipoprotein E in uptake of atovaquone into the brain in murine acute and reactivated toxoplasmosis. J Drug Target 2009;17:257-67
  • Wang CX, Huang LS, Hou LB, et al. Antitumor effects of polysorbate-80 coated gemcitabine polybutylcyanoacrylate nanoparticles in vitro and its pharmacodynamics in vivo on C6 glioma cells of a brain tumor model. Brain Res 2009;1261:91-9
  • Vergoni AV, Tosi G, Tacchi R, et al. Nanoparticles as drug delivery agents specific for CNS: in vivo biodistribution. Nanomedicine 2009;5:369-77
  • Shao K, Huang R, Li J, et al. Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. J Control Release 2010;147:118-26
  • Tian W, Ying X, Du J, et al. Enhanced efficacy of functionalized epirubicin liposomes in treating brain glioma-bearing rats. Eur J Pharm Sci 2010;41:232-43
  • Raut SL, Kirthivasan B, Bommana MM, et al. The formulation, characterization and in vivo evaluation of a magnetic carrier for brain delivery of NIR dye. Nanotechnology 2010;21:395102
  • Dhawan S, Kapil R, Singh B. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharmacol 2011;63:342-51
  • Tian XH, Lin XN, Wei F, et al. Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Int J Nanomedicine 2011;6:445-52
  • Shubar HM, Lachenmaier S, Heimesaat MM, et al. SDS-coated atovaquone nanosuspensions show improved therapeutic efficacy against experimental acquired and reactivated toxoplasmosis by improving passage of gastrointestinal and blood-brain barriers. J Drug Target 2011;19:114-24
  • Tian XH, Wei F, Wang TX, et al. In vitro and in vivo studies on gelatin-siloxane nanoparticles conjugated with SynB peptide to increase drug delivery to the brain. Int J Nanomedicine 2012;7:1031-41
  • Nagpal K, Singh SK, Mishra DN. Evaluation of anti-anxiety activity of nanoparticle mediated delivery of minocycline HCl. Inventi Rapid NDDS 2012;2012:1-4
  • Xin H, Sha X, Jiang X, et al. The brain targeting mechanism of Angiopep-conjugated poly(ethylene glycol)-co-poly(3-caprolactone) nanoparticles. Biomaterials 2012;33:1673-81
  • Dilnawaz F, Singh A, Mewar S, et al. The transport of non-surfactant based paclitaxel loaded magnetic nanoparticles across the blood brain barrier in a rat model. Biomaterials 2012;33:2936-51

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.