360
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Advances in brain targeting and drug delivery of anti-HIV therapeutic agents

, PhD, , &
Pages 973-985 | Published online: 20 Mar 2013

Bibliography

  • Pang S, Koyangi Y, Miles S, et al. High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature 1990;34:85-9
  • Koppel BS, Wormser GP, Tuchman AJ, et al. Central nervous system involvement in patients with acquired immune deficiency syndrome (AIDS). Acta Neurol Scand 1985;71:337-53
  • Carne CA; ABC of AIDS. Neurological manifestations. Br Med J 1987;294:1399-401
  • Anderson BD, Hoesterey BL, Baker DC, Galinsky RE. Uptake kinetics of 2,3-dideoxyinosine into brain and cerebrospinal fluid of rats: intravenous infusion studies. J Pharm Exp Therap 1989;253:113-18
  • Minagar A, Commins D, Alexander JS, et al. NeuroAIDS: characteristics and diagnosis of the neurological complications of Aids. Mol Diagn Ther 2008;12:25-43
  • Gray F, Adle-Biassette H, Chretien F, et al. Neuropathology and neurodegeneration in human immunodeficiency virus infection. Pathogenesis of HIV-induced lesions of the brain, correlations with HIV-associated disorders and modifications according to treatments. Clin Neuropathol 2001;20:146-55
  • Spencer DC, Price RW. Human immunodeficiency virus and the central nervous system. Annu Rev Microbiol 1992;46:655-93
  • Lipton SA, Gendelman HE. Dementia associated with the acquired immunodeficiency syndrome. N Engl J Med 1995;332:934-40
  • Lesniak MS, Brem H. Targeted therapy for brain tumors. Nat Rev Drug Discov 2004;3:499-508
  • Nowacek A, Gendelman HE. NanoART, neuroAIDS and CNS drug delivery. Nanomed 2009;4:557-74
  • Begley DJ. The blood–brain barrier: principles for targeting peptides and drugs to the central nervous system. J Pharm Pharmacol 1996;48:136-46
  • Frey WH. Bypassing the blood-brain barrier to deliver therapeutic agents to the brain and spinal cord. Drug Deliv Technol 2002;2:46-9
  • Levy JA. Pathogenesis of human immunodeficiency virus infection. Microbiol Rev 1993;57(1):183-289
  • Rao KS, Ghorpade A, Labhasetwar V. Targeting anti-HIV drugs to the CNS. Expert Opin Drug Deliv 2009;6(8):771-84
  • Skalka AM, Katz RA. Retroviral DNA integration and the DNA damage response. Cell Death Differ 2005;12(1):971-8
  • Engelman A. The roles of cellular factors in retroviral integration. Curr Top Microbiol Immunol 2003;281:209-38
  • Lipton SA. HIV related neurotoxicity. Brain Pathol 1991;1(3):193-9
  • Visalli V, Muscoli C, Sacco I, et al. N-Acetylcysteine prevents HIV gp 120-related damage of human cultured astrocytes: correlation with glutamine synthase dysfunction. Neuro Sci 2007;8(1):106
  • Dreyer EB, Kaiser PK, Offermann JT, et al. HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists. Science 1990;248(4953):364-7
  • Lipton SA. AIDS-related dementia and calcium homeostasis. Ann NY Acad Sci 1994;747:205-24
  • Reger M, Welsh R, Razani J, et al. A meta-analysis of the neuropsychological sequelae of HIV infection. J Int Neuropsychol Soc 2002;8(3):410-24
  • McArthur JC, Sacktor N, Selnes O. Review human immunodeficiency virus-associated dementia. Semin Neurol 1999;19(2):129-50
  • Kramer-Hämmerle S, Rothenaigner I, Wolff H, et al. Review cells of the central nervous system as targets and reservoirs of the human immunodeficiency virus. Virus Res 2005;111(2):194-213
  • Song L, Nath A, Geiger JD, et al. Human immunodeficiency virus type 1 Tat protein directly activates neuronal N-methyl-D-aspartate receptors at an allosteric zinc-sensitive site. J Neurovirol 2003;9(3):399-403
  • András IE, Pu H, Deli MA, et al. HIV-1 Tat protein alters tight junction protein expression and distribution in cultured brain endothelial cells. J Neurosci Res 2003;74(2):255-65
  • Li W, Galey D, Mattson MP, Nath A. Molecular and cellular mechanisms of neuronal cell death in HIV dementia. Neurotox Res 2005;8:119-34
