434
Views
27
CrossRef citations to date
0
Altmetric
Reviews

Developments in delivery of medications for inner ear disease

, MD PhD & , MD
Pages 639-650 | Published online: 06 Apr 2013

Bibliography

  • Neuhauser HK, von Brevern M, Radtke A, Epidemiology of vestibular vertigo: a neurotologic survey of the general population. Neurology 2005;65(6):898-904
  • Zhang W, Dai M, Fridberger A, Perivascular-resident macrophage-like melanocytes in the inner ear are essential for the integrity of the intrastrial fluid-blood barrier. Proc Natl Acad Sci USA 2012;109(26):10388-93
  • Misrahy GA, Spradley JF, Beran AV, Garwood VP. Permeability of cochlear partitions: comparison with blood-brain barrier. Acta Otolaryngol 1960;52:525-34
  • Jahnke K. The blood-perilymph barrier. Arch Otorhinolaryngol 1980;228(1):29-34
  • Angelini E, Teixeira M, Aran JM, Ferrary E. Taurine entry into perilymph of the guinea pig. Eur Arch Otorhinolaryngol 1998;255(7):331-3
  • Laurell G, Viberg A, Teixeira M, Blood-perilymph barrier and ototoxicity: an in vivo study in the rat. Acta Otolaryngol 2000;120(7):796-803
  • Wang Q, Kachelmeier A, Steyger PS. Competitive antagonism of fluorescent gentamicin uptake in the cochlea. Hear Res 2010;268(1-2):250-9
  • Li H, Wang Q, Steyger PS. Acoustic trauma increases cochlear and hair cell uptake of gentamicin. PLoS One 2011;6(4):e19130
  • Bowe SN, Jacob A. Round window perfusion dynamics: implications for intracochlear therapy. Curr Opin Otolaryngol Head Neck Surg 2010;18(5):377-85
  • Crane BT, Minor LB, Della Santina CC, Carey JP. Middle ear exploration in patients with Meniere's disease who have failed outpatient intratympanic gentamicin therapy. Otol Neurotol 2009;30(5):619-24
  • Xu L, Heldrich J, Wang H, A controlled and sustained local gentamicin delivery system for inner ear applications. Otol Neurotol 2010;31(7):1115-21
  • Saber A, Strand SP, Ulfendahl M. Use of the biodegradable polymer chitosan as a vehicle for applying drugs to the inner ear. Eur J Pharm Sci 2010;39(1-3):110-15
  • Borden RC, Saunders JE, Berryhill WE, Hyaluronic acid hydrogel sustains the delivery of dexamethasone across the round window membrane. Audiol Neurootol 2011;16(1):1-11
  • Wang X, Dellamary L, Fernandez R, Dose-dependent sustained release of dexamethasone in inner ear cochlear fluids using a novel local delivery approach. Audiol Neurootol 2009;14(6):393-401
  • Buckiova D, Ranjan S, Newman TA, Minimally invasive drug delivery to the cochlea through application of nanoparticles to the round window membrane. Nanomedicine (Lond) 2012;7(9):1339-54
  • Horie RT, Sakamoto T, Nakagawa T, Sustained delivery of lidocaine into the cochlea using poly lactic/glycolic acid microparticles. Laryngoscope 2010;120(2):377-83
  • Mikulec AA, Hartsock JJ, Salt AN. Permeability of the round window membrane is influenced by the composition of applied drug solutions and by common surgical procedures. Otol Neurotol 2008;29(7):1020-6
  • Mikulec AA, Plontke SK, Hartsock JJ, Salt AN. Entry of substances into perilymph through the bone of the otic capsule after intratympanic applications in guinea pigs: implications for local drug delivery in humans. Otol Neurotol 2009;30(2):131-8
  • Salt AN, King EB, Hartsock JJ, Marker entry into vestibular perilymph via the stapes following applications to the round window niche of guinea pigs. Hear Res 2012;283(1-2):14-23
