372
Views
16
CrossRef citations to date
0
Altmetric
Reviews

The future of prodrugs – design by quantum mechanics methods

, &
Pages 713-729 | Published online: 31 Mar 2013

Bibliography

  • Albert A. Chemical aspects of selective toxicity. Nature 1958;182:421-2
  • Stella VJ, Borchardt RT, Hageman MJ, Prodrugs: challenges and rewards part 1 and 2. Springer Science + Business Media, New York; 2007
  • Stella VJ, Charman WN, Naringrekar VH. Prodrugs. Do they have advantages in clinical practice? Drugs 1985;29:455-73
  • Banerjee PK, Amidon GL. Design of prodrugs based on enzymes-substrate specificity. In: Bundgaard H, editor. Design of prodrugs. Elsevier, New York; 1985. p. 93-133
  • Müller CE. Prodrug approaches for enhancing the bioavailability of drugs with low solubility. Chem Biodivers 2009;6:2071-83
  • Roche EB. Design of biopharmaceutical properties through prodrugs and analogs. American Pharmaceutical Association, Washington, DC; 1977
  • Stella V. Pro-drugs: an overview and definition. In: Higuchi T, Stella V, editors. Prodrugs as novel drug delivery systems. ACS Symposium Series American Chemical Society, Washington, DC; 1975. p. 1-115
  • Amidon GL, Leesman GD, Elliott RL. Improving intestinal absorption of water-insoluble compounds: a membrane metabolism strategy. J Pharm Sci 1980;69:1363-8
  • Fleisher D, Stewart BH, Amidon GL. Design of prodrugs for improved gastrointestinal absorption by intestinal enzyme targeting. Methods Enzymol 1985;112:360-81
  • Bai JP, Amidon GL. Structural specificity of mucosal-cell transport and metabolism of peptide drugs: implication for oral peptide drug delivery. Pharm Res 1992;9:969-78
  • Stella VJ, Himmelstein KJ. Prodrugs and site-specific drug delivery. J Med Chem 1980;23:1275-82
  • Stella VJ, Himmelstein KJ. Critique of prodrugs and site specific delivery. In: Bundgaard H, editor. Optimization of drug delivery. Alfred Benzon Symposium Munksgaard, Copenhagen; 1982. p. 134-55
  • Friend DR, Chang GW. A colon-specific drug-delivery system based on drug glycosides and the glycosidases of colonic bacteria. J Med Chem 1984;27:261-6
  • Philpott GW, Shearer WT, Bower RJ, Parker CW. Selective cytotoxicity of hapten-substituted cells with an antibody-enzyme conjugate. J Immunol 1973;111:921-9
  • Deonarain MP, Spooner RA, Epenetos AA. Genetic delivery of enzymes for cancer therapy. Gene Ther 1996;2:235-44
  • Singhal S, Kaiser LR. Cancer chemotherapy using suicide genes. Surg Oncol Clin North Am 1998;7:505-36
  • Aghi M, Hochberg F, Breakefield XO. Prodrug activation enzymes in cancer gene therapy. J Gene Med 2000;2:148-64
  • Greco O, Dachs GU. Gene directed enzyme/prodrug therapy of cancer: historical appraisal and future prospectives. J Cell Physiol 2001;187:22-36
  • Di L, Kerns EH. Solubility issues in early discovery and HTS. In: Augustijins P, Brewster M, editors. Solvent systems and their selection in pharmaceutics and biopharmaceutics. Springer Science + Business Media, New York; 2007. p. 111-36
  • Fleisher D, Bong R, Stewart BH. Improved oral drug delivery: solubility limitations overcome by the use of prodrugs. Adv Drug Deliv Rev 1996;19:115-30
  • Chan OH, Stewart BH. Physicochemical and drug-delivery considerations for oral drug bioavailability. Drug Discov Today 1996;1:461-73
  • Beaumont K, Webster R, Gardner I, Dack K. Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: challenges to the discovery scientist. Curr Drug Metab 2003;4:461-85
