275
Views
22
CrossRef citations to date
0
Altmetric
Reviews

Nanopharmaceuticals to target antifilarials: a comprehensive review

, MSc (Biotechnology) PhD (Nanomedicine), , M Pharma (Pharmacognosy), , PhD FNASc, , PhD & , MPharm PhD
Pages 665-678 | Published online: 22 Feb 2013

Bibliography

  • WHO. Global programme to eliminate lymphatic filariasis. Weekly Epidemiol Rec 2009;437-44
  • Gyapong JO, Kumaraswami V, Biswas G, Treatment strategies underpinning the global programme to eliminate lymphatic filariasis. Expert Opin Pharmacother 2005;6:179-200
  • World Health Organization Global Programme to Eliminate Lymphatic Filariasis. Progress report for 2004. Weekly Epidemiol Rec 2005;80202-12
  • World Health Organization Global Programme to Eliminate Lymphatic Filariasis. Progress report on mass drug administrations in 2005. Weekly Epidemiol Rec 2006;22:221-32
  • World Health Organization Global Programme to Eliminate Lymphatic Filariasis. Progress report on mass drug administration in 2006. Weekly Epidemiol Rec 2007;82:361-80
  • World Health Organization Global Programme to Eliminate Lymphatic Filariasis. Progress report on mass drug administration in 2007. Weekly Epidemiol Rec 2008;83:333-48
  • Silva ND. Global elimination of lymphatic filariasis: addressing the public health problem. PLoS Negl Trop Dis 2010;4:34-45
  • Marcato PD, Durán N. New aspects of nanopharmaceutical delivery systems. J Nanosci Nanotechnol 2008;8:1-14
  • Sahni JK, Baboota S, Ali J, Promising role of nanopharmaceuticals in drug delivery. Pharma Times 2011;10
  • Bawarski WE, Chidlowsky E, Bharali DJ, Emerging nanopharmaceuticals. Nanomedicine 2008;4:273-82
  • Horstkotte E, Odoerfer KI. Towards improved therapies using nanopharmaceuticals: recent patents on pharmaceutical nanoformulations. Recent Pat Food Nutr Agric 2012;4(3):220-44
  • Patlak M. Nanotechnology takes a new look at old drugs. J Natl Cancer Inst 2010;23:1753-5
  • Sundar S. Liposomal amphotericin B. Lancet 2001;357:801-2
  • Singh PK, Ajay A, Kushwaha S, Towards novel antifilarial drugs: challenges and recent developments. Future Med Chem 2010;2(2):251-83
  • Hawley AE, Davis SS, Illum L. Targeting of colloids to lymph nodes: influence of lymphatic physiology and colloidal characteristics. Adv Drug Deliv Rev 1995;17(1):129-48
  • Shieh MJ, Hsu CH, Huang LY, Reversal of doxorubicin-resistance by multifunctional nanoparticles in MCF-7/ADR cells. J Control Release 2011;152:418-25
  • Li PY, Lai PS, Hung WC, Syu WJ. Poly (L-lactide)-vitamin E TPGS nanoparticles enhanced the cytotoxicity of doxorubicin in drug-resistant MCF-7 breast cancer cells. Biomacromolecules 2010;11(10):2576-82
  • Wang X, Li J, Wang Y, A folate receptor-targeting nanoparticle minimizes drug resistance in a human cancer model. ACS Nano 2011;23:6184-94
  • Vlerken LE, Amiji MM. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin Drug Deliv 2006;3:205-16
  • Singh SK, Goswami K, Sharma RD, Novel microfilaricidal activity of nanosilver. Int J Nanomedicine 2012;7:1023-30
  • Kirthi AV, Rahuman AA, Rajakuma G, Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wetchemical route against blood feeding parasites. Parasitol Res 2011;5:47-56
  • Ramyadevi J, Jeyasubramanian K, Marikani A, Copper nanoparticles synthesized by polyol process used to control hematophagous parasites. Parasitol Res 2011;5:56-67
  • Salunkhe RB, Patil SV, Patil CD, Salunke BK. Larvacidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti and Anopheles stephensi Liston. Parasitol Res 2011;109:823-31
  • Pavel B. Polymer-based nanostructures: medical applications. Royal Society of Chemistry, Cambridge; 2010
  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, Nanoparticles as drug delivery systems. Pharmacol Rep 2012;64(5):1020-37
