591
Views
69
CrossRef citations to date
0
Altmetric
Reviews

Ultrasound-mediated drug delivery for cardiovascular disease

, BS, , PhD, , DPhil & , PhD
Pages 573-592 | Published online: 01 Mar 2013

Bibliography

  • Komarova Y, Malik A. Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 2010;72(1):463-93
  • Zaragoza C, Márquez S, Saura M. Endothelial mechanosensors of shear stress as regulators of atherogenesis. Curr Opin Lipidol 2012;23(5):446-52
  • Binsalamah Z, Paul A, Prakash S, Shum-Tim D. Nanomedicine in cardiovascular therapy: recent advancements. Expert Rev Cardiovasc Ther 2012;10(6):805-15
  • Roger V, Go A, Lloyd-Jones D, Heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation 2012;125(1):e2-e220
  • Stancu C, Toma L, Sima A. Dual role of lipoproteins in endothelial cell dysfunction in atherosclerosis. Cell Tissue Res 2012;349(2):433-46
  • Libby P, Okamoto Y, Rocha V, Folco E. Inflammation in atherosclerosis: transition from theory to practice. Circ J 2010;74(2):213-20
  • Labreuche J, Deplanque D, Touboul P, Association between change in plasma triglyceride levels and risk of stroke and carotid atherosclerosis: systematic review and meta-regression analysis. Atherosclerosis 2010;212(1):9-15
  • Saric M, Kronzon I. Aortic atherosclerosis and embolic events. Curr Cardiol Rep 2012;14(3):342-9
  • Mitragotri S. Devices for overcoming biological barriers: the use of physical forces to disrupt the barriers. Adv Drug Deliv Rev 2013;65(1):100-3
  • Gómez-Guerrero C, Mallavia B, Egido J. Targeting inflammation in cardiovascular diseases. Still a neglected field? Cardiovasc Ther 2012;30(4):189-97
  • Perampaladas K, Gori T, Parker JD. Rosiglitazone causes endothelial dysfunction in humans. J Cardiovasc Pharmacol Ther 2012;17(3):260-5
  • Abdelwahid E, Siminiak T, Guarita-Souza L, Stem cell therapy in heart diseases: a review of selected new perspectives, practical considerations and clinical applications. Curr Cardiol Rev 2011;7(3):201-12
  • Bernkop-Schnürch A, Hoffer MH, Kafedjiiski K. Thiomers for oral delivery of hydrophilic macromolecular drugs. Expert Opin Drug Deliv 2004;1(1):87-98
  • Laing ST, McPherson D. Cardiovascular therapeutic uses of targeted ultrasound contrast agents. Cardiovasc Res 2009;83(4):626-35
  • Galagudza MM, Korolev DV, Sonin DL, Passive and active target delivery of drugs to ischemic myocardium. Bull Exp Biol Med 2011;152(1):105-7
  • Chistiakov D, Sobenin I, Orekhov A. Strategies to deliver microRNAs as potential therapeutics in the treatment of cardiovascular pathology. Drug Deliv 2012;19(8):392-405
  • Park J, Zhang Y, Vykhodtseva N, The kinetics of blood brain barrier permeability and targeted doxorubicin delivery into brain induced by focused ultrasound. J Control Release 2012;162(1):134-42
  • Huang SL, MacDonald RC. Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. Biochim Biophys Acta 2004;1665(1-2):134-41
  • Ali MH, Schumacker PT. Endothelial responses to mechanical stress: where is the mechanosensor? Crit Care Med 2002;30(5):S198-206
  • Lindner JR. Molecular imaging with contrast ultrasound and targeted microbubbles. J Nucl Cardiol 2004;11(2):215-21
  • Liu Y, Miyoshi H, Nakamura M. Encapsulated ultrasound microbubbles: therapeutic application in drug/gene delivery. J Control Release 2006;114(1):89-99
  • Bekeredjian R, Grayburn PA, Shohet RV. Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J Am Coll Cardiol 2005;45(3):329-35
  • Bull JL. The application of microbubbles for targeted drug delivery. Expert Opin Drug Deilv 2007;4(5):475-93
  • Muzykantov VR. Biomedical aspects of targeted delivery of drugs to pulmonary endothelium. Expert Opin Drug Deliv 2005;2(5):909-26
  • Vestweber D. Adhesion and signaling molecules controlling the transmigration of leukocytes through endothelium. Immunol Rev 2007;218:178-96
  • Muzykantov VR, Radhakrishnan R, Eckmann DM. Dynamic factors controlling targeting nanocarriers to vascular endothelium. Curr Drug Metab 2012;13(1):70-81
  • Apfel RE. Acoustic cavitation prediction. J Acoust Soc Am 1981;69(6):1624-33
  • Apfel RE. Acoustic cavitation: a possible consequence of biomedical uses of ultrasound. Br J Cancer Suppl 1982;45(5):140-6
  • Carstensen EL, Flynn HG. The potential for transient cavitation with microsecond pulses of ultrasound. Ultrasound Med Biol 1982;8(6):L720-4
  • Flynn HG. Generation of transient cavities in liquids by microsecond pulses of ultrasound. J Acoust Soc Am 1982;72(6):1926-32
  • Flynn HG, Church CC. Mechanism for the generation of cavitation maxima by pulsed ultrasound. J Acoust Soc Am 1984;76(2):505-12
  • Atchley AA, Frizzell LA, Apfel RE, Thresholds for cavitation produced in water by pulsed ultrasound. Ultrasonics 1988;26(5):280-5
