686
Views
60
CrossRef citations to date
0
Altmetric
Reviews

Lymphatic system: a prospective area for advanced targeting of particulate drug carriers

, , &

Bibliography

  • Cueni LN, Detmar M. New insights into the molecular control of the lymphatic vascular system and its role in disease. J Invest Dermatol 2006;126(10):2167-77
  • Swartz MA. The physiology of the lymphatic system. Adv Drug Deliv Rev 2001;50(1):3-20
  • Gerli R, Solito R, Weber E, et al. Specific adhesion molecules bind anchoring filaments and endothelial cells in human skin initial lymphatics. Lymphology 2000;33(4):148-57
  • Huntington GS, McClure CFW. The anatomy and development of the jugular lymph sacs in the domestic cat (Felis domestica). Am J Anat 1910;10(1):177-312
  • Maby-El Hajjami H, Petrova TV. Developmental and pathological lymphangiogenesis: from models to human disease. Histochem Cell Biol 2008;130(6):1063-78
  • Rinderknecht M, Detmar M. Tumor lymphangiogenesis and melanoma metastasis. J Cell Physiol 2008;216(2):347-54
  • Baldwin ME, Stacker SA, Achen MG. Molecular control of lymphangiogenesis. Bioessays 2002;24(11):1030-40
  • Givoli D, Doukhovni I, Moghimi S, et al. Advanced colloid-based systems for efficient delivery of drugs and diagnostic agents to the lymphatic tissues. Prog Biophys Mol Biol 1996;65(3):221-49
  • Weber E, Rossi A, Solito R, et al. Focal adhesion molecules expression and fibrillin deposition by lymphatic and blood vessel endothelial cells in culture. Microvasc Res 2002;64(1):47-55
  • Schmid-Schonbein GW. The second valve system in lymphatics. Lymphat Res Biol 2003;1(1):25-31
  • Sharma R, Wendt JA, Rasmussen JC, et al. New horizons for imaging lymphatic function. Ann NY Acad Sci 2008;1131(1):13-36
  • Moore KL, Dalley AF. Clinically oriented anatomy. Lippincott Williams & Wilkins; Baltimore, MD, USA: 1999
  • Heller LJ, Mohrman DE. Cardiovascular physiology. McGraw-Hill; New York: 1981
  • Morton DL, Eilber FR, Joseph WL, et al. Immunological factors in human sarcomas and melanomas: a rational basis for immunotherapy. Ann Surg 1970;172(4):740
  • O'Hagan DT, Christy NM, Davis SS. Particulates and lymphatic drug delivery. In: Lymphatic transport of drugs. Charman WN, Stella VJ, editors. CRC Press Inc; Boca Raton, FL, USA: 1992. p. 279-315
  • Charman WN, Stella VJ. Lymphatic transport of drugs. CRC Press Inc; Boca Raton, FL, USA: 1992
  • Zgraggen S, Ochsenbein AM, Detmar M. An important role of blood and lymphatic vessels in inflammation and allergy. J Allergy (Cairo) 2013;2013:672381
  • Dashkevich A, Heilmann C, Kayser G, et al. Lymph angiogenesis after lung transplantation and relation to acute organ rejection in humans. Ann Thorac Surg 2010;90(2):406-11
  • Kerjaschki D, Regele HM, Moosberger I, et al. Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol 2004;15(3):603-12
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100(1):57-70
  • Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001;7(2):192-8
  • Yonemura Y, Endo Y, Fujita H, et al. Role of vascular endothelial growth factor C expression in the development of lymph node metastasis in gastric cancer. Clin Cancer Res 1999;5(7):1823-9
  • McColl BK, Loughran SJ, Davydova N, et al. Mechanisms of lymphangiogenesis: targets for blocking the metastatic spread of cancer. Curr Cancer Drug Targets 2005;5(8):561-71
  • Torabi M, Aquino SL, Harisinghani MG. Current concepts in lymph node imaging. J Nucl Med 2004;45(9):1509-18
  • Farrell MA, McAdams HP, Herndon JE, et al. Non-small cell lung cancer: FDG PET for nodal staging in patients with stage I disease. Radiology 2000;215(3):886-90
  • Kidd EA, Siegel BA, Dehdashti F, et al. Lymph node staging by positron emission tomography in cervical cancer: relationship to prognosis. J Clin Oncol 2010;28(12):2108-13