  • Plontke SK, Siedow N, Wegener R, Cochlear pharmacokinetics with local inner ear drug delivery using a three-dimensional finite-element computer model. Audiol Neurootol 2007;12(1):37-48
  • Mynatt R, Hale SA, Gill RM, Demonstration of a longitudinal concentration gradient along scala tympani by sequential sampling of perilymph from the cochlear apex. J Assoc Res Otolaryngol 2006;7(2):182-93
  • Wolters FL, Klis SF, Hamers FP, Perilymphatic application of alpha-melanocyte stimulating hormone ameliorates hearing loss caused by systemic administration of cisplatin. Hear Res 2004;189(1-2):31-40
  • Ekborn A, Laurell G, Ehrsson H, Miller J. Intracochlear administration of thiourea protects against cisplatin-induced outer hair cell loss in the guinea pig. Hear Res 2003;181(1-2):109-15
  • Shimogori H, Yamashita H. Efficacy of intracochlear administration of betamethasone on peripheral vestibular disorder in the guinea pig. Neurosci Lett 2000;294(1):21-4
  • Brown JN, Miller JM, Altschuler RA, Nuttall AL. Osmotic pump implant for chronic infusion of drugs into the inner ear. Hear Res 1993;70(2):167-72
  • Yamasoba T, Schacht J, Shoji F, Miller JM. Attenuation of cochlear damage from noise trauma by an iron chelator, a free radical scavenger and glial cell line-derived neurotrophic factor in vivo. Brain Res 1999;815(2):317-25
  • Baumgartner WD, Jappel A, Morera C, Outcomes in adults implanted with the FLEXsoft electrode. Acta Otolaryngol 2007;127(6):579-86
  • Kitahara T, Fukushima M, Uno Y, Up-regulation of cochlear aquaporin-3 mRNA expression after intra-endolymphatic sac application of dexamethasone. Neurol Res 2003;25(8):865-70
  • Mandala M, Colletti L, Carner M, Induced endolymphatic flow from the endolymphatic sac to the cochlea in Meniere's disease. Otolaryngol Head Neck Surg 2010;143(5):673-9
  • Hochmair I, Nopp P, Jolly C, MED-EL Cochlear implants: state of the art and a glimpse into the future. Trends Amplif 2006;10(4):201-19
  • Ibrahim HN, Bossard D, Jolly C, Truy E. Radiologic study of a disposable drug delivery intracochlear catheter. Otol Neurotol 2011;32(2):217-22
  • Pararas EE, Borkholder DA, Borenstein JT. Microsystems technologies for drug delivery to the inner ear. Adv Drug Deliv Rev 2012;64(14):1650-60
  • Fiering J, Mescher MJ, Leary Swan EE, Local drug delivery with a self-contained, programmable, microfluidic system. Biomed Microdevices 2009;11(3):571-8
  • Johnson TA, Loeffler KA, Burne RA, Biofilm formation in cochlear implants with cochlear drug delivery channels in an in vitro model. Otolaryngol Head Neck Surg 2007;136(4):577-82
  • McCall AA, Swan EE, Borenstein JT, Drug delivery for treatment of inner ear disease: current state of knowledge. Ear Hear 2010;31(2):156-65
  • Schuknecht HF. Ablation therapy for the relief of Meniere's disease. Laryngoscope 1956;66(7):859-70
  • Nguyen KD, Minor LB, Della Santina CC, Carey JP. Vestibular function and vertigo control after intratympanic gentamicin for Meniere's disease. Audiol Neurootol 2009;14(6):361-72
  • Nguyen KD, Minor LB, Della Santina CC, Carey JP. Time course of repeated intratympanic gentamicin for Meniere's disease. Laryngoscope 2009;119(4):792-8
  • Fiorino F, Pizzini FB, Barbieri F, Beltramello A. Variability in the perilymphatic diffusion of gadolinium does not predict the outcome of intratympanic gentamicin in patients with Meniere's disease. Laryngoscope 2012;122(4):907-11