  • Lindl K, Marks D, Kolson D, Jordan-Sciutton K. HIV-Associated neurocognitive disorder: pathogenesis and therapeutic opportunities. J Neuroimmune Pharmacol 2010;5(3):294-309
  • Palmer A. The role of the blood–CNS barrier in CNS disorders and their treatment. Neurobiol Dis 2010;37:13-12
  • Eval S, Hsiao P, Unadkat JD. Drug interactions at the blood brain–barrier: fact or fantasy? Pharmacol Ther 2009;123(1):80-104
  • Romeo VD, deMeireles J, Sileno AP, et al. Effects of physicochemical properties and other factors on systemic nasal drug delivery. Adv Drug Deliv Rev 1998;29:89-116
  • Chien YW, Chang SF. Intranasal drug delivery for systemic medications. Crit Rev Ther Drug Carrier Syst 1987;4(2):67-194
  • Charlton ST, Davis SS, Illum L. Evaluation of effect of ephedrine on the transport of drugs from the nasal cavity to the systemic circulation and the central nervous system. J Drug Target 2007;15(5):370-7
  • Al-Ghananeem AM, Malkawi AH, Crooks PA. Bioavailability of Δ9-tetrahydrocannabinol following intranasal administration of a mucoadhesive gel spray delivery system in conscious rabbits. Drug Dev Ind Pharm 2011;37(3):329-34
  • Hussain AA. Intranasal drug delivery. Adv Drug Deliv Rev 1998;29:39-49
  • Al-Ghananeem AM, Traboulsi AA, Dittert LW, Hussain AA. Targeted brain delivery of 17b-estradiol via nasally administered water soluble prodrugs. AAPS PharmSciTech 2002;3:1
  • Illum L. Is nose-to-brain transport of drugs in man a reality. J Pharm Pharmacol 2003;56:3-17
  • Sakaue G, Hiroi T, Nakagawa Y, et al. HIV mucosal vaccine: nasal immunization with gp160-encapsulated hemagglutinating virus of Japan-Liposome Induces antigen-specific CTLs and neutralizing antibody responses. J Immunol 2003;170:495-502
  • Al-Ghananeem AM, Saeed H, Florence R, et al. Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain targeting; an attractive route against infections caused by AIDS viruses. J Drug Target 2010;18(5):381-8
  • Seki T, Sato N, Hasegawa T, et al. Nasal absorption of zidovudine and its transport to cerebrospinal fluid in rats. Biol Pharm Bull 1994;17(8):1135-7
  • Ved PM, Kim K. Poly(ethylene oxide/propylene oxide) copolymer thermo-reversible gelling system for the enhancement of intranasal zidovudine delivery to the brain. Int J Pharm 2011;411(1-2):1-9
  • Yang Z, Huang Y, Gan G, Sawchuk RJ. Microdialysis evaluation of the brain distribution of stavudine following intranasal and intravenous administration to rats. J Pharm Sci 2005;94(7):1577-88
  • Misral A, Ganesh S, Shahiwala A, Shrenik P. Drug delivery to the central nervous system. J Pharm Sci 2003;6(2):252-73
  • Pardridge WM. Recent advances in blood brain-barrier transport. Annu Rev Pharmacol Toxicol 1988;28:25-39
  • Taylor EM. The impact of efflux transporters in the brain on the development of drugs for CNS disorders. Clin Pharmacokinet 2002;41:81-92
  • Joshi S, Ergin A, Wang M, et al. Inconsistent blood brain barrier disruption by intraarterial mannitol in rabbits: implications for chemotherapy. J Neurooncol 2011;104(1):11-19
  • Ding D, Kanaly CW, Bigner DD, et al. Convection-enhanced delivery of free gadolinium with the recombinant immunotoxin MR1-1. J Neurooncol 2010;98(1):1-7
  • Brem H, Langer R. Polymer based drug delivery to the brain. Sci Med 1996;3(4):1-11
  • Brem H, Gabikian P. Biodegradable polymer implants to treat brain tumors. J Control Release 2001;74:63-7
  • Fung LK, Ewend MG, Sills A, et al. Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res 1998;58(4):672-84
  • Golden PL, Maccagnan TJ, Pardridge WM. Human blood–brain barrier leptin receptor: binding and endocytosis in isolated human brain microvessels. J Clin Invest 1997;99:14-18
  • Tamai I, Sai Y, Kobayashi H, et al. Structure-internalization relationship for adsorptive-mediated endocytosis of basic peptides at the blood–brain barrier. J Pharmacol Exp Ther 1997;280:410-15