  • Busby JE, Evans CP. Old friends, new ways: revisiting extended lymphadenectomy and neoadjuvant chemotherapy to improve outcomes. Curr Opin Urol 2004;14(5):251-7
  • Shiozawa M, Kobayashi S, Sato Y, et al. Magnetic resonance lymphography of sentinel lymph nodes in patients with breast cancer using superparamagnetic iron oxide: a feasibility study. Breast Cancer 2012; doi: 10.1007/s12282-012-0401-y
  • Schipper R-J, Smidt ML, van Roozendaal LM, et al. Noninvasive nodal staging in patients with breast cancer using gadofosveset-enhanced magnetic resonance imaging: a feasibility study. Invest Radiol 2013;48(3):134-9
  • Bumb A, Regino CAS, Egen JG, et al. Trafficking of a dual-modality magnetic resonance and fluorescence imaging superparamagnetic iron oxide-based nanoprobe to lymph nodes. Mol Imaging Biol 2011;13(6):1163-72
  • Dunne AA, Boerner HG, Kukula H, et al. Block copolymer carrier systems for translymphatic chemotherapy of lymph node metastases. Anticancer Res 2007;27(6B):3935-40
  • Kaminskas LM, Ascher DB, McLeod VM, et al. PEGylation of interferon alpha2 improves lymphatic exposure after subcutaneous and intravenous administration and improves antitumour efficacy against lymphatic breast cancer metastases. J Control Release 2013;168(2):200-8
  • Gagne JF, Desormeaux A, Perron S, et al. Targeted delivery of indinavir to HIV-1 primary reservoirs with immunoliposomes. Biochim Biophys Acta 2002;1558(2):198-210
  • Cohen OJ, Pantaleo G, Lam GK, et al. Studies on lymphoid tissue from HIV-infected individuals: implications for the design of therapeutic strategies. Springer Semin Immunopathol 1997;18(3):305-22
  • Feller L, Masipa J, Wood N, et al. The prognostic significance of facial lymphoedema in HIV-seropositive subjects with Kaposi sarcoma. AIDS Res Ther 2008;5:2
  • Spiegel H, Herbst H, Niedobitek G, et al. Follicular dendritic cells are a major reservoir for human immunodeficiency virus type 1 in lymphoid tissues facilitating infection of CD4+ T-helper cells. Am J Pathol 1992;140(1):15
  • Desormeaux A, Bergeron MG. Lymphoid tissue targeting of anti-HIV drugs using liposomes. Methods Enzymol 2005;391:330-51
  • Horiike M, Iwami S, Kodama M, et al. Lymph nodes harbor viral reservoirs that cause rebound of plasma viremia in SIV-infected macaques upon cessation of combined antiretroviral therapy. Virology 2012;423(2):107-18
  • Berry CC. Intracellular delivery of nanoparticles via the HIV-1 tat peptide. Nanomedicine 2008;3(3):357-65
  • Chakraborty S, Gurusamy M, Zawieja DC, et al. Lymphatic filariasis: Perspectives on lymphatic remodeling and contractile dysfunction in filarial disease pathogenesis. Microcirculation 2013;20(5):349-64
  • El Setouhy M, Ramzy RMR, Ahmed ES, et al. A randomized clinical trial comparing single- and multi-dose combination therapy with diethylcarbamazine and albendazole for treatment of bancroftian filariasis. Am J Trop Med Hyg 2004;70(2):191-6
  • Ali M, Afzal M, Verma M, et al. Improved antifilarial activity of ivermectin in chitosan-alginate nanoparticles against human lymphatic filarial parasite, Brugia malayi. Parasitol Res 2013;112:1-11
  • Dixon D, Terry C, Meselson M, et al. Infection bacteria for anthrax. N Engl J Med 1999;341:815-26
  • Jernigan JA, Stephens DS, Ashford DA, et al. Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg Infect Dis 2001;7(6):933
  • Ilgazli A, Boyaci H, Basyigit İ, et al. Extrapulmonary tuberculosis: clinical and epidemiologic spectrum of 636 cases. Arch Med Res 2004;35(5):435-41
  • Basaraba RJ, Smith EE, Shanley CA, et al. Pulmonary lymphatics are primary sites of Mycobacterium tuberculosis infection in guinea pigs infected by aerosol. Infect Immun 2006;74(9):5397-401
  • Marais BJ, Gie RP, Schaaf HS, et al. The natural history of childhood intra-thoracic tuberculosis: a critical review of literature from the pre-chemotherapy era. Int J Tuberc Lung Dis 2004;8(4):392-402