  • Holland CK, Apfel RE. Improved theory for the prediction of microcavitation thresholds. IEEE T Ultrason Ferr 1989;36(2):204-8
  • Holland CK, Apfel RE. Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment. J Acoust Soc Am 1990;88(5):2059-69
  • Apfel RE, Holland CK. Gauging the likelihood of cavitation from short-pulse, low duty cycle ultrasound. Ultrasound Med Biol 1991;17:179-85
  • Holland CK, Roy RA, Apfel RE, Crum LA. In vitro detection of cavitation induced by a diagnostic ultrasound system. IEEE T Ultrason Ferr 1992;39:95-101
  • Holland CK, Deng CX, Apfel RE, Direct evidence of cavitation in vivo from diagnostic ultrasound. Ultrasound Med Biol 1996;22(7):917-25
  • Deng CX, Xu Q, Apfel RE, Holland CK. In vitro measurements of inertial cavitation thresholds in human blood. Ultrasound Med Biol 1996;22(7):939-48
  • Deng CX, Xu Q, Apfel RE, Holland CK. Inertial cavitation produced by pulsed ultrasound in controlled host media. J Acoust Soc Am 1996;100(2 Pt 1):1199-208
  • Coussios C, Roy RA. Applications of acoustics and cavitation to noninvasive therapy and drug delivery. Annu Rev Fluid Mech 2008;40:395-420
  • Bader K, Holland C. Gauging the likelihood of stable cavitation from ultrasound contrast agents. Phys Med Biol 2013;58:127-44
  • Flynn H. Physics of acoustic cavitation in liquids. In: Mason WP, editor. Physical Acoustics. Academic Press; New York; 1964. p. 58-172
  • Phelps AD, Leighton TG. The subharmonic oscillations and combination-frequency subharmonic emissions from a resonant bubble: their properties and generation mechanisms. Acustica 1997;83(1):59-66
  • Elder SA. Cavitation microstreaming. J Acoust Soc Am 1958;31:54-64
  • Miller DL. Particle gathering and microstreaming near ultrasonically activated gas-filled micropores. J Acoust Soc Am 1988;84(4):1378-87
  • Crum LA. Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL. J Urol 1988;140(6):1587-90
  • Bailey MR, Blackstock DT, Cleveland RO, Crum LA. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. I. Acoustic fields. J Acoust Soc Am 1998;104(4):2517-24
  • Bailey MR, Blackstock DT, Cleveland RO, Crum LA. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. II. Cavitation fields. J Acoust Soc Am 1999;106(2):1149-60
  • Asaka T, Marston P. Acoustic radiation force on a bubble driven above resonance. J Acoust Soc Am 1994(96):3096-9
  • Rudenko O, Sarvaszyan A, Emelianov S. Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium. J Acoust Soc Am 1996(99):2791-8
  • Dayton P, Klibanov AL, Brandenburger G, Ferrara KW. Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles. Ultrasound Med Biol 1999;25(8):1195-201
  • Tartis MS, McCallan J, Lum AF, Therapeutic effects of paclitaxel-containing ultrasound contrast agents. Ultrasound Med Biol 2006;32:11):1771-80.
  • Nyborg J. Acoustic streaming. In: Mason WP, editor. Physical Acoustics. 2nd edition. Academic Press, New York; 1965. p. 266-331
  • Wu J, Du G. Acoustic streaming generated by a focused gaussian beam and finite amplitude tonebursts. Ultrasound Med Biol 1993;19(2):167-76
  • Wu J, Nyborg WL. Ultrasound, cavitation bubbles and their interaction with cells. Adv Drug Deliv Rev 2008;60(10):1103-16
  • Newman C, Bettinger T. Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther 2007;14:465-75
  • Lawrie A, Brisken AF, Francis SE, Ultrasound-enhanced transgene expression in vascular cells is not dependent upon cavitation-induced free radicals. Ultrasound Med Biol 2003;29(10):1453-61
  • Unger EC, Hersh E, Vannan M, McCreery T. Gene delivery using ultrasound contrast agents. Echocardiography 2001;18(4):355-61
  • Bekeredjian R, Chen S, Frenkel PA, Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation 2003;108(8):1022-6
  • Kodama T, Tomita Y, Koshiyama K, Blomley MJ. Transfection effect of microbubbles on cells in superposed ultrasound waves and behavior of cavitation bubble. Ultrasound Med Biol 2006;32(6):905-14
  • Suzuki R, Takizawa T, Negishi Y, Gene delivery by combination of novel liposomal bubbles with perfluoropropane and ultrasound. J Control Release 2007;117(1):130-6
  • Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 2008;60(10):1153-66
  • Suzuki J, Ogawa M, Takayama K, Ultrasound-microbubble-mediated intercellular adhesion molecule-1 small interfering ribonucleic acid transfection attenuates neointimal formation after arterial injury in mice. J Am Coll Cardiol 2010;55(9):904-13
  • Chen H, Brayman A, Evan A, Matula T. Preliminary observations on the spatial correlation between short-burst microbubble oscillations and vascular bioeffects. Ultrasound Med Biol 2012;38(12):2151-62