  • Lefebvre PP, Staecker H. Steroid perfusion of the inner ear for sudden sensorineural hearing loss after failure of conventional therapy: a pilot study. Acta Otolaryngol 2002;122(7):698-702
  • Van Wijck F, Staecker H, Lefebvre PP. Topical steroid therapy using the Silverstein Microwick in sudden sensorineural hearing loss after failure of conventional treatment. Acta Otolaryngol 2007;127(10):1012-17
  • Piu F, Wang X, Fernandez R, OTO-104: a sustained-release dexamethasone hydrogel for the treatment of otic disorders. Otol Neurotol 2011;32(1):171-9
  • Salt AN, Hartsock J, Plontke S, Distribution of dexamethasone and preservation of inner ear function following intratympanic delivery of a gel-based formulation. Audiol Neurootol 2011;16(5):323-35
  • Banerjee A, Parnes LS. Intratympanic corticosteroids for sudden idiopathic sensorineural hearing loss. Otol Neurotol 2005;26(5):878-81
  • Battista RA. Intratympanic dexamethasone for profound idiopathic sudden sensorineural hearing loss. Otolaryngol Head Neck Surg 2005;132(6):902-5
  • Parnes LS, Sun AH, Freeman DJ. Corticosteroid pharmacokinetics in the inner ear fluids: an animal study followed by clinical application. Laryngoscope 1999;109(7 Pt 2):1-17
  • Rauch SD, Halpin CF, Antonelli PJ, Oral vs intratympanic corticosteroid therapy for idiopathic sudden sensorineural hearing loss: a randomized trial. JAMA 2011;305(20):2071-9
  • Hu A, Parnes LS. Intratympanic steroids for inner ear disorders: a review. Audiol Neurootol 2009;14(6):373-82
  • van de Water TR, Dinh CT, Vivero R, Mechanisms of hearing loss from trauma and inflammation: otoprotective therapies from the laboratory to the clinic. Acta Otolaryngol 2010;130(3):308-11
  • Vivero RJ, Joseph DE, Angeli S, Dexamethasone base conserves hearing from electrode trauma-induced hearing loss. Laryngoscope 2008;118(11):2028-35
  • Enticott JC, Eastwood HT, Briggs RJ, Methylprednisolone applied directly to the round window reduces dizziness after cochlear implantation: a randomized clinical trial. Audiol Neurootol 2011;16(5):289-303
  • Rajan GP, Kuthubutheen J, Hedne N, Krishnaswamy J. The role of preoperative, intratympanic glucocorticoids for hearing preservation in cochlear implantation: a prospective clinical study. Laryngoscope 2012;122(1):190-5
  • Niedermeier K, Braun S, Fauser C, A safety evaluation of dexamethasone-releasing cochlear implants: comparative study on the risk of otogenic meningitis after implantation. Acta Otolaryngol 2012;132(12):1252-60
  • Krenzlin S, Vincent C, Munzke L, Predictability of drug release from cochlear implants. J Control Release 2012;159(1):60-8
  • Eshraghi AA, Dinh CT, Bohorquez J, Local drug delivery to conserve hearing: mechanisms of action of eluted dexamethasone within the cochlea. Cochlear Implants Int 2011;12(Suppl 1):S51-3
  • Farahmand Ghavi F, Mirzadeh H, Imani M, Corticosteroid-releasing cochlear implant: a novel hybrid of biomaterial and drug delivery system. J Biomed Mater Res B Appl Biomater 2010;94(2):388-98
  • Paasche G, Tasche C, Stover T, The long-term effects of modified electrode surfaces and intracochlear corticosteroids on postoperative impedances in cochlear implant patients. Otol Neurotol 2009;30(5):592-8
  • Puel JL, Ruel J, Guitton M, The inner hair cell synaptic complex: physiology, pharmacology and new therapeutic strategies. Audiol Neurootol 2002;7(1):49-54