  • Gonzalez FJ, Tukey RH. Drug metabolism. In: Brunton LL, Lazo JS, Parker KL, editors. Goodman and Gilman's the pharmacological basis of therapeutics. The McGraw-Hill Companies, Inc, New York; 2006. p. 71-91
  • Testa B, Krämer SD. The biochemistry of drug metabolism–an introduction: part 2. Redox reactions and their enzymes. Chem Biodivers 2007;4:257-405
  • Gangwar S, Pauletti GM, Wang B, Prodrug strategies to enhance the intestinal absorption of peptides. DDT 1997;2:148-55
  • Wang W, Jiang J, Ballard CE, Wang B. Prodrug approaches to the improved delivery of peptide drugs. Curr Pharm Des 1999;5:265-87
  • Draganov DI, La Du BN. Pharmacogenetics of paraoxonases: a brief review. Naunyn Schmiedebergs Arch Pharmacol 2004;369:78-88
  • Moser VC, Chanda SM, Mortensen SR, Padilla S. Age- and gender-related differences in sensitivity to chlorpyrifos in the rat reflect developmental profiles of esterase activities. Toxicol Sci 1998;46:211-22
  • Dahan A, Khamis M, Agbaria R, Karaman R. Targeted prodrugs in oral drug delivery. The modern molecular biopharmaceutical approach. Expert Opin Drug Deliv 2012;9:1001-13
  • Bruice TC, Benkovic SJ. Bioorganic mechanisms. Volumes I and II Benjamin, Reading, MA; 1966
  • Jencks WP. Catalysis in chemistry and enzymology. McGraw, New York; 1969
  • Nelson DL, Cox MM. Lehninger principles of biochemistry. Worth, New York; 2003
  • Fersht A. Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. WH. Freeman and Co, New York; 1999
  • Kirby AJ, Lancaster PW. Structure and efficiency in intramolecular and enzymatic catalysis. Catalysis of amide hydrolysis by the carboxy-group of substituted maleamic acids. J Chem Soc Perkin Trans 1972;2:1206-14
  • Kirby AJ, Hollfelder F. From enzyme models to model enzymes. 1st edition. RSC Publishing, United Kingdom; 2009
  • Kirby AJ, Parkinson A. Most efficient intramolecular general acid catalysis of acetal hydrolysis by the carboxyl group. J Chem Soc Chem Commun 1994;707-8
  • Brown CJ, Kirby AJ. Efficiency of proton transfer catalysis. Intramolecular general acid catalysis of the hydrolysis of dialkyl acetals of benzaldehyde. J Chem Soc Perkin Trans 1997;2:1081-93
  • Craze G-A, Kirby AJ. The hydrolysis of substituted 2-methoxymethoxybenzoic acids. J Chem Soc Perkin Trans 1974;2:61-6
  • Barber SE, Dean KES, Kirby AJ. A mechanism for efficient proton-transfer catalysis. Intramolecular general acid catalysis of the hydrolysis of 1-arylethyl ethers of salicylic acid. Can J Chem 1999;792-801
  • Kirby AJ, de Silva MF, Lima D, Efficient intramolecular general acid catalysis of nucleophilic attack on a phosphodiester. J Am Chem Soc 2006;128:16944-52
  • Hartwell E, Hodgson DRW, Kirby AJ. Exploring the limits of efficiency of proton-transfer catalysis in models and enzymes. J Am Chem Soc 2000;122:9326-7
  • Kirby AJ. Efficiency of proton transfer catalysis in models and enzymes. Acc Chem Res 1997;30:290-6
  • Asaad N, Davies JE, Hodgson DRW, Kirby AJ. The search for efficient intramolecular proton transfer from carbon: the kinetically silent intramolecular general base-catalysed elimination reaction of O-phenyl 8-dimethylamino-1-naphthaldoximes. J Phys Org Chem 2005;18:101-9
  • Menger FM, Chow JF, Kaiserman H, Vasquez PC. Directionality of proton transfer in solution: three systems of known angularity. J Am Chem Soc 1983;105:4996-5002
  • Menger FM. On the source of intramolecular and enzymatic reactivity. Acc Chem Res 1985;18:128-34