  • Wertheimer AI, Santella TM, Finestone AJ, Drug Delivery Systems improve pharmaceutical profile and facilitate medication adherence. Adv Ther 2010;6:559-77
  • Lu Y, Chen SC. Micro and nano-fabrication of biodegradable polymers for drug delivery. Adv Drug Deliv Rev 2004;56:1621-33
  • Owais M, Misra-bhattacharya S, Haq W, Gupta CM. Immunomodulator tuftsin augments antifilarial activity of diethylcarbamazine against experimental Brugian Filariasis. J Drug Target 2003;11:247-51
  • Bajpai P, Vedi S, Owais M, Use of liposomized tetracycline in elimination of Wolbachia endobacterium of human lymphatic filariid Brugia malayi in a rodent model. J Drug Target 2005;13:375-81
  • Dangi A, Dwivedi V, Vedi S, Improvement in the antifilarial efficacy of doxycycline and rifampicin by combination therapy and drug delivery approach. J Drug Target 2010;18(5):343-50
  • Oussoren C, Storm G. Liposomes to target the lymphatics by subcutaneous administration. Adv Drug Deliv Rev 2001;50:143-56
  • Oussoren C, Storm G. Subcutaneous administration of liposomes for lymphatic targeting. Adv Drug Deliv Rev 1997;7:227-40
  • Oussoren C, Zuidema J, Crommelin DJA, Lymphatic uptake and biodistribution of liposomes after subcutaneous injection-II, Influence of liposomal size, lipid composition and lipid dose. Biochim Biophys Acta 1997;4:261-72
  • Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006;1(3):297-315
  • Garnier B, Tan S, Gounou C, Development of a platform of antibody-presenting liposomes. Biointerphases 2012;4:903-10
  • Specht S, Wanji S. New insights into the biology of filarial infections. J Helminthol 2009;83:199-202
  • Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-A review of the state of the art. Eur J Pharm Biopharm 2000;50(1):161-77
  • Uner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2007;2(3):289-300
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001;47:65-81
  • Gupta Y, Jain A, Jain SK. Transferrin-conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain. J Pharm and Pharmacol 2007;59:935-40
  • Olbrich C, Gebner A, Kayser O, Lipid‐drug conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazene diaceturate. J Drug Target 2002;10:387-96
  • Ottesen EA. Immunopathology of lymphatic filariasis in man. Semin Immunopathol 1980;2:373-85
  • Nitin G, Chaubal MD, Gautam M, Dance of Live Adult Filarial Worms Is a Reliable Sign of Scrotal Filarial Infection. J Ultrasound Med 2003;22:765-9
  • Lu B, Xiong SB, Yang H, Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur J Pharm Sci 2006;4:86-95
  • Lu B, Xiong B, Yang H, Mitoxantrone-loaded BSA nanospheres and chitosan nanospheres for local injection against breast cancer and its lymph node metastases II:tissue distribution and pharmacodynamics. Int J Pharm 2006;2:168-74
  • Dutt M, Khuller GK. Therapeutic efficacy of PLGA encapsulated antitubercular drug against mycobacterium tuberculosis infection induced in mice. Antimicrobe Agent 2001;45:363-9
  • William B, Liechty WB, David R, Polymers for Drug Delivery Systems. Annu Rev Chem Bio Eng 2010;1:149-73
  • Utreja P, Jain S, Tiwary AK. Novel drug delivery systems for sustained and targeted delivery of anti- cancer drugs: current status and future prospects. Curr Drug Deliv 2010;7(2):152-61
  • Date AA, Joshi MD, Patravale VB. Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev 2007;10:505-21
  • Romero EL, Morill MJ. Drug delivery systems against leishmaniasis? Still an open question. Expert Opin Drug Deliv 2008;5(7):805-82
  • Santos-Magalhães NS, Mosqueira VC. Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev 2010;62:560-75
  • Xie Y, Bagby TR, Cohen MS, Forrest ML. Drug delivery to the lymphatic system: importance in future cancer diagnosis and therapies. Expert Opin Drug Deliv 2009;6(8):785-92