  • Phillips LC, Klibanov AL, Wamhoff BR, Hossack JA. Intravascular ultrasound detection and delivery of molecularly targeted microbubbles for gene delivery. IEEE T Ultrason Ferr 2012;59(7):1596-601
  • Everbach EC, Francis CW. Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz. Ultrasound Med Biol 2000;26(7):1153-60
  • Datta S, Coussios CC, McAdory LE, Correlation of cavitation with ultrasound enhancement of thrombolysis. Ultrasound Med Biol 2006;32(8):1257-67
  • Prokop AF, Soltani A, Roy RA. Cavitational mechanisms in ultrasound-accelerated fibrinolysis. Ultrasound Med Biol 2007;33(6):924-33
  • Datta S, Coussios C, Ammi AY, Ultrasound-enhanced thrombolysis using Definity® as a cavitation nucleation agent. Ultrasound Med Biol 2008;34:1421-33
  • Hitchcock K, Ivancevich N, Haworth K, Ultrasound-enhanced rt-PA thrombolysis in an ex vivo porcine carotid artery model. Ultrasound Med Biol 2011;37(8):1240-51
  • Roy RA, Madanshetty SI, Apfel RE. An acoustic backscattering technique for the detection of transient cavitation produced by microsecond pulses of ultrasound. J Acoust Soc Am 1990;87(6):2451-8
  • Madanshetty SI, Roy RA, Apfel RE. Acoustic microcavitation: its active and passive acoustic detection. J Acoust Soc Am 1991;90(3):1515-26
  • Farny C, Holt RG, Roy RA. Temporal and spatial detection of HIFU-induced inertial and hot-vapor cavitation with a diagnostic ultrasound system. Ultrasound Med Biol 2009;35(4):603-15
  • Salgaonkar VA, Datta S, Holland C, Mast TD. Passive cavitation imaging with ultrasound arrays. J Acoust Soc Am 2009;126(6):3071-83
  • Gyongy M, Coussios C. Passive spatial mapping of inertial cavitation during HIFU exposure. IEEE T Bio-med Eng 2010;57(1):48-56
  • Haworth K, Mast TD, Radhakrishnan K, Passive imaging with pulsed ultrasound insonations. J Acoust Soc Am 2012;132(1):544-53
  • Shankar PM, Dala Krishna P, Newhouse VL. Advantages of subharmonic over second harmonic backscatter for contrast-to-tissue echo enhancement. Ultrasound Med Biol 1998;24(3):395-9
  • Krishna PD, Shankar PM, Newhouse VL. Subharmonic generation from ultrasonic contrast agents. Phys Med Biol 1999;44(3):681-94
  • Shi WT, Forsberg F, Hall AL, Subharmonic imaging with microbubble contrast agents: initial results. Ultrason Imaging 1999;21(2):79-94
  • Tanswell P, Seifried E, Stang E, Krause J. Pharmacokinetics and hepatic catabolism of tissue-type plasminogen activator. Arzneimittelforschung 1991;41(12):1310-19
  • Feigen VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2003;2:43-53
  • Penn MS, Saidel GM, Chisolm GM. Relative significance of endothelium and internal elastic lamina in regulating the entry of macromolecules into arteries in vivo. Circ Res 1994;74(1):74-82
  • Penn MS, Rangaswamy S, Saidel GM, Chisolm GM. Macromolecular transport in the arterial intima: comparison of chronic and acute injuries. Am J Phsiol 1997;272(4 Pt 2):H1560-70
  • Ochoa CD, Stevens T. Studies on the cell biology of interendothelial cell gaps. Am J Physiol-Lung C 2012;302(3):L275-86
  • Kleinegris MC, Ten Cate-Hoek A, Ten Cate H. Coagulation and the vessel wall in thrombosis and atherosclerosis. Pol Arch Med Wewn 2012;122(11):557-66
  • Hirase T, Node K. Endothelial dysfunction as a cellular mechanism for vascular failure. Am J Physiol-Heart C 2012;302(3):H499-505
  • Montezano A, Touyz R. Reactive oxygen species and endothelial function - role of nitric oxide synthase uncoupling and NOX family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin Pharmacol Toxicol 2011;110(1):87-94
  • Heo K, Fujiwara K, Abe J. Disturbed-flow-mediated vascular reactive oxygen species induce endothelial dysfunction. Circ J 2011;75(12):2722-30
  • Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 2011;17(11):1359-70
  • Luissint A, Artus C, Glacial F, Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS 2012;9(1):23
  • Krol S. Challenges in drug delivery to the brain: nature is against us. J Control Release 2012;164(2):145-55
  • Di L, Rong H, Feng B. Demystifying brain penetration in central nervous system drug discovery. J Med Chem 2012;56(1):2-12
  • Kuruvilla L, Kartha CC. Molecular mechanisms in endothelial regulation of cardiac function. Mol Cell Biochem 2003;253(1-2):113-23
  • Weis SM. Vascular permeability in cardiovascular disease and cancer. Curr Opin Hematol 2008;15(3):243-9
  • Triggle C, Samuel S, Ravishankar S, The endothelium: influencing vascular smooth muscle in many ways. Can J Physiol Pharmacol 2012;90(6):713-38
  • Curry F, Adamson R. Vascular permeability modulation at the cell, microvessel, or whole organ level: towards closing gaps in our knowledge. Cardiovasc Res 2010;87(2):218-29
  • Komaru T, Kanatsuka H, Shirato K. Coronary microcirculation: physiology and pharmacology. Pharmacol Ther 2000;86(3):217-61