  • Guitton MJ, Caston J, Ruel J, Salicylate induces tinnitus through activation of cochlear NMDA receptors. J Neurosci 2003;23(9):3944-52
  • Guitton MJ, Dudai Y. Blockade of cochlear NMDA receptors prevents long-term tinnitus during a brief consolidation window after acoustic trauma. Neural Plast 2007;2007:80904
  • Muehlmeier G, Biesinger E, Maier H. Safety of intratympanic injection of AM-101 in patients with acute inner ear tinnitus. Audiol Neurootol 2011;16(6):388-97
  • Wenzel GI, Warnecke A, Stover T, Lenarz T. Effects of extracochlear gacyclidine perfusion on tinnitus in humans: a case series. Eur Arch Otorhinolaryngol 2010;267(5):691-9
  • Salvi R, Lobarinas E, Sun W. Pharmacological treatments for tinnitus: new and old. Drugs Future 2009;34(5):381-400
  • Pirvola U, Xing-Qun L, Virkkala J, Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT7515, an inhibitor of c-Jun N-terminal kinase activation. J Neurosci 2000;20(1):43-50
  • Ylikoski J, Xing-Qun L, Virkkala J, Pirvola U. Blockade of c-Jun N-terminal kinase pathway attenuates gentamicin-induced cochlear and vestibular hair cell death. Hear Res 2002;166(1-2):33-43
  • Scarpidis U, Madnani D, Shoemaker C, Arrest of apoptosis in auditory neurons: implications for sensorineural preservation in cochlear implantation. Otol Neurotol 2003;24(3):409-17
  • Wang J, Van De Water TR, Bonny C, A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J Neurosci 2003;23(24):8596-607
  • Eshraghi AA, Van de Water TR. Cochlear implantation trauma and noise-induced hearing loss: apoptosis and therapeutic strategies. Anat Rec A Discov Mol Cell Evol Biol 2006;288(4):473-81
  • Murai N, Kirkegaard M, Jarlebark L, Activation of JNK in the inner ear following impulse noise exposure. J Neurotrauma 2008;25(1):72-7
  • Coleman JK, Littlesunday C, Jackson R, Meyer T. AM-111 protects against permanent hearing loss from impulse noise trauma. Hear Res 2007;226(1-2):70-8
  • Suckfuell M, Canis M, Strieth S, Intratympanic treatment of acute acoustic trauma with a cell-permeable JNK ligand: a prospective randomized phase I/II study. Acta Otolaryngol 2007;127(9):938-42
  • Omotehara Y, Hakuba N, Hato N, Protection against ischemic cochlear damage by intratympanic administration of AM-111. Otol Neurotol 2011;32(9):1422-7
  • Grindal TC, Sampson EM, Antonelli PJ. AM-111 prevents hearing loss from semicircular canal injury in otitis media. Laryngoscope 2010;120(1):178-82
  • Samson J, Wiktorek-Smagur A, Politanski P, Noise-induced time-dependent changes in oxidative stress in the mouse cochlea and attenuation by D-methionine. Neuroscience 2008;152(1):146-50
  • Rybak LP, Whitworth CA, Mukherjea D, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res 2007;226(1-2):157-67
  • Kopke RD, Jackson RL, Coleman JK, NAC for noise: from the bench top to the clinic. Hear Res 2007;226(1-2):114-25
  • Korver KD, Rybak LP, Whitworth C, Campbell KM. Round window application of D-methionine provides complete cisplatin otoprotection. Otolaryngol Head Neck Surg 2002;126(6):683-9
  • Clifford RE, Coleman JK, Balough BJ, Low-dose D-methionine and N-acetyl-L-cysteine for protection from permanent noise-induced hearing loss in chinchillas. Otolaryngol Head Neck Surg 2011;145(6):999-1006
  • Campbell K, Claussen A, Meech R, D-methionine (D-met) significantly rescues noise-induced hearing loss: timing studies. Hear Res 2011;282(1-2):138-44
