758
Views
71
CrossRef citations to date
0
Altmetric
Reviews

Advances in brain drug targeting and delivery: limitations and challenges of solid lipid nanoparticles

, &
Pages 889-905 | Published online: 04 Apr 2013

Bibliography

  • Lauretani F, Maggio M, Silvestrini C, et al. Parkinson's disease (PD) in the elderly: an example of geriatric syndrome (GS)? Arch Gerontol Geriatr 2012;54(1):242-6
  • Glorioso C, Oh S, Douillard GG, Sibille E. Brain molecular aging, promotion of neurological disease and modulation by sirtuin 5 longevity gene polymorphism. Neurobiol Dis 2011;41(2):279-90
  • Glorioso C, Sibille E. Between destiny and disease: genetics and molecular pathways of human central nervous system aging. Prog Neurobiol 2011;93(2):165-81
  • Barchet TM, Amiji MM. Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opin Drug Deliv 2009;6(3):211-25
  • Palmer AM, Alavijeh MS. Translational CNS medicines research. Drug Discov Today 2012;17(19-20):1068-78
  • Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 2002;28(1):1-13
  • Lima FR, Kahn SA, Soletti RC, et al. Glioblastoma: therapeutic challenges, what lies ahead. Biochim Biophys Acta 2012;1826(2):338-49
  • Rabanel JM, Aoun V, Elkin I, et al. Drug-loaded nanocarriers: passive targeting and crossing of biological barriers. Curr Med Chem 2012;19(19):3070-102
  • Krol S. Challenges in drug delivery to the brain: nature is against us. J Control Release 2012;164(2):145-55
  • Liu Y, Lu W. Recent advances in brain tumor-targeted nano-drug delivery systems. Expert Opin Drug Deliv 2012;9(6):671-86
  • Potschka H. Role of CNS efflux drug transporters in antiepileptic drug delivery: overcoming CNS efflux drug transport. Adv Drug Deliv Rev 2012;64(10):943-52
  • Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 2012;64(7):686-700
  • Pardridge WM, Boado RJ. Reengineering biopharmaceuticals for targeted delivery across the blood-brain barrier. Methods Enzymol 2012;503:269-92
  • Pardridge WM. Targeting neurotherapeutic agents through the blood-brain barrier. Arch Neurol 2002;59(1):35-40
  • Pardridge WM. Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 2003;3(2):90-105; 151
  • Pardridge WM. Alzheimer's disease drug development and the problem of the blood-brain barrier. Alzheimers Dement 2009;5(5):427-32
  • Barbu E, Molnar E, Tsibouklis J, Gorecki DC. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood-brain barrier. Expert Opin Drug Deliv 2009;6(6):553-65
  • Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 2004;104(1):29-45
  • Pardridge WM. Why is the global CNS pharmaceutical market so under-penetrated? Drug Discov Today 2002;7(1):5-7
  • Ghersi-Egea JF, Sugiyama Y. Drug transfer in the choroid plexus. Multiplicity and substrate specificities of transporters. Adv Drug Deliv Rev 2004;56:1693-4
  • WHO. World Health Organization, The Global Burden of Disease Project. Available from: http://www.who.int/topics/global_burden_of_disease/en/
  • Abbott NJ. Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 2002;200(6):629-38
  • Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 2004;45(4):545-52
  • Cecchelli R, Berezowski V, Lundquist S, et al. Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov 2007;6(8):650-61
  • Zhou J, Atsina KB, Himes BT, et al. Novel delivery strategies for glioblastoma. Cancer J 2012;18(1):89-99
  • Newton HB. Advances in strategies to improve drug delivery to brain tumors. Expert Rev Neurother 2006;6(10):1495-509
  • Hayashi H. Lipid metabolism and glial lipoproteins in the central nervous system. Biol Pharm Bull 2011;34(4):453-61
  • Gee JR, Keller JN. Astrocytes: regulation of brain homeostasis via apolipoprotein E. Int J Biochem Cell Biol 2005;37(6):1145-50
  • Balabanov R, Beaumont T, Dore-Duffy P. Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-lymphocytes. J Neurosci Res 1999;55(5):578-87
  • Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005;57(2):173-85
  • Pardridge WM. Molecular biology of the blood-brain barrier. Mol Biotechnol 2005;30(1):57-70
  • Pardridge WM. Drug and gene delivery to the brain: the vascular route. Neuron 2002;36(4):555-8
  • Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol 2002;38(6):323-37
  • Levin VA. Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem 1980;23(6):682-4