  • Yeager M. Structure of cardiac gap junction intercellular channels. J Struct Biol 1998;121(2):231-45
  • Jain RK, Carmeliet P. SnapShot: tumor angiogenesis. Cell 2012;149(6):1408-1408.e1
  • Carmeliet P, Jain R. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011;473(7347):298-307
  • Kost J, Langer R. Magnetically modulated drug delivery systems. Pharm Inter 1986;7(3):60-3
  • Raemdonck K, Demeester J, De Smedt S. Advanced nanogel engineering for drug delivery. Soft Matter 2009;5(4):707-15
  • Uesugi Y, Kawata H, Jo J, An ultrasound-responsive nano delivery system of tissue-type plasminogen activator for thrombolytic therapy. J Control Release 2010;147(2):269-77
  • Yokoyama M. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin Drug Deliv 2010;7(2):145-58
  • Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 2012;47(1):113-131
  • Fabiilli ML, Haworth KJ, Sebastian IE, Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion. Ultrasound Med Biol 2010;36(8):1364-75
  • Fabiilli ML, Lee J, Kripfgans OD, Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions. Pharm Res 2010;27(12):2753-65
  • Rapoport N, Kennedy A, Shea J, Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 2009;138(3):268-76
  • Huang SL, Hamilton AJ, Pozharski E, Physical correlates of the ultrasonic reflectivity of lipid dispersions suitable as diagnostic contrast agents. Ultrasound Med Biol 2002;28(3):339-48
  • Klegerman ME, Hamilton AJ, Huang SL, Quantitative immunoblot assay for assessment of liposomal antibody conjugation efficiency. Anal Biochem 2002;300(1):46-52
  • Huang S. Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliv Rev 2008;60(10):1167-76
  • Laing ST, Kim H, Kopechek JA, Ultrasound-mediated delivery of echogenic immunoliposomes to porcine vascular smooth muscle cells in vivo. J Liposome Res 2009;20(10):160-7
  • Buchanan KD, Huang S, Kim H, Encapsulation of NF-kappaB decoy oligonucleotides within echogenic liposomes and ultrasound-triggered release. J Control Release 2010;141(2):193-8
  • Klegerman M, Wassler M, Huang S, Liposomal modular complexes for simultaneous targeted delivery of bioactive gases and therapeutics. J Control Release 2010;142(3):326-31
  • Ferrara KW, Borden MA, Zhang H. Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery. Acc Chem Res 2009;42(7):881-92
  • Kopechek JA, Abruzzo TM, Wang B, Ultrasound-mediated release of hydrophilic and lipophilic agents from echogenic liposomes. J Ultrasound Med 2008;27(11):1597-606
  • Rapoport N. Ultrasound-mediated micellar drug delivery. Int J Hyperthermia 2012;28(4):374-85
  • Laza-Knoerr A, Gref R, Couvreur P. Cyclodextrins for drug delivery. J Drug Target 2010;18(9):645-56
  • Pasut G, Veronese FM. State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release 2012;161(2):461-72
  • Schroeder A, Kost J, Barenholz Y. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem Phys Lipids 2009;162(1-2):1-16
  • Needham D, Anyarambhatla G, Kong G, Dewhirst MW. A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res 2000;60(5):1197-201
  • Dromi S, Frenkel V, Luk A, Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res 2007;13(9):2722-7
  • Kooiman K, Foppen-Harteveld M, Steen AF, Jong N. Sonoporation of endothelial cells by vibrating targeted microbubbles. J Control Release 2011;154(1):35-41
  • Fan Z, Liu H, Mayer M, Deng C. Spatiotemporally controlled single cell sonoporation. Proc Natl Acad Sci USA 2012;109(41):16486-91
  • Francis CW, Blinc A, Lee S, Cox C. Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. Ultrasound Med Biol 1995;21(3):419-24
  • van Wamel A, Kooiman K, Harteveld M, Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Control Release 2006;112(2):149-55
  • Wagstaff KM, Jans DA. Nuclear drug delivery to target tumour cells. Eur J Pharmacol 2009;625(1-3):174-80
  • Rychak JJ, Lindner JR, Ley K, Klibanov AL. Deformable gas-filled microbubbles targeted to P-selectin. J Control Release 2006;114(3):288-99
  • Sheikov N, McDannold N, Sharma S, Hynynen K. Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol 2008;34(7):1093-104
  • Juffermans L, Van Dijk A, Jongenelen C, Ultrasound and microbubble-induced intra- and intercellular bioeffects in primary endothelial cells. Ultrasound Med Biol 2009;35(11):1917-27
  • Blinc A, Kennedy SD, Bryant RG, Flow through clots determines the rate and pattern of fibrinolysis. Thromb Haemost 1994;71(2):230-5
  • Bajd F, Vidmar J, Blinc A, Sersa I. Microscopic clot fragment evidence of biochemo-mechanical degradation effects in thrombolysis. Thromb Res 2010;126(2):137-43
  • Fan Z, Kumon R, Park J, Deng C. Intracellular delivery and calcium transients generated in sonoporation facilitated by microbubbles. J Control Release 2009;42(1):31-9