  • Campbell KC, Meech RP, Klemens JJ, Prevention of noise- and drug-induced hearing loss with D-methionine. Hear Res 2007;226(1-2):92-103
  • Akil O, Seal RP, Burke K, Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron 2012;75(2):283-93
  • Kelley MW, Driver EC, Puligilla C. Regulation of cell fate and patterning in the developing mammalian cochlea. Curr Opin Otolaryngol Head Neck Surg 2009;17(5):381-7
  • Warchol ME. Sensory regeneration in the vertebrate inner ear: differences at the levels of cells and species. Hear Res 2011273(1-2):72-9
  • Woods C, Montcouquiol M, Kelley MW. Math1 regulates development of the sensory epithelium in the mammalian cochlea. Nat Neurosci 2004;7(12):1310-18
  • Bermingham NA, Hassan BA, Price SD, Math1: an essential gene for the generation of inner ear hair cells. Science 1999;284(5421):1837-41
  • Shailam R, Lanford PJ, Dolinsky CM, Expression of proneural and neurogenic genes in the embryonic mammalian vestibular system. J Neurocytol 1999;28(10-11):809-19
  • Lanford PJ, Shailam R, Norton CR, Expression of Math1 and HES5 in the cochleae of wildtype and Jag2 mutant mice. J Assoc Res Otolaryngol 2000;1(2):161-71
  • Zine A, Aubert A, Qiu J, Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear. J Neurosci 2001;21(13):4712-20
  • Zine A, de Ribaupierre F. Notch/Notch ligands and Math1 expression patterns in the organ of Corti of wild-type and Hes1 and Hes5 mutant mice. Hear Res 2002;170(1-2):22-31
  • Qian D, Radde-Gallwitz K, Kelly M, Basic helix-loop-helix gene Hes6 delineates the sensory hair cell lineage in the inner ear. Dev Dyn 2006;235(6):1689-700
  • Murata J, Tokunaga A, Okano H, Kubo T. Mapping of notch activation during cochlear development in mice: implications for determination of prosensory domain and cell fate diversification. J Comp Neurol 2006;497(3):502-18
  • Yamamoto N, Tanigaki K, Tsuji M, Inhibition of Notch/RBP-J signaling induces hair cell formation in neonate mouse cochleas. J Mol Med 2006;84(1):37-45
  • Hori R, Nakagawa T, Sakamoto T, Pharmacological inhibition of Notch signaling in the mature guinea pig cochlea. Neuroreport 2007;18(18):1911-14
  • Zheng JL, Gao WQ. Overexpression of Math1 induces robust production of extra hair cells in postnatal rat inner ears. Nat Neurosci 2000;3(6):580-6
  • Shou J, Zheng JL, Gao WQ. Robust generation of new hair cells in the mature mammalian inner ear by adenoviral expression of Hath1. Mol Cell Neurosci 2003;23(2):169-79
  • Ishimoto S, Kawamoto K, Kanzaki S, Raphael Y. Gene transfer into supporting cells of the organ of Corti. Hear Res 2002;173(1-2):187-97
  • Kawamoto K, Ishimoto S, Minoda R, Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci 2003;23(11):4395-400
  • Izumikawa M, Minoda R, Kawamoto K, Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 2005;11(3):271-6
  • Praetorius M, Baker K, Weich CM, Hearing preservation after inner ear gene therapy: the effect of vector and surgical approach. ORL J Otorhinolaryngol Relat Spec 2003;65(4):211-14
  • Praetorius M, Hsu C, Baker K, Adenovector-mediated hair cell regeneration is affected by promoter type. Acta Otolaryngol 2010;130(2):215-22
  • Schlecker C, Praetorius M, Brough DE, Selective atonal gene delivery improves balance function in a mouse model of vestibular disease. Gene Ther 2011;18(9):884-90