  • Mahmud A, Xiong X, Montazeri H, Polymeric micelles for drug targeting. J Drug Target 2007;15:553-84
  • Gaspar R, Préat V, Opperdoes FR. Macrophage activation by polymeric nanoparticles of polyalkylcyanoacrylates: activity against intracellular Leishmania donovani associated with hydrogen peroxide production. Pharm Res 1992;9(6):782-7
  • Albanese A, Tang PS, Chan WCW. The Effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012;14:1-16
  • Reddy ST, Vlies AJ, Simeoni E. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 2007;25:1159-64
  • Nishioka Y, Yoshino H. Lymphatic targeting with nanoparticulate system. Adv Drug Deliv Rev 2001;23:55-64
  • Saraf S, Ghosh A, Kaur CD, Saraf S. Novel modified nanosystems based lymphatic targeting. J Nanosci Nanotechnol 2011;1:60-74
  • Drobnik J. Hyaluronan in drug delivery. Adv Drug Deliv Rev 1999;7:295-308
  • Luo G, Yu X, Jin C, LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors. Int J Pharm 2010;385(1-2):150-6
  • Hauff P, Reinhard M, Briel A, Molecular targeting of lymph nodes with L-selectin ligand-specific US contrast agent: a feasibility study in mice and dogs. Radiology 2004;231:667-73
  • Kaur CD, Nahar M, Jain NK. Lymphatic targeting of zidovudine using surface-engineered liposomes. J Drug Target 2008;16:798-805
  • Ikehara Y, Niwa T, Biao LA. Carbohydrate recognition-based drug delivery and controlled release system using intraperitoneal macrophages as a cellular vehicle. Cancer Res 1999;2:29-38
  • Zhang H, Ma Y, Sun X. Recent developments in carbohydrate-decorated targeted drug/gene delivery. Med Res Rev 2003;4:495-508
  • Proft T, Baker EN. Pili in gram-negative and gram-positive bacteria - structure, assembly and their role in disease. Cell Mol Life Sci 2009;4:613-35
  • Kaminskas LM, Kota J, McLeod VM, PEGylation of polylysine dendrimers improves absorption and lymphatic targeting following SC administration in rats. J Control Release 2009;140:108-16
  • Donald E, Nicholas A, Peppas A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006;307:93-102
  • Banerjee SS, Aher N, Patil R, Poly(ethylene glycol)-prodrug conjugates: concept, design and applications. J Drug Deliv 2012;10:123-39
  • Fundaro A, Cavalli R, Bargoni A, Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after iv administration to rats. Pharm Res 2000;42:337-43
  • Ami M, Krunal S, Hejal P, Advancements in controlled release gastroretentive drug delivery system: a review. J Drug Deliv Ther 2012;2(3):34-41
  • Uhrich KE. Polymeric systems for controlled drug release. Chem Rev 1999;99:3181-98
  • Biondi M, Ungaro F, Quaglia F. Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev 2008;60(2):229-42
  • Guerra-caceres JG, Bryceson ADM, Quakyi I, Studies on the mechanisms of adverse reactions produced by diethyl carbamazine in patients with onchocerciasis- Mazzotti reaction. Parasite immunol 1980;2:121-31
  • Bassi P, Kaur G. pH modulation: a mechanism to obtain pH-independent drug release. Expert Opin Drug Deliv 2010;7:845-57
  • Bikram M, West JL. Thermo-responsive systems for controlled drug delivery. Expert Opin Drug Deliv 2008;5:1077-91
  • Bawa P, Pillay V, Choonara YE. Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater 2009;4:234-45
  • Morishita M, Lowman AM, Takayama K, Elucidation of the mechanism of incorporation of insulin in controlled release systems based on complexation polymers. J Control Release 2002;81:25-32
  • Cuong NV, Hsieh MF. Molecular targeting of liposomal nano-particles to lymphatic system. Curr Cancer Drug Targets 2011;11(2):147-55
  • Shin SB, Cho HY, Kim DD, Preparation and evaluation of tacrolimus-loaded nanoparticles for lymphatic delivery. Eur J Pharm Biopharm 2010;74:164-71

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.