  • Bao S, Thrall BD, Miller DL. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol 1997;23(6):953-9
  • Mehier-Humbert S, Bettinger T, Yan F, Guy RH. Plasma membrane poration induced by ultrasound exposure: implication for drug delivery. J Control Release 2005;104(1):213-22
  • Ward M, Wu J, Chiu JF. Experimental study of the effects of Optison concentration on sonoporation in vitro. Ultrasound Med Biol 2000;26(7):1169-75
  • Zhou YT, Yang K, Cui J, Controlled permeation of cell membrane by single bubble acoustic cavitation. J Control Release 2012;157(1):103-11
  • Paul S, Katiyar A, Sarkar K, Material characterization of the encapsulation of an ultrasound contrast microbubble and its subharmonic response: strain-softening interfacial elasticity model. J Acoust Soc Am 2010;127(6):3846-57
  • Overvelde M, Garbin V, Dollet B, Dynamics of coated microbubbles adherent to a wall. Ultrasound Med Biol 2011;37(9):1500-8
  • Ilinskii YA, Zabolotskaya EA, Hay TA, Hamilton MF. Models of cylindrical bubble pulsation. J Acoust Soc Am 2012;132(3):1346-57
  • Ohl C, Arora M, Ikink R, Sonoporation from jetting cavitation bubbles. Biophys J 2006;91(11):4285-95
  • Deng CX, Sieling F, Pan H, Cui J. Ultrasound-induced cell membrane porosity. Ultrasound Med Biol 2004;30(4):519-26
  • Meijering B, Juffermans L, Van Wamel A, Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ Res 2009;104(5):679-87
  • Pardridge WM. Brain drug targeting and gene technologies. Jpn J Pharmacol 2001;87(2):97-103
  • Zhou Y, Cui J, Deng C. Dynamics of sonoporation correlated with acoustic cavitation activities. Biophys J 2008;94(7):L51-3
  • Skyba DM, Kaul S. Advances in microbubble technology. Coron Artery Dis 2000;11:219
  • Juffermans L, Dijkmans PA, Musters RJ, Transient permeabilization of cell membranes by ultrasound-exposed microbubbles is related to formation of hydrogen peroxide. Am J Physiol-Heart C 2006;291(4):H1595-601
  • Lionetti V, Fittipaldi A, Agostini S, Enhanced caveolae-mediated endocytosis by diagnostic ultrasound in vitro. Ultrasound Med Biol 2009;35(1):136-43
  • Herbst SM, Klegerman ME, Kim H, Delivery of stem cells to porcine arterial wall with echogenic liposomes conjugated to antibodies against CD34 and intercellular adhesion molecule-1. Mol Pharm 2010;7(1):3-11
  • Hitchcock KE, Caudell DN, Sutton JT, Ultrasound-enhanced delivery of targeted echogenic liposomes in a novel ex vivo mouse aorta model. J Control Release 2010;144(3):288-93
  • Phillips LC, Klibanov AL, Warnhoff BR, Hossack JA. Intravascular ultrasound mediated delivery of DNA via microbubble carriers to an injured porcine artery in vivo. IEEE Ultrasonics Symposium 2008;1:1157
  • Ho SY, Somerville J, Yip WC, Anderson RH. Transluminal balloon dilation of resected coarcted segments of thoracic aorta: histological study and clinical implications. Int J Cardiol 1988;19(1):99-105
  • Mukherjee D, Wong J, Griffin B, Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration. J Am Coll Cardiol 2000;35(6):1678-86
  • Chen S, Shohet RV, Bekeredjian R, Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction. J Am Coll Cardiol 2003;42(2):301-8
  • Bekeredjian R, Chen S, Grayburn PA, Shohet RV. Augmentation of cardiac protein delivery using ultrasound targeted microbubble destruction. Ultrasound Med Biol 2005;31(5):687-91
  • Choi JJ, Pernot M, Small SA, Konofagou EE. Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice. Ultrasound Med Biol 2007;33(1):95-104
  • Wible JH, Galen KP, Wojdyla JK, Microbubbles induce renal hemorrhage when exposed to diagnostic ultrasound in anesthetized rats. Ultrasound Med Biol 2002;28(11-12):1535-46
  • Li T, Liu G, Li J, Mechanisms of prostate permeability triggered by microbubble-mediated acoustic cavitation. Cell Biochem Biophys 2012;64(2):147-53
  • Price RJ, Skyba DM, Kaul S, Skalak TC. Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation 1998;98(13):1264-7
  • Chen H, Brayman AA, Kreider W, Observations of translation and jetting of ultrasound-activated microbubbles in mesenteric microvessels. Ultrasound Med Biol 2011;37(12):2139-48
  • Allen JS, May DJ, Ferrara K. Dynamics of therapeutic ultrasound contrast agents. Ultrasound Med Biol 2002;28(6):805-16
  • Collis J, Manasseh R, Liovic P, Cavitation microstreaming and stress fields created by microbubbles. Ultrasonics 2010;50(2):279
  • Yang FY, Lin Y, Kang K, Chao T. Reversible blood-brain barrier disruption by repeated transcranial focused ultrasound allows enhanced extravasation. J Control Release 2011;150(1):111-16
  • Mesiwala AH, Farrell L, Wenzel HJ, High-intensity focused ultrasound selectively disrupts the blood-brain barrier in vivo. Ultrasound Med Biol 2002;28(3):389-400