  • van De Waterbeemd H, Smith DA, Beaumont K, Walker DK. Property-based design: optimization of drug absorption and pharmacokinetics. J Med Chem 2001;44(9):1313-33
  • Clark DE. In silico prediction of blood-brain barrier permeation. Drug Discov Today 2003;8(20):927-33
  • Begley DJ, Brightman MW. Structural and functional aspects of the blood-brain barrier. Prog Drug Res 2003;61:39-78
  • Begley DJ. The blood-brain barrier: principles for targeting peptides and drugs to the central nervous system. J Pharm Pharmacol 1996;48(2):136-46
  • Fernandes C, Soni U, Patravale V. Nano-interventions for neurodegenerative disorders. Pharmacol Res 2010;62(2):166-78
  • Triguero D, Buciak JB, Yang J, Pardridge WM. Blood-brain barrier transport of cationized immunoglobulin G: enhanced delivery compared to native protein. Proc Natl Acad Sci USA 1989;86(12):4761-5
  • Joshi S, Ornstein E, Bruce JN. Targeting the brain: rationalizing the novel methods of drug delivery to the central nervous system. Neurocrit Care 2007;6(3):200-12
  • Azmin MN, Florence AT, Handjani-Vila RM, et al. The effect of non-ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. J Pharm Pharmacol 1985;37(4):237-42
  • Chen D, Lee KH. Biodistribution of calcitonin encapsulated in liposomes in mice with particular reference to the central nervous system. Biochim Biophys Acta 1993;1158(3):244-50
  • Fresta M, Puglisi G, Di Giacomo C, Russo A. Liposomes as in-vivo carriers for citicoline: effects on rat cerebral post-ischaemic reperfusion. J Pharm Pharmacol 1994;46(12):974-81
  • Minagawa T, Sakanaka K, Inaba S, et al. Blood-brain-barrier transport of lipid microspheres containing clinprost, a prostaglandin I2 analogue. J Pharm Pharmacol 1996;48(10):1016-22
  • Martins S, Costa-Lima S, Carneiro T, et al. Solid lipid nanoparticles as intracellular drug transporters: an investigation of the uptake mechanism and pathway. Int J Pharm 2012;430(1-2):216-27
  • Souto EB, Muller RH. Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. Handb Exp Pharmacol 2010(197):115-41
  • Muller RH, Maassen S, Weyhers H, Mehnert W. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target 1996;4(3):161-70
  • Alyautdin RN, Petrov VE, Langer K, et al. Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharm Res 1997;14(3):325-8
  • Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery. II. Drug incorporation and physicochemical characterization. J Microencapsul 1999;16(2):205-13
  • Venishetty VK, Komuravelli R, Kuncha M, et al. Increased brain uptake of docetaxel and ketoconazole loaded folate-grafted solid lipid nanoparticles. Nanomedicine 2013;9(1):111-21
  • Kaur IP, Bhandari R, Bhandari S, Kakkar V. Potential of solid lipid nanoparticles in brain targeting. J Control Release 2008;127(2):97-109
  • Blasi P, Giovagnoli S, Schoubben A, et al. Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev 2007;59(6):454-77
  • Goppert TM, Muller RH. Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 2005;13(3):179-87
  • Chen Y, Dalwadi G, Benson HA. Drug delivery across the blood-brain barrier. Curr Drug Deliv 2004;1(4):361-76
  • Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release 2012;161(2):264-73
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001;47(1):65-81
  • Couvreur P, Kante B, Grislain L, et al. Toxicity of polyalkylcyanoacrylate nanoparticles II: doxorubicin-loaded nanoparticles. J Pharm Sci 1982;71(7):790-2
  • Kante B, Couvreur P, Dubois-Krack G, et al. Toxicity of polyalkylcyanoacrylate nanoparticles I: free nanoparticles. J Pharm Sci 1982;71(7):786-90
  • Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000;50(1):161-77
  • Estella-Hermoso de Mendoza A, Campanero MA, Mollinedo F, Blanco-Prieto MJ. Lipid nanomedicines for anticancer drug therapy. J Biomed Nanotechnol 2009;5(4):323-43
  • Gohla SH, Dingler A. Scaling up feasibility of the production of solid lipid nanoparticles (SLN). Pharmazie 2001;56(1):61-3
  • Battaglia L, Gallarate M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Deliv 2012;9(5):497-508
  • Arias JL, Clares B, Morales ME, et al. Lipid-based drug delivery systems for cancer treatment. Curr Drug Targets 2011;12(8):1151-65