  • Harbaugh RE, Saunders RL, Reeder RF. Use of implantable pumps for central nervous system drug infusions to treat neurological disease. Neurosurgery 1988;23(6):693-8
  • Blasberg RG, Patlak C, Fenstermacher JD. Intrathecal chemotherapy: brain tissue profiles after ventriculocisternal perfusion. J Pharmacol Exp Ther 1975;195:73-83
  • Huang TY, Arita N, Hayakawa T, Ushio Y. ACNU, MTX and 5-FU penetration of rat brain tissue and tumors. J Neurooncol 1999;45:9-17
  • Baratchi S, Kanwar Rupinder K, Khoshmanesh K, et al. Promises of nanotechnology for drug delivery to brain in neurodegenerative diseases. Curr Nano Sci 2009;5:15-25
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001;47(1):65-81
  • Dandagi P, Patel P, Gadad A, Aravapalli AK. RES and brain targeting stavudine-loaded solid lipid nanoparticles for AIDS therapy. Asian J Pharm 2012;6(2):116-23
  • Chattopadhyay N, Zastre J, Wong HL, et al. Solid lipid nanoparticles enhance the delivery of the HIV protease inhibitor, atazanavir, by a human brain endothelial cell line. Pharm Res 2008;25:2262-71
  • Bender AR, Von Briesen H, Kreuter J, et al. Efficiency of nanoparticles as a carrier system for antiviral agents in human immunodeficiency virus-infected human monocytes/macrophages in vitro. Antimicrob Agents Chemother 1996;40(6):1467-71
  • Vyas TK, Shah L, Amiji MM. Nanoparticulate drug carriers for delivery of HIV/AIDS therapy to viral reservoir sites. Expert Opin Drug Deliv 2006;3(5):613-28
  • Kinman L, Bui T, Larsen K, et al. Optimization of lipid-indinavir complexes for localization in lymphoid tissues of HIV-infected macaques. J Acquired Immune Defic Syndr 2006;42(2):155-61
  • Dou H, Morehead J, Destache CJ, et al. Laboratory investigations for the morphologic, pharmacokinetic, and anti-retroviral properties of indinavir nanoparticles in human monocyte-derived macrophages. Virology 2007;358(1):148-58
  • Wong HL, Chattopadhyay N, Wu XY, Bendayan R. Nanotechnology applications for improved delivery of antiretroviral drugs to the brain. Adv Drug Deliv Rev 2010;62(4-5):503-17
  • Saiyed ZM, Gandhi NH, Nair MP. Magnetic nanoformulation of azidothymidine 5'-triphosphate for targeted delivery across the blood-brain barrier. Int J Nanomedicine 2010;5:157-66
  • Saiyed ZM, Gandhi NH, Nair MP. AZT 5'-triphosphate nanoformulation suppresses human immunodeficiency virus type 1 replication in peripheral blood mononuclear cells. J Neurovirol 2009;15(4):343-7
  • Wu D, Clement JG, Pardridge WM. Low blood–brain barrier permeability to azidothymidine (AZT), 3TC™, and thymidine in the rat. Brain Res 1998;791(1–2):313-16
  • Thomas née Williams SA, Segal MB. Identification of a saturable uptake system for deoxyribonucleosides at the blood-brain and blood-cerebrospinal fluid barriers. Brain Res 1996;741(1–2):230-9
  • Thomas SA, Segal MB. The passage of azidodeoxythymidine into and within the central nervous system: does it follow the parent compound, thymidine? J Pharmacol Exp Ther 1997;281(3):1211-18
  • Dykstra KH, Arya A, Arriola DM, et al. Microdialysis study of zidovudine (AZT) transport in rat-brain. J Pharmacol Exp Ther 1993;267(3):1227-36
  • Masereeuw R, Jaehde U, Langemeijer MWE, et al. In-vitro and in-vivo transport of zidovudine (AZT) across the blood-brain-barrier and the effect of transport inhibitors. Pharm Res 1994;11(2):324-30
  • Takasawa K, Terasaki T, Suzuki H, et al. In vivo evidence for carrier-mediated efflux transport of 3'-azido-3'-deoxythymidine and 2',3'-dideoxyinosine across the blood-brain barrier via a probenecid-sensitive transport system. J Pharmacol Exp Ther 1997;281(1):369-75
  • Kawaguchi T, Ishikawa K, Seki T, et al. Ester prodrugs of zidovudine. J Pharm Sci 1990;79(6):531-3