  • McDannold N, Vykhodtseva N, Raymond S, MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits. Ultrasound Med Biol 2005;31(11):1527-37
  • Vykhodtseva N, McDannold N, Hynynen K. Progress and problems in the application of focused ultrasound for blood-brain barrier disruption. Ultrasonics 2008;48:296
  • Jalali S, Huang Y, Dumont D, Hynynen K. Focused ultrasound-mediated BBB disruption is associated with an increase in activation of AKT: experimental study in rats. BMC Neurol 2011;10:114
  • Fanning AS, Mitic LL, Anderson JM. Transmembrane proteins in the tight junction barrier. J Am Soc Nephrol 1999;10(6):1337-45
  • Hopkins AM, Li D, Mrsny RJ, Modulation of tight junction function by G protein-coupled events. Adv Drug Deliv Rev 2000;41(3):329-40
  • Pawson T. Assembly of cell regulatory systems through protein interaction domains. Science 2003;300(5618):445-52
  • Shang X, Wang P, Liu Y, Mechanism of low-frequency ultrasound in opening blood–tumor barrier by tight junction. J Mol Neurosci 2011;43(3):364-9
  • Wood S, Anthony S, Brown R, Effects of ultrasound and ultrasound contrast agent on vascular tissue. Cardiovasc Ultrasound 2012;10(1):29
  • Skyba D, Price R, Linka A, Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue. Circulation 1998;98(4):290-3
  • Hwang JH, Brayman AA, Reidy MA, Vascular effects induced by combined 1-MHz ultrasound and microbubble contrast agent treatments in vivo. Ultrasound Med Biol 2005;31(4):553-64
  • Chen H, Brayman AA, Bailey MR, Matula TJ. Blood vessel rupture by cavitation. Urol Res 2010;38(4):321-6
  • Stieger SM, Caskey CF, Adamson RH, Enhancement of vascular permeability with low-frequency contrast-enhanced ultrasound in chorioallantoic membrane model. Radiology 2007;243(1):112-21
  • Ghitescu L, Fixman A, Simionescu M, Simionescu N. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J Cell Biol 1986;102(4):1304-11
  • Yudina A, Moonen C. Ultrasound-induced cell permeabilisation and hyperthermia: strategies for local delivery of compounds with intracellular mode of action. Int J Hyperthermia 2012;28(4):311-19
  • Palade GE, Bruns RR. Structural modulations of plasmalemmal vesicles. J Cell Biol 1968;37(3):633-49
  • Niles WD, Malik AB. Endocytosis and exocytosis events regulate vesicle traffic in endothelial cells. J Membr Biol 1999;167(1):85-101
  • Schnitzer JE, Oh P, Pinney E, Allard J. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol 1994;127(5):1217-32
  • McIntosh DP, Tan XY, Oh P, Schnitzer JE. Targeting endothelium and its dynamic caveolae for tissue-specific transcytosis in vivo: a pathway to overcome cell barriers to drug and gene delivery. Proc Natl Acad Sci USA 2002;99(4):1996-2001
  • Alexandrov AV, Wojner AW, Grotta JC. CLOTBUST: design of a randomized trial of ultrasound-enhanced thrombolysis for acute ischemic stroke. J Neuroimaging 2004;14(2):108-12
  • Molina CA, Ribo M, Rubiera M, Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke 2006;37(2):425-9
  • Holscher T, Wilkening WG, Molkenstruck S, Transcranial sound field characterization. Ultrasound Med Biol 2008;34(6):980
  • Molina CA, Montaner J, Arenillas JF, Differential pattern of tissue plasminogen activator-induced proximal middle cerebral artery recanalization among stroke subtypes. Stroke 2004;35(2):486-90
  • Sutton J, Ivancevich N, Perrin S Jr, Clot retraction affects the extent of ultrasound-enhanced thrombolysis in an ex vivo porcine thrombosis model. Ultrasound Med Biol 2013; In press
  • Dalkara T, Arsava EM. Can restoring incomplete microcirculatory reperfusion improve stroke outcome after thrombolysis? J Cereb Blood Flow Metab 2012;32(12):2091-9
  • Francis CW, Onundarson PT, Carstensen EL, Enhancement of fibrinolysis in vitro by ultrasound. J Clin Invest 1992;90(5):2063-8
  • Blinc A, Francis CW, Trudnowski JL, Carstensen EL. Characterization of ultrasound-potentiated fibrinolysis in vitro. Blood 1993;81(10):2636-43
  • Tho P, Manasseh R, Ooi A. Cavitation microstreaming patterns in single and multiple bubble systems. J Fluid Mech 2007;576:191-223
  • Hamilton AJ, Huang S, Warnick D, Intravascular ultrasound molecular imaging of atheroma components in vivo. J Am Coll Cardiol 2004;43(3):460
  • Villanueva FS, Jankowski RJ, Klibanov S, Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation 1998;98(1):1-5
  • Kaufmann BA, Carr CL, Belcik JT, Molecular imaging of the initial inflammatory response in atherosclerosis: implications for early detection of disease. Arterioscler Thromb Vasc Biol 2010;30(1):54-9
  • Tsutsui JM, Xie F, Cano M, Detection of retained microbubbles in carotid arteries with real-time low mechanical index imaging in the setting of endothelial dysfunction. J Am Coll Cardiol 2004;44(5):1036-46