  • Polt R, Porreca F, Szabo LZ, et al. Glycopeptide enkephalin analogues produce analgesia in mice: evidence for penetration of the blood-brain barrier. Proc Natl Acad Sci USA 1994;91(15):7114-18
  • Muller RH, Maassen S, Weyhers H, Mehnert W. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target 1996;4(3):161-70
  • Pandita D, Ahuja A, Lather V, et al. Development, characterization and in vitro assessement of stearylamine-based lipid nanoparticles of paclitaxel. Pharmazie 2011;66(3):171-7
  • zur Muhlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery–drug release and release mechanism. Eur J Pharm Biopharm 1998;45(2):149-55
  • Lockman PR, Oyewumi MO, Koziara JM, et al. Brain uptake of thiamine-coated nanoparticles. J Control Release 2003;93(3):271-82
  • Diederichs JE, Müller RH. Liposomes in cosmetics and pharmaceutical products. Pharm Ind 1994;56(3):267-75
  • Freitas C, Müller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticles (SLN) dispersions. Int J Pharm 1998;168:221-9
  • Fundaro A, Cavalli R, Bargoni A, et al. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol Res 2000;42(4):337-43
  • Vauthier C, Dubernet C, Fattal E, et al. Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev 2003;55:519-48
  • Chen DB, Yang TZ, Lu WL, Zhang Q. In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem Pharm Bull (Tokyo) 2001;49(11):1444-7
  • Sommerfeld P, Schroeder U, Sabel BA. Sterilization of unloaded polybutylcyanoacrylate nanoparticles. Int J Pharm 1998;164:113-18
  • Konan YN, Gurny R, Allemann E. Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles. Int J Pharm 2002;233(1-2):239-52
  • Masson V, Maurin F, Fessi H, Devissaguet JP. Influence of sterilization processes on poly(epsilon-caprolactone) nanospheres. Biomaterials 1997;18(4):327-35
  • Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 2001;47(2-3):165-96
  • Wissing SA, Kayser O, Muller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 2004;56(9):1257-72
  • Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 2002;54(Suppl 1):S131-55
  • Souto EB, Wissing SA, Barbosa CM, Muller RH. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm 2004;278(1):71-7
  • Silva AC, Gonzalez-Mira E, Garcia ML, et al. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): high pressure homogenization versus ultrasound. Colloids Surf B Biointerfaces 2011;86(1):158-65
  • Ghadiri M, Fatemi S, Vatanara A, et al. Loading hydrophilic drug in solid lipid media as nanoparticles: statistical modeling of entrapment efficiency and particle size. Int J Pharm 2012;424(1-2):128-37
  • Souza LG, Silva EJ, Martins AL, et al. Development of topotecan loaded lipid nanoparticles for chemical stabilization and prolonged release. Eur J Pharm Biopharm 2011;79(1):189-96
  • Youssef T, Fadel M, Fahmy R, Kassab K. Evaluation of hypericin-loaded solid lipid nanoparticles: physicochemical properties, photostability and phototoxicity. Pharm Dev Technol 2012;17(2):177-86
  • Cavalli R, Caputo O, Carlotti ME, et al. Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles. Int J Pharm 1997;148:47-54
  • Heiati H, Tawashi R, Phillips NC. Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization. J Microencapsul 1998;15(2):173-84
  • Cavalli R, Caputo O, Gasco MR. Preparation and characterization of solid lipid nanospheres containing paclitaxel. Eur J Pharm Sci 2000;10(4):305-9
  • Bummer PM. Physical chemical considerations of lipid-based oral drug delivery–solid lipid nanoparticles. Crit Rev Ther Drug Carrier Syst 2004;21(1):1-20
  • Severino P, Pinho SC, Souto EB, Santana MH. Polymorphism, crystallinity and hydrophilic-lipophilic balance of stearic acid and stearic acid-capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids Surf B Biointerfaces 2011;86(1):125-30
  • Kristl J, Volk B, Ahlin P, et al. Interactions of solid lipid nanoparticles with model membranes and leukocytes studied by EPR. Int J Pharm 2003;256(1-2):133-40
  • Westesen K, Bunjes H. Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix? Int J Pharm 1995;115:129-31
  • Zimmermann E, Souto EB, Muller RH. Physicochemical investigations on the structure of drug-free and drug-loaded solid lipid nanoparticles (SLN) by means of DSC and 1H NMR. Pharmazie 2005;60(7):508-13