  • Aggarwal SK, Gogu SR, Rangan SRS, et al. Synthesis and biological evaluation of prodrugs of zidovudine. J Med Chem 1990;33(5):1505-10
  • Namane A, Gouyette C, Fillion MP, et al. Improved brain delivery of AZT using a glycosyl phosphotriester prodrug. J Med Chem 1992;35(16):3039-44
  • McGuigan C, Pathirana RN, Balzarini J, et al. Intracellular delivery of bioactive AZT nucleotides by aryl phosphate derivatives of AZT. J Med Chem 1993;36(8):1048-52
  • Hostetler KY, Stuhmiller LM, Lenting HBM, et al. Synthesis and antiretroviral activity of phospholipid analogs of azidothymidine and other antiviral nucleosides. J Biol Chem 1990;265(11):6112-17
  • Chu CK, Bhadti VS, Doshi KJ, et al. Brain targeting of anti-HIV nucleosides - synthesis and in vitro and in vivo studies of dihydropyridine derivatives of 3'-azido-2',3'-dideoxyuridine and 3'-azido-3'-deoxythymidine. J Med Chem 1990;33(8):2188-92
  • Piantadosi C, Marasco CJ, Morrisnatschke SL, et al. Synthesis and evaluation of novel ether lipid nucleoside conjugates for anti-HIV-1 activity. J Med Chem 1991;34(4):1408-14
  • Wang L, Morin KW, Kumar R, et al. In vivo biodistribution, pharmacokinetic parameters, and brain uptake of 5-halo-6-methoxy (or ethoxy)-5,6-dihydro-3’-azido-3’-deoxythymidine diastereomers as potential prodrugs of 3’-azido-3’-deoxythymidine. J Med Chem 1996;39(4):826-33
  • Kumar R, Wang LL, Wiebe LI, et al. Synthesis, in-vitro biological stability, and anti-HIV activity of 6-halo-6-alkoxy(or azido)-5,6-dihydro-3'-azido-3'-deoxythymidine diastereomers as potential prodrugs to 3'-azido-3'-deoxythymidine (AZT). J Med Chem 1994;37(25):4297-306
  • Johnson MD, Anderson BD. Localization of purine metabolizing enzymes in bovine brain microvessel endothelial cells: an enzymatic blood-brain barrier for dideoxynucleosides? Pharm Res 1996;13(12):1881
  • Masood R, Ahluwalia GS, Cooney DA, et al. 2'-fluoro-2',3'-dideoxyarabinosyladenine - a metabolically stable analog of the antiretroviral agent 2',3'-dideoxyadenosine. Mol Pharmacol 1990;37(4):590-6
  • Marquez VE, Tseng CKH, Mitsuya H, et al. Acid-stable 2'-fluoro purine dideoxynucleosides as active agents against HIV. J Med Chem 1990;33(3):978-85
  • Johnson MD, Chen J, Anderson BD. Investigation of the mechanism of enhancement of central nervous system delivery of 2',-beta-fluoro-2',3'-dideoxyinosine via a blood-brain barrier adenosine deaminase-activated prodrug. Drug Metab Dispos 2002;30(2):191-8
  • Maiti KK, Jeon OY, Lee WS, et al. Design, synthesis, and membrane-translocation studies of inositol-based transporters. Angew Chem Int Ed Engl 2006;45(18):2907-12
  • Im J, Kim W, Kim KT, et al. Preparation of a 3'-azido-3'-deoxythymidine (AZT) derivative, which is blood-brain barrier permeable. Chem Commun 2009;31:4669-71
  • Gelbard HA, Nottet H, Swindells S, et al. Platelet-activating-factor - a candidate human-immunodeficiency-virus type 1-induced neurotoxin. J Virol 1994;68(7):4628-35
  • Perry SW, Hamilton JA, Tjoelker LW, et al. Platelet-activating factor receptor activation - an initiator step in HIV-1 neuropathogenesis. J Biol Chem 1998;273(28):17660-4
  • Bito H, Nakamura M, Honda Z, et al. Platelet-activating factor (PAF) receptor in rat brain: PAF mobilizes intracellular Ca2+ in hippocampal neurons. Neuron 1992;9(2):285-94
  • Martin M, Serradji N, Dereuddre-Bosquet N, et al. PMS-601, a new platelet-activating factor receptor antagonist that inhibits human immunodeficiency virus replication and potentiates zidovudine activity in macrophages. Antimicrob Agents Chemother 2000;44(11):3150-4
  • Sallem W, Serradji N, Dereuddre-Bosquet N, et al. Structure-activity relationships in platelet-activating factor. Part 14: synthesis and biological evaluation of piperazine derivatives with dual anti-PAF and anti-HIV-1 activity. Bioorg Med Chem 2006;14(23):7999-8013