  • Weller GE, Villanueva F, Tom E, Wagner W. Targeted ultrasound contrast agents: in vitro assessment of endothelial dysfunction and multi-targeting to ICAM-1 and sialyl Lewisx. Biotechnol Bioeng 2005;92(6):780-8
  • Weller G, Villanueva FS, Klibanov AL, Wagner WR. Modulating targeted adhesion of an ultrasound contrast agent to dysfunctional endothelium. Ann Biomed Eng 2002;30(8):1019
  • Takalkar Am, Klibanov AL, Rychak JJ, Binding and detachment dynamics of microbubbles targeted to P-selectin under controlled shear flow. J Control Release 2004;96(3):473-82
  • Ferrante E, Pickard J, Rychak J, Dual targeting improves microbubble contrast agent adhesion to VCAM-1 and P-selectin under flow. J Control Release 2009;140(2):100-7
  • Culp WC, Porter TR, Lowery J, Intracranial clot lysis with intravenous microbubbles and transcranial ultrasound in swine. Stroke 2004;35(10):2407-11
  • Xie F, Lof J, Matsunaga TO, Diagnostic ultrasound combined with glycoprotein IIb/IIIa-targeted microbubbles improves microvascular recovery after acute coronary thrombotic occlusions. Circulation 2009;119(10):1378-85
  • Hua X, Liu P, Gao Y, Construction of thrombus-targeted microbubbles carrying tissue plasminogen activator and their in vitro thrombolysis efficacy: a primary research. J Thromb Thrombolysis 2010;30(1):29-35
  • Alonso A, Dempfle C, Della Martina A, In vivo clot lysis of human thrombus with intravenous abciximab immunobubbles and ultrasound. Thromb Res 2009;124(1):70-4
  • Unger EC, McCreery TP, Sweitzer RH, In vitro studies of a new thrombus-specific ultrasound contrast agent. Am J Cardiol 1998;81(12):58G-61G
  • Klegerman ME, Zou Y, McPherson DD. Fibrin-targeting of echogenic liposomes with inactivated tissue plasminogen activator. J Liposome Res 2008;18(2):95-112
  • Leong-Poi H, Song J, Rim SJ, Influence of microbubble shell properties on ultrasound signals: implications for low-power perfusion imaging. J Am Soc Echocardiogr 2002;15:1276
  • Behm CZ, Kaufmann BA, Carr C, Molecular imaging of endothelial vascular cell adhesion molecule-1 expression and inflammatory cell recruitment during vasculogenesis and ischemia-mediated arteriogenesis. Circulation 2008;117(22):2902-11
  • Shortencarier MJ, Dayton PA, Bloch SH, A method for radiation-force localized drug delivery using gas-filled lipospheres. IEEE T Ultrason Ferr 2004;51(7):822-31
  • Rychak J, Klibanov AL, Hossack J. Acoustic radiation force enhances targeted delivery of ultrasound contrast microbubbles: in vitro verification. IEEE T Ultrason Ferr 2005;52(3):421-33
  • Liu J, Zhang P, Liu P, Endothelial adhesion of targeted microbubbles in both small and great vessels using ultrasound radiation force. Mol Imaging 2012;11(1):58-66
  • Tada S, Tarbell JM. Fenestral pore size in the internal elastic lamina affects transmural flow distribution in the artery wall. Ann Biomed Eng 2001;29(6):456-66
  • VanBavel E. Effects of shear stress on endothelial cells: possible relevance for ultrasound applications. Prog Biophys Mol Biol 2007;93(1-3):374-83
  • Yu J. Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J Clin Invest 2006;116(5):1284-91
  • Yang B, Radel C, Hughes D, p190 RhoGTPase-activating protein links the beta1 integrin/caveolin-1 mechanosignaling complex to RhoA and actin remodeling. Arterioscler Thromb Vasc Biol 2011;31(2):376-83
  • Deng J, Huang Q, Wang F, The role of caveolin-1 in Blood-brain barrier disruption induced by focused ultrasound combined with microbubbles. J Mol Neurosci 2012;46(3):677-87
  • Walsh T, Murphy R, Fitzpatrick P, Stabilization of brain microvascular endothelial barrier function by shear stress involves VE-cadherin signaling leading to modulation of pTyr-occludin levels. J Cell Physiol 2011;226(11):3053-63
  • Wang C, Kang S, Lee Y, Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis. Biomaterials 2012;33(6):1939-47
  • Kontny NE, Boos J, Würthwein G, Minimization of the preanalytical error in pharmacokinetic analyses and therapeutic drug monitoring: focus on IV drug administration. Ther Drug Monit 2012;34(4):460-6
  • Park J, Fan Z, Deng C. Effects of shear stress cultivation on cell membrane disruption and intracellular calcium concentration in sonoporation of endothelial cells. J Biomech 2011;44(1):164-9
  • Stride E, Edirisinghe M. Novel preparation techniques for controlling microbubble uniformity: a comparison. Med Biol Eng 2009;47(8):892
  • Qin S, Ferrara K. Acoustic response of compliable microvessels containing ultrasound contrast agents. Phys Med Biol 2006;51(20):5065-88
  • Qin S, Ferrara K. A model for the dynamics of ultrasound contrast agents in vivo. J Acoust Soc Am 2010;128(3):1511-21