  • Castelli F, Puglia C, Sarpietro MG, et al. Characterization of indomethacin-loaded lipid nanoparticles by differential scanning calorimetry. Int J Pharm 2005;304(1-2):231-8
  • Jores K, Mehnert W, Mader K. Physicochemical investigations on solid lipid nanoparticles and on oil-loaded solid lipid nanoparticles: a nuclear magnetic resonance and electron spin resonance study. Pharm Res 2003;20(8):1274-83
  • Mayer C, Lukowski G. Solid state NMR investigations on nanosized carrier systems. Pharm Res 2000;17(4):486-9
  • Lippacher A, Muller RH, Mader K. Semisolid SLN dispersions for topical application: influence of formulation and production parameters on viscoelastic properties. Eur J Pharm Biopharm 2002;53(2):155-60
  • Illing A, Unruh T. Investigation on the flow behavior of dispersions of solid triglyceride nanoparticles. Int J Pharm 2004;284(1-2):123-31
  • Lippacher A, Muller RH, Mader K. Investigation on the viscoelastic properties of lipid based colloidal drug carriers. Int J Pharm 2000;196(2):227-30
  • Souto EB, Wissing SA, Barbosa CM, Müller RH. Comparative study between the viscoelastic behaviors of different lipid nanoparticle formulations. J Cosmet Sci 2004;55:463-71
  • Westesen K, Bunjes H, Koch MHJ. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Release 1997;48:223-36
  • Hou DZ, Xie CS, Huang KJ, Zhu CH. The production and characteristics of solid lipid nanoparticles (SLN). Biomaterials 2003;24:1781-5
  • Westesen K, Siekmann B. Investigation of the gel formation of phospholipid- stabilized solid lipid nanoparticles. Int J Pharm 1997;151:35-45
  • Souto EB, Mehnert W, Muller RH. Polymorphic behaviour of Compritol888 ATO as bulk lipid and as SLN and NLC. J Microencapsul 2006;23(4):417-33
  • Siekmann B, Westesen K. Thermoanalysis of the recrystallization process of melt-homogenized glyceride nanoparticles. Colloids Surf B Biointerfaces 1994;3:159-75
  • Freitas C, Muller RH. Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. Eur J Pharm Biopharm 1999;47(2):125-32
  • Wissing SA, Muller RH, Manthei L, Mayer C. Structural characterization of Q10-loaded solid lipid nanoparticles by NMR spectroscopy. Pharm Res 2004;21(3):400-5
  • Schubert MA, Harms M, Muller-Goymann CC. Structural investigations on lipid nanoparticles containing high amounts of lecithin. Eur J Pharm Sci 2006;27(2-3):226-36
  • Scholer N, Olbrich C, Tabatt K, et al. Surfactant, but not the size of solid lipid nanoparticles (SLN) influences viability and cytokine production of macrophages. Int J Pharm 2001;221(1-2):57-67
  • Uner M, Wissing SA, Yener G, Muller RH. Influence of surfactants on the physical stability of solid lipid nanoparticle (SLN) formulations. Pharmazie 2004;59(4):331-2
  • Reddy LH, Murthy RS. Etoposide-loaded nanoparticles made from glyceride lipids: formulation, characterization, in vitro drug release, and stability evaluation. AAPS PharmSciTech 2005;6(2):E158-66
  • Schubert MA, Muller-Goymann CC. Characterisation of surface-modified solid lipid nanoparticles (SLN): influence of lecithin and nonionic emulsifier. Eur J Pharm Biopharm 2005;61(1-2):77-86
  • Jenning V, Gohla S. Comparison of wax and glyceride solid lipid nanoparticles (SLN). Int J Pharm 2000;196(2):219-22
  • Bunjes H, Koch MH, Westesen K. Influence of emulsifiers on the crystallization of solid lipid nanoparticles. J Pharm Sci 2003;92(7):1509-20
  • Olbrich C, Muller RH. Enzymatic degradation of SLN-effect of surfactant and surfactant mixtures. Int J Pharm 1999;180(1):31-9
  • Olbrich C, Kayser O, Muller RH. Lipase degradation of Dynasan 114 and 116 solid lipid nanoparticles (SLN)–effect of surfactants, storage time and crystallinity. Int J Pharm 2002;237(1-2):119-28
  • Liedtke S, Wissing S, Muller RH, Mader K. Influence of high pressure homogenisation equipment on nanodispersions characteristics. Int J Pharm 2000;196(2):183-5
  • Smith MW, Gumbleton M. Endocytosis at the blood-brain barrier: from basic understanding to drug delivery strategies. J Drug Target 2006;14(4):191-214
  • Alyautdin RN, Tezikov EB, Ramge P, et al. Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80-coated polybutylcyanoacrylate nanoparticles: an in situ brain perfusion study. J Microencapsul 1998;15(1):67-74
  • Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2003;2(3):214-21