  • Menger FM. Directionality of organic reactions in solution. Tetrahedron 1983;39:1013-40
  • Menger FM, Ladika M. Fast hydrolysis of an aliphatic at neutral pH and ambient temperature. A peptidase model. J Am Chem Soc 1988;110:6794-6
  • Menger FM, Galloway AL, Musaev DG. Relationship between rate and distance. Chem Commun 2003;9:2370-1
  • Menger FM. An alternative view of enzyme catalysis. Pure Appl Chem 2005;77:1873-86
  • Milstien S, Cohen LA. Concurrent general-acid and general-base catalysis of esterification. J Am Chem Soc 1970;92:4377-82
  • Greenwald RB, Choe YH, Conover CD, Drug delivery systems based on trimethyl lock lactonization: poly(ethylene glycol) prodrugs of amino-containing compounds. J Med Chem 2000;43:475-87
  • Golik J, Wong HSL, Chen SH, Synthesis and antitumor evaluation of paclitaxel phosphonooxymethyl ethers: a novel class of water soluble paclitaxel pro-drugs. Bioorg Med Chem Lett 1996;6(15):1837-42
  • Bruice TC, Pandit UK. The effect of geminal substitution ring size and rotamer distribution on the intramolecular nucleophilic catalysis of the hydrolysis of monophenyl esters of dibasic acids and the solvolysis of the intermediate anhydrides. J Am Chem Soc 1960;82:5858-65
  • Bruice TC, Pandit UK. Intramolecular models depicting the kinetic importance of “Fit” in enzymatic catalysis. Proc Natl Acad Sci USA 1960;46:402-4
  • Reddy MR, Erion MD. Free energy calculations in rational drug design. Kluwer Academic/Plenum Publishers, New York, NY, USA; 2001. p. 379
  • Parr RG, Craig DP, Ross IG. Molecular orbital calculations of the lower excited electronic levels of benzene, configuration interaction included. J Chem Phys 1950;18(12):1561-3
  • Parr RG. On the genesis of a theory. Int J Quantum Chem 1990;37(4):327-47
  • Chen TC. Expansion of electronic wave functions of molecules in terms of ‘United-Atom' wave functions. J Chem Phys 1955;23(11):2200-1
  • Dewar MJS, Thiel W. Ground states of molecules. The MNDO method. Approximations and parameters. J Am Chem Soc 1977;99:4899-907
  • Bingham RC, Dewar MJS, Lo DH. Ground states of molecules. XXV. MINDO/3. An improved version of the MNDO semiempirical SCF-MO method. J Am Chem Soc 1975;97:1285-93
  • Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 1985;107:3902-7
  • Dewar MJS, Jie C, Yu J. The first of new series of general purpose quantum mechanical molecular models. Tetrahedron 1993;49:5003-38
  • Parr RG, Yang W. Density functional theory of atoms and molecules. Oxford University Press, Oxford; 1989
  • Burkert U, Allinger NL. Molecular mechanics (ACS Monograph). American Chemical Society, Washington, DC; 1982. p. 177
  • Warshel A, Levitt M. Theoretical studies of enzymatic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 1976;103(2):227-49
  • Field MJ. Simulating enzyme reactions: challenges and perspectives. J Comput Chem 2002;23(1):48-58
  • Mulholland AJ. Modelling enzyme reaction mechanisms, specificity and catalysis. Drug Discov Today 2005;10(20):1393-402
  • Karaman R. A new mathematical equation relating activation energy to bond angle and distance: a key for understanding the role of acceleration in lactonization of the trimethyl lock system. Bioorg Chem 2009;37:11-25
  • Karaman R. The role of proximity orientation in intramolecular proton transfer reactions. J Comput Theor Chem 2011;966:311-21
  • Karaman R. Analyzing the efficiency in intramolecular amide hydrolysis of Kirby's N-alkylmaleamic acids - a computational approach. Comput Theor Chem 2011;974:133-42