  • Tian T, Woodworth J, Skold M, et al. In vivo depletion of CD11c+ cells delays the CD4+ T cell response to Mycobacterium tuberculosis and exacerbates the outcome of infection. J Immunol 2005;175(5):3268-72
  • Romero EL, Morilla MJ. Drug delivery systems against leishmaniasis? Still an open question. Expert Opin Drug Deliv 2008;5(7):805-23
  • Ahsan F, Rivas IP, Khan MA, et al. Targeting to macrophages: role of physicochemical properties of particulate carriers-liposomes and microspheres-on the phagocytosis by macrophages. J Control Release 2002;79(1-3):29-40
  • Gupta PK, Hung CT. Albumin microspheres. II: applications in drug delivery. J Microencapsul 1989;6(4):463-72
  • Sanchez-Brunete JA, Dea MA, Rama S, et al. Influence of the vehicle on the properties and efficacy of microparticles containing amphotericin B. J Drug Target 2005;13(4):225-33
  • Hashida M, Egawa M, Muranishi S, et al. Role of intramuscular administration of water-in-oil emulsions as a method for increasing the delivery of anticancer agents to regional lymphatics. J Pharmacokinet Biopharm 1977;5(3):225-39
  • Yoshimura K, Nunomura M, Takiguchi N, et al. Evaluation of endoscopic pirarubicin-Lipiodol emulsion injection therapy for gastric cancer [article in Japanese]. Gan To Kagaku Ryoho 1996;23:1519-22
  • Wang S, Yang R, Yao H, et al. In vivo lymphatic targeting of methylene blue with microemulsion and multiple microemulsion. Drug Deliv 2009;16(7):371-7
  • Hauss DJ, Mehta SC, Radebaugh GW. Targeted lymphatic transport and modified systemic distribution of CI-976, a lipophilic lipid-regulator drug, via a formulation approach. Int J Pharm 1994;108(2):85-93
  • Segal A, Gregoriadis G, Black C. Liposomes as vehicles for the local release of drugs. Clin Sci Mol Med 1975;49(2):99
  • Sajja HK, East MP, Mao H, et al. Development of multifunctional nanoparticles for targeted drug delivery and non-invasive imaging of therapeutic effect. Curr Drug Discov Technol 2009;6(1):43
  • Sheue Nee Ling S, Magosso E, Abdul Karim Khan N, et al. Enhanced oral bioavailability and intestinal lymphatic transport of a hydrophilic drug using liposomes. Drug Dev Ind Pharm 2006;32(3):335-45
  • Latimer P, Menchaca M, Snyder RM, et al. Aerosol delivery of liposomal formulated paclitaxel and vitamin E analog reduces murine mammary tumor burden and metastases. Exp Biol Med 2009;234(10):1244-52
  • Lawson KA, Anderson K, Snyder RM, et al. Novel vitamin E analogue and 9-nitro-camptothecin administered as liposome aerosols decrease syngeneic mouse mammary tumor burden and inhibit metastasis. Cancer Chemother Pharmacol 2004;54(5):421-31
  • Bermudez LE. Use of liposome preparation to treat mycobacterial infections. Immunobiology 1994;191(4):578-83
  • Vaghasiya H, Kumar A, Sawant K. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur J Pharm Sci 2013;49(2):311-22
  • Harivardhan Reddy L, Sharma RK, Chuttani K, et al. Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton's lymphoma tumor bearing mice. J Control Release 2005;105(3):185-98
  • Paliwal R, Rai S, Vaidya B, et al. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomedicine 2009;5(2):184-91
  • Zara GP, Bargoni A, Cavalli R, et al. Pharmacokinetics and tissue distribution of idarubicin-loaded solid lipid nanoparticles after duodenal administration to rats. J Pharm Sci 2002;91(5):1324-33
  • Aji Alex MR, Chacko AJ, Jose S, et al. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci 2011;42(1):11-18
  • Videira MA, Botelho M, Santos AC, et al. Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J Drug Target 2002;10(8):607-13
  • Lu B, Xiong S-B, Yang H, et al. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur J Pharm Sci 2006;28(1):86-95
  • Domb AJ, Khan W. Biodegradable polymers as drug carrier systems. In: Dumitriu S, Popa C, editors. Polymeric Biomaterials. CRC Press; USA: 2013. p. 135-76