  • Mukerjee A, Ranjan AP, Vishwanatha JK. Combinatorial nanoparticles for cancer diagnosis and therapy. Curr Med Chem 2012;19(22):3714-21
  • Yang S, Zhu J, Lu Y, et al. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res 1999;16(5):751-7
  • Zara GP, Cavalli R, Fundaro A, et al. Pharmacokinetics of doxorubicin incorporated in solid lipid nanospheres (SLN). Pharmacol Res 1999;40(3):281-6
  • Podio V, Zara GP, Carazzonet M, et al. Biodistribution of stealth and non-stealth solid lipid nanospheres after intravenous administration to rats. J Pharm Pharmacol 2000;52(9):1057-63
  • Zara GP, Cavalli R, Bargoni A, et al. Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. J Drug Target 2002;10(4):327-35
  • Zara GP, Bargoni A, Cavalli R, et al. Pharmacokinetics and tissue distribution of idarubicin-loaded solid lipid nanoparticles after duodenal administration to rats. J Pharm Sci 2002;91(5):1324-33
  • Reddy JS, Venkateswarlu V. Novel delivery systems for drug targeting to the brain. Drugs Fut 2004;29:63
  • Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of nitrendipine solid lipid nanoparticles after intravenous and intraduodenal administration. J Drug Target 2006;14(9):632-45
  • Koziara JM, Lockman PR, Allen DD, Mumper RJ. In situ blood-brain barrier transport of nanoparticles. Pharm Res 2003;20(11):1772-8
  • Lockman PR, Koziara J, Roder KE, et al. In vivo and in vitro assessment of baseline blood-brain barrier parameters in the presence of novel nanoparticles. Pharm Res 2003;20(5):705-13
  • Koziara JM, Lockman PR, Allen DD, Mumper RJ. Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release 2004;99(2):259-69
  • Manjunath K, Venkateswarlu V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J Control Release 2005;107(2):215-28
  • Harivardhan Reddy L, Sharma RK, Chuttani K, et al. Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton's lymphoma tumor bearing mice. J Control Release 2005;105(3):185-98
  • Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 2004;12(9-10):635-41
  • Bargoni A, Cavalli R, Zara GP, et al. Transmucosal transport of tobramycin incorporated in solid lipid nanoparticles (SLN) after duodenal administration to rats. Part II–tissue distribution. Pharmacol Res 2001;43(5):497-502
  • Peira E, Marzola P, Podio V, et al. In vitro and in vivo study of solid lipid nanoparticles loaded with superparamagnetic iron oxide. J Drug Target 2003;11(1):19-24
  • Gupta Y, Jain A, Jain SK. Transferrin-conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain. J Pharm Pharmacol 2007;59(7):935-40
  • Fenart L, Casanova A, Dehouck B, et al. Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood-brain barrier. J Pharmacol Exp Ther 1999;291(3):1017-22
  • Wang JX, Sun X, Zhang ZR. Enhanced brain targeting by synthesis of 3',5'-dioctanoyl-5-fluoro-2'-deoxyuridine and incorporation into solid lipid nanoparticles. Eur J Pharm Biopharm 2002;54(3):285-90
  • Olbrich C, Gessner A, Kayser O, Muller RH. Lipid-drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate. J Drug Target 2002;10(5):387-96
  • Gessner A, Olbrich C, Schroder W, et al. The role of plasma proteins in brain targeting: species dependent protein adsorption patterns on brain-specific lipid drug conjugate (LDC) nanoparticles. Int J Pharm 2001;214(1-2):87-91
  • Keck CM, Muller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm 2006;62(1):3-16
  • Muller RH, Schmidt S, Buttle I, et al. SolEmuls-novel technology for the formulation of i.v. emulsions with poorly soluble drugs. Int J Pharm 2004;269(2):293-302
  • Kuo YC, Su FL. Transport of stavudine, delavirdine, and saquinavir across the blood-brain barrier by polybutylcyanoacrylate, methylmethacrylate-sulfopropylmethacrylate, and solid lipid nanoparticles. Int J Pharm 2007;340(1-2):143-52
  • Doijad RC, Manvi FV, Godhwani DM, et al. Formulation and targeting efficiency of Cisplatin engineered solid lipid nanoparticles. Indian J Pharm Sci 2008;70(2):203-7
  • Gao Y, Gu W, Chen L, et al. The role of daidzein-loaded sterically stabilized solid lipid nanoparticles in therapy for cardio-cerebrovascular diseases. Biomaterials 2008;29(30):4129-36
  • Bondi ML, Craparo EF, Giammona G, Drago F. Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine (Lond) 2010;5(1):25-32

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.