  • Molina CA. Imaging the clot: does clot appearance predict the efficacy of thrombolysis? Stroke 2005;36(11):2333-4
  • Xie F, Everbach EC, Gao S, Effects of attenuation and thrombus age on the success of ultrasound and microbubble-mediated thrombus dissolution. Ultrasound Med Biol 2011;37(2):280-8
  • Eltzschig HK, Eckle T. Ischemia and reperfusion–from mechanism to translation. Nat Med 2011;17(11):1391-401
  • Derwall M, Coburn M, Rex S, Xenon: recent developments and future perspectives. Minerva Anestesiol 2009;75(1-2):37-45
  • Britton GL, Kim H, Kee P, In vivo therapeutic gas delivery for neuroprotection with echogenic liposomes. Circulation 2010;122(16):1578-87
  • Patil AV, Rychak JJ, Allen JS, Dual frequency method for simultaneous translation and real-time imaging of ultrasound contrast agents within large blood vessels. Ultrasound Med Biol 2009;35(12):2021-30
  • Goertz D, Wright C, Hynynen K. Contrast agent kinetics in the rabbit brain during exposure to therapeutic ultrasound. Ultrasound Med Biol 2010;36(6):916-24
  • Jensen CR, Ritchie RW, Gyöngy M, Spatiotemporal monitoring of high-intensity focused ultrasound therapy with passive acoustic mapping. Radiology 2012;262(1):252-61
  • Choi J, Coussios C. Spatiotemporal evolution of cavitation dynamics exhibited by flowing microbubbles during ultrasound exposure. J Acoust Soc Am 2012;132(5):3538-49
  • Kee PH, Abruzzo TA, Smith DA, Synthesis, acoustic stability, and pharmacologic activities of papaverine-loaded echogenic liposomes for ultrasound controlled drug delivery. J Liposome Res 2008;18(4):263-77
  • Buchanan KD, Huang S, Kim H, Encapsulation of NF-kappaB decoy oligonucleotides within echogenic liposomes and ultrasound-triggered release. J Control Release 2009;141(2):193-8
  • Rothdiener M, Müller D, Castro P, Targeted delivery of siRNA to CD33-positive tumor cells with liposomal carrier systems. J Control Release 2010;144(2):251-8
  • Huang S, Kee PH, Kim H, Nitric oxide-loaded echogenic liposomes for nitric oxide delivery and inhibition of intimal hyperplasia. J Am Coll Cardiol 2009;54(7):659
  • Smith D, Vaidya S, Kopechek J, Ultrasound-triggered release of recombinant tissue-type plasminogen activator from echogenic liposomes. Ultrasound Med Biol 2010;36(1):145-57
  • Wang C, Yang C, Lin Y, Anti-inflammatory effect with high intensity focused ultrasound-mediated pulsatile delivery of diclofenac. Biomaterials 2012;33(5):1547-53
  • Wang C, Kang S, Lee Y, Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis. Biomaterials 2012;33(6):1939-47
  • Jin H, Tan H, Zhao L, Ultrasound-triggered thrombolysis using urokinase-loaded nanogels. Int J Pharm 2012;434(1-2):384-90
  • Liu J, Lewis TN, Prausnitz MR, Shohet RV. Non-invasive assessment and control of ultrasound-mediated membrane permeabilization. Pharm Res 1998;15(6):918-24
  • Kassell NF, Helm G, Simmons N, Treatment of cerebral vasospasm with intra-arterial papaverine. J Neurosurg 1992;77(6):848-52
  • Giannoukakis N, Bonham CA, Qian S, Prolongation of cardiac allograft survival using dendritic cells treated with NF-kB decoy oligodeoxyribonucleotides. Mol Ther 2000;1(5):430-7
  • Jang YL, Yun UJ, Lee MS, Cell-penetrating peptide mimicking polymer-based combined delivery of paclitaxel and siRNA for enhanced tumor growth suppression. Int J Pharm 2012;434:488-93
  • Knauf WU, Lissichkov T, Aldaoud A, Phase III randomized study of bendamustine compared with chlorambucil in previously untreated patients with chronic lymphocytic leukemia. J Clin Oncol 2009;27(26):4378-84
  • Gaffney PJ. Edgell TA. The international and “NIH” units for thrombin – how do they compare? Thromb Haemostasis 1995;74(3):900-3
  • Vanin AF, Timoshin AA Determination of in vivo nitric oxide levels in animal tissues using a novel spin trapping technology. Nitric Oxide Methods Protocols 2011;704:135-49
  • Wilhelm S, Ma D, Maze M. Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology 2002;96(6):1485-91
  • Shaw GJ, Meunier JM, Lindsell CJ, Making the right choice: optimizing rt-PA and eptifibatide lysis, and in vitro study. Thromb Res 2010;126(4):e305-11
  • Lötsch J, Kettenmann B, Renner B, Population pharmacokinetics of fast release oral diclofenac in healthy volunteers: relation to pharmacodynamics in an experimental pain model. Pharm Res 2000;17(1):77-84
  • Morris J, Dobson J. IV. Protocols for administration of doxorubicin and cisplatin. Small Animal Oncol 2008;285
  • del Zoppo GJ, Higashida RT, Furlan AJ, PROACT: a phase II randomized trial of recombinant pro-urokinase by direct arterial delivery in acute middle cerebral artery. Stroke 1998;29(1):4-11

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.