  • Kraft S, Hsu C, Brough DE, Staecker H. Atoh1 induces auditory hair cell recovery in mice after ototoxic injury. Laryngoscope 2013;123(4):992-9
  • Spoendlin H. Retrograde degeneration of the cochlear nerve. Acta Otolaryngol 1975;79(3-4):266-75
  • Bingabr M, Espinoza-Varas B, Loizou PC. Simulating the effect of spread of excitation in cochlear implants. Hear Res 2008;241(1-2):73-9
  • Prado-Guitierrez P, Fewster LM, Heasman JM, Effect of interphase gap and pulse duration on electrically evoked potentials is correlated with auditory nerve survival. Hear Res 2006;215(1-2):47-55
  • Shepherd RK, Coco A, Epp SB. Neurotrophins and electrical stimulation for protection and repair of spiral ganglion neurons following sensorineural hearing loss. Hear Res 2008;242(1-2):100-9
  • Richardson RT, Wise AK, Andrew JK, O'Leary SJ. Novel drug delivery systems for inner ear protection and regeneration after hearing loss. Expert Opin Drug Deliv 2008;5(10):1059-76
  • Richardson RT, Wise AK, Thompson BC, Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials 2009;30(13):2614-24
  • Rejali D, Lee VA, Abrashkin KA, Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons. Hear Res 2007;228(1-2):180-7
  • Shibata SB, Cortez SR, Beyer LA, Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae. Exp Neurol 2010;223(2):464-72
  • Hansen S, Mlynski R, Volkenstein S, Growth behavior of spiral ganglion explants on cochlear implant electrodes and their materials. HNO 2009;57(4):358-63
  • Chikar JA, Colesa DJ, Swiderski DL, Over-expression of BDNF by adenovirus with concurrent electrical stimulation improves cochlear implant thresholds and survival of auditory neurons. Hear Res 2008;245(1-2):24-34
  • Chen W, Jongkamonwiwat N, Abbas L, Restoration of auditory evoked responses by human ES-cell-derived otic progenitors. Nature 2012;490(7419):278-82
  • Martinez-Monedero R, Edge AS. Stem cells for the replacement of inner ear neurons and hair cells. Int J Dev Biol 2007;51(6-7):655-61
  • Pfingst BE, Bowling SA, Colesa DJ, Cochlear infrastructure for electrical hearing. Hear Res 2011;281(1-2):65-73
  • Nakagawa T, Ito J. Local drug delivery to the inner ear using biodegradable materials. Ther Deliv 2011;2(6):807-14
  • Zhang W, Zhang Y, Lobler M, Nuclear entry of hyperbranched polylysine nanoparticles into cochlear cells. Int J Nanomedicine 2011;6:535-46
  • Scheper V, Wolf M, Scholl M, Potential novel drug carriers for inner ear treatment: hyperbranched polylysine and lipid nanocapsules. Nanomedicine (Lond) 2009;4(6):623-35
  • Roy S, Glueckert R, Johnston AH, Strategies for drug delivery to the human inner ear by multifunctional nanoparticles. Nanomedicine (Lond) 2012;7(1):55-63
  • Mood ZA, Daniel SJ. Use of a microendoscope for transtympanic drug delivery to the round window membrane in chinchillas. Otol Neurotol 2012;33(8):1292-6
  • Plontke SK, Plinkert PK, Plinkert B, Transtympanic endoscopy for drug delivery to the inner ear using a new microendoscope. Adv Otorhinolaryngol 2002;59:149-55
  • Manrique MJ, Savall J, Cervera-Paz FJ, Atraumatic surgical approach to the cochlea with a micromanipulator. Acta Otolaryngol 2007;127(2):122-31
  • Maier T, Strauss G, Dietz A, Luth TC. First clinical use of a new micromanipulator for the middle ear surgery. Laryngorhinootologie 2008;87(9):620-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.