  • Serradji N, Martin M, Bensaid O, et al. Structure-activity relationships in platelet-activating factor. 12. Synthesis and biological evaluation of platelet-activating factor antagonists with anti-HIV-1 activity. J Med Chem 2004;47(25):6410-19
  • Tamai I, Tsuji A. Transporter-mediated permeation of drugs across the blood-brain barrier. J Pharm Sci 2000;89(11):1371-88
  • Farese-Di Giorgio A, Rouquayrol M, Greiner J, et al. Synthesis and anti-HIV activity of prodrugs derived from saquinavir and indinavir. Antivir Chem Chemother 2000;11(2):97-110
  • Rouquayrol M, Gaucher W, Greiner J, et al. Synthesis and anti-HIV activity of glucose-containing prodrugs derived from saquinavir, indinavir and nelfinavir. Carbohydr Res 2001;336(3):161-80
  • Rouquayrol M, Gaucher B, Roche D, et al. Transepithelial transport of prodrugs of the HIV protease inhibitors saquinavir, indinavir, and nelfinavir across Caco-2 Cell monolayers. Pharm Res 2002;19(11):1704-12
  • Berezovskaya YV, Chudinov MV. Ester derivatives of nucleoside inhibitors of reverse transcriptase: 1. Molecular transport systems for 3'-azido-3'-deoxythymidine and 2', 3'-didehydro-3'-deoxythymidine. Bioorg Khim 2005;31(4):303-19
  • Gottesman MM, Pastan I. Biochemistry of multidrug-resistance mediated by the multidrug transporter. Annu Rev Biochem 1993;62:385-427
  • Polli JW, Jarrett JL, Studenberg SD, et al. Role of P-glycoprotein on the CNS disposition of amprenavir (141W94), an HIV protease inhibitor. Pharm Res 1999;16(8):1206-12
  • Varatharajan L, Thomas SA. The transport of anti-HIV drugs across blood-CNS interfaces: summary of current knowledge and recommendations for further research (vol 82, pg A99, 2009). Antiviral Res 2009;84(2):203-3
  • Sosnik A, Chiappetta DA, Carcaboso AM. Drug delivery systems in HIV pharmacotherapy: what has been done and the challenges standing ahead. J Control Release 2009;138(1):2-15
  • Drewe J, Gutmann H, Fricker G, et al. HIV protease inhibitor ritonavir: a more potent inhibitor of P-glycoprotein than the cyclosporine analog SDZ PSC 833. Biochem Pharmacol 1999;57(10):1147-52
  • Fishman RA. Blood-brain and CSF barriers to penicillin and related organic acids. Arch Neurol 1966;15(2):113
  • Spector R, Goetzl EJ. Leukotriene-c4 transport and metabolism in the central-nervous-system. J Neurochem 1986;46(4):1308-12
  • Spector R. Pantothenic-acid transport and metabolism in the central-nervous-system. Am J Physiol 1986;250(2):R292-7
  • Hedaya MA, Sawchuk RJ. Effect of probenecid on the renal and nonrenal clearances of zidovudine and its distribution into cerebrospinal fluid in the rabbit. J Pharm Sci 1989;78(9):716-22
  • Hedaya MA, Elmquist WF, Sawchuk RJ. Probenecid inhibits the metabolic and renal clearances of zidovudine (AZT) in human volunteers. Pharm Res 1990;7(4):411-17
  • Galinsky RE, Flaharty KK, Hoesterey BL, et al. Probenecid enhances central-nervous-system uptake of 2',3'-dideoxyinosine by inhibiting cerebrospinal-fluid efflux. J Pharmacol Exp Ther 1991;257(3):972-8
  • Miller DW, Batrakova EV, Waltner TO, et al. Interactions of Pluronic block copolymers with brain microvessel endothelial cells: evidence of two potential pathways for drug absorption. Bioconjug Chem 1997;8(5):649-57
  • Spitzenberger TJ, Heilman D, Diekmann C, et al. Novel delivery system enhances efficacy of antiretroviral therapy in animal model for HIV-1 encephalitis. J Cereb Blood Flow Metab 2007;27(5):1033-42
  • Shaik N, Pan G, Elmquist WF. Interactions of Pluronic block copolymers on P-gp efflux activity: experience with HIV-1 protease inhibitors. J Pharm Sci 2008;97(12):5421-33
  • Namanja HA, Emmert D, Davis DA, et al. Toward eradicating HIV reservoirs in the brain: inhibiting p-glycoprotein at the blood-brain barrier with prodrug abacavir dimers. J Am Chem Soc 2012;134(6):2976-80

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.