  • de Miranda P, Blum MR. Pharmacokinetics of acyclovir after intravenous and oral administration. J Antimicrob Chemother 1983;12(Suppl B):29-37
  • Blum MR, Liao SHT, de Miranda P. Overview of aciclovir pharmacokinetic disposition in adults and children. Am J Med 1982;73(Suppl 1A):186-92
  • Luengo J, Aranguiz T, Sepulveda J. Preliminary pharmacokinetic study to different preparations of acyclovir with beta-cyclodextrin. J Pharm Sci 2002;91:2593-8
  • Attia IA, El-Gizawy SA, Fouda MA, Donia AM. Influence of a niosomal formulation on the oral bioavailability of acyclovir in rabbits. AAPS Pharm Sci Tech 2007;8(4):E106
  • Yadav S, Jain S, Prajapati S, Formulation and in vitro and in vivo characterization of acyclovir loaded mucoadhesive microspheres. J Pharm Sci Tech 2011;3(1):441-7
  • Soul-Lawton J, Seaber E, On N, Absolute bioavailability and metabolic disposition of valaciclovir, the L-valyl ester of acyclovir, following oral administration to humans. Antimicrob Agents Chemother 1995;39:2759-64
  • Tolle-Sander S, Lentz KA, Maeda DY, Increased acyclovir oral bioavailability via a bile acid conjugate. Mol Pharm 2004;1:40-8
  • Foppa T, Murakami FS, Silva MA. Development, validation and stability study of pediatric atenolol syrup. Pharmazie 2007;62(7):519-21
  • Anroop B, Ghosh B, Parcha V, Khanam J. Transdermal delivery of atenolol: effect of prodrugs and iontophoresis. Curr Drug Deliv 2009;6(3):280-90
  • Mcainsh J, Simpson WT, Holmes BF, Bioavailability of atenolol formulations. Biopharm Drug Dispos 1980;1(6):223-32
  • Vergin H, Nitsche V. Oral bioavailability of atenolol. J Int Med Res 1989;17(5):417-25
  • Shin S-C, Choi J-S. Enhanced bioavailability of atenolol by transdermal administration of the ethylene-vinyl acetate matrix in rabbits. Eur J Pharm Biopharm 2003;56(3):439-43
  • Chan K, Swenden J. Pilot study of the short-term physico-chemical stability of atenolol tablets stored in a multi-compartment compliance aid. Eur J Hosp Pharm Sci 2007;13(3):60-6
  • Finn A, Straugun A, Meyer M, Chubb J. Effect of dose and food on the bioavailability of cefuroxime axetil. Biopharm Drug Dispos 1987;8:519-26
  • Patel AR, Vavia PR. Preparation and evaluation of taste masked famotidine formulation using drug/beta-cyclodextrin/polymer ternary complexation approach. AAPS Pharm Sci Tech 2008;9(2):544-50
  • Bora D, Borude P, Bhise K. Taste masking by spray-drying technique. AAPS PharmSci Tech 2008;9(4):1159-64
  • Yajima T, Nogata A, Demachi M, Particle design for taste-masking using a spray-congealing technique. Chem Pharm Bull 1996;44(1):187-91
  • Shidhaye S, Malke S, Kadam V. Taste masked, orally disintegrating tablet containing microspheres for immediate release. J Pharm Res 2008;1:225-9
  • Perry CM, Brogden RN. Cefuroxime axetil. A review of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy. Drugs 1996;52(1):125-58
  • Karaman R, Dajani KK, Qtait A, Khamis M. Prodrugs of acyclovir - a computational approach. Chem Biol Drug Des 2012;79:819-34
  • Karaman R, Dajani KK, Hallak H. Computer-assisted design for atenolol prodrugs for the use in aqueous formulations. J Mol Model 2012;18:1523-40
  • Karaman R. Prodrugs for masking bitter taste of antibacteria drugs – a computational approach. J Mol Model 2013; Epub ahead of print
  • Karaman R. The efficiency of proton transfer in Kirby's enzyme model, a computational approach. Tetrahedron Lett 2010;51:2130-5
  • Karaman R, Pascal RA. Computational analysis of intramolecularity in proton transfer reactions. Org Bimol Chem 2010;8:5174-8
  • Karaman R. Analysis of Menger's spatiotemporal hypothesis. Tetrahedron Lett 2008;49:5998-6002
  • Karaman R. The effective molarity (EM) – a computational approach. Bioorg Chem 2010;38:165-72
  • Blum W, Klisovic RB, Hackanson B, Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol 2007;25:3884-91
  • Silverman LR, McKenzie DR, Peterson BL, Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J Clin Oncol 2006;24:3895-903
  • Available from: http://www.assistpainrelief.com/dyn/304/Paracetamol.html
  • Available from: http://www.chemicalbook.com/ChemicalProductProperty_EN_CB6141828.htm
  • Available from: http://www.chemicalall.com/chemicals-name-a/acetanilide.html
  • Comley JC, Yeates CL, Frend TJ. Antipneumocystis activity of 17C91, a prodrug of atovaquone. Antimicrob Agents Chemother 1995;39(10):2217-19
  • Malarone prescribing. Available from: http://us.gsk.com/products/assets/us_malarone.pdf
  • Karaman R. Prodrugs of Aza nucleosides based on proton transfer reactions. J Comput Aided Mol Des 2010;24:961-70
  • Hejaz H, Karaman R, Khamis M. Computer-assisted design for paracetamol masking bitter taste prodrugs. J Mol Model 2012;18:103-14
  • Karaman R, Hallak H. Anti-malarial pro-drugs – a computational aided design. Chem Biol Drug Des 2010;76:350-60
  • Karaman R. Cleavage of Menger's aliphatic amide: a model for peptidase enzyme solely explained by proximity orientation in intramolecular proton transfer. J Mol Struct (THEOCHEM) 2009;910:27-33
  • De Stefano A, Sozio P, Cerasa LS. Antiparkinson prodrugs. Molecules 2008;13:46-68
  • Benes FM. Carlsson and the discovery of dopamine. Trends Pharmacol Sci 2001;22:46-7
  • Cyklokapron® tranexamic acid injection prescribing information. Available from: http://www.pfizer.com/files/products/uspi_cyklokapron.pdf
  • CRASH-2 trial collaborators. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 2010;6736(10):60835-
  • Levy JH. Antifibrinolytic therapy: new data and new concepts. Comment: Lancet 2010, Published Online; DOI:10.1016/S0140-6736(10)60939-7
  • Lukes AS, Moore KA, Muse KN, Tranexamic acid treatment for heavy menstrual bleeding: a randomized controlled trial. Obstet Gynecol 2010;116(4):865-75
  • Lysteda® oral tranexamic acid prescribing information. Available from: http://info.lysteda.com/fing/lp_micro_branded/lysteda_pi.pdf
  • Karaman R. Computational aided design for dopamine prodrugs based on novel chemical approach. Chem Biol Drug Des 2011;78:853-63
  • Karaman R, Dokmak G, Bader M, Prodrugs of fumarate esters for the treatment of psoriasis and multiple sclerosis (MS) – a computational approach. J Mol Model 2013;19:439-52
  • Karaman R. Prodrugs for masking bitter taste of antibacterial drugs – a computational approach. J Mol Model 2013; DOI: 10.1007/s00894-013-1780-5
  • Fotakis C, Megariotis G, Christodouleas D, Comparative study of the AT1 receptor prodrug antagonist candesartan cilexetil with other sartans on the interactions with membrane bilayers. Biochim Biophys Acta 2012;1818:3107-20
  • Rautio J. Prodrug strategies in drug design. In: Rautio J, editor. Prodrugs and targeted delivery: towards better ADME properties. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim; 2010. p. 1-30
  • Stella VJ. Prodrugs: some thoughts and current issues. J Pharm Sci 2010;99:4755-65

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.