  • Khan W, Hosseinkhani H, Ickowicz D, et al. Polysaccharide gene transfection agents. Acta Biomater 2012;8(12):4224-32
  • Khan W, Muthupandian S, Domb AJ. Cationic polymers for the delivery of therapeutic nucleotides. In: Peer D, editor. Nanotechnology for the delivery of therapeutic nucleic acids. Pan Stanford Publishing; 2013. p. 27-56
  • Khan W, Muthupandian S, Farah S, et al. Biodegradable polymers derived from amino acids. Macromol Biosci 2011;11(12):1625-36
  • Bansal P, Verma S, Khan W, et al. Global patent and technological status of biodegradable polymers in drug delivery and tissue engineering. In: Biodegradable polymers in clinical use and clinical development. Domb AJ, Neeraj Kumar, editors, John Wiley & Sons, Inc; Hoboken, NJ, USA: 2011. p. 665-725
  • Khan W, Yadav D, Domb AJ, et al. Collagen. Biodegradable polymers in clinical use and clinical development. John Wiley & Sons, Inc; Hoboken, NJ, USA: 2011. p. 59-89
  • Bhatnagar A, Singh AK, Singh T, et al. Inflammation imaging using Tc-99m dextran. Clin Nucl Med 1998;23(2):123-4
  • Takakura Y, Matsumoto S, Hashida M, et al. Enhanced lymphatic delivery of mitomycin C conjugated with dextran. Cancer Res 1984;44(6):2505-10
  • Cai S, Xie Y, Bagby TR, et al. Intralymphatic chemotherapy using a hyaluronan–cisplatin conjugate. J Surg Res 2008;147(2):247-52
  • Khan W, Sharma SS, Kumar N. Bioanalytical method development, pharmacokinetics, and toxicity studies of paromomycin and paromomycin loaded in albumin microspheres. Drug Test Anal 2013;5(6):453-60
  • Das S, Khan W, Mohsin S, et al. Miltefosine loaded albumin microparticles for treatment of visceral leishmaniasis: formulation development and in vitro evaluation. Polym Adv Technol 2011;22(1):172-9
  • Khan W, Kumar N. Characterization, thermal stability studies, and analytical method development of Paromomycin for formulation development. Drug Test Anal 2011;3(6):363-72
  • Khan W, Kumar R, Singh S, et al. Paromomycin-loaded albumin microspheres: efficacy and stability studies. Drug Test Anal 2013;5(6):468-73
  • Hawley AE, Illum L, Davis SS. Lymph node localisation of biodegradable nanospheres surface modified with poloxamer and poloxamine block co-polymers. FEBS Lett 1997;400(3):319-23
  • Kumanohoso T, Natsugoe S, Shimada M, et al. Enhancement of therapeutic efficacy of bleomycin by incorporation into biodegradable poly-d, l-lactic acid. Cancer Chemother Pharmacol 1997;40(2):112-16
  • Liu J, Wong HL, Moselhy J, et al. Targeting colloidal particulates to thoracic lymph nodes. Lung Cancer 2006;51(3):377-86
  • Maincent P, Thouvenot P, Amicabile C, et al. Lymphatic targeting of polymeric nanoparticles after intraperitoneal administration in rats. Pharm Res 1992;9(12):1534-9
  • Liggins RT, D'Amours S, Demetrick JS, et al. Paclitaxel loaded poly (L-lactic acid) microspheres for the prevention of intraperitoneal carcinomatosis after a surgical repair and tumor cell spill. Biomaterials 2000;21(19):1959-69
  • Ziraksaz Z, Nomani A, Soleimani M, et al. Evaluation of cationic dendrimer and lipid as transfection reagents of short RNAs for stem cell modification. Int J Pharm 2013;448(1):231-8
  • Kobayashi H, Kawamoto S, Choyke PL, et al. Comparison of dendrimer-based macromolecular contrast agents for dynamic micro-magnetic resonance lymphangiography. Magn Reson Med 2003;50(4):758-66
  • Kobayashi H, Kawamoto S, Bernardo M, et al. Delivery of gadolinium-labeled nanoparticles to the sentinel lymph node: comparison of the sentinel node visualization and estimations of intra-nodal gadolinium concentration by the magnetic resonance imaging. J Control Release 2006;111(3):343-51
  • Kobayashi H, Ogawa M, Kosaka N, et al. Multicolor imaging of lymphatic function with two nanomaterials: quantum dot-labeled cancer cells and dendrimer-based optical agents. Nanomedicine 2009;4(4):411-19
  • Boncel S, Zajac P, Koziol KKK. Liberation of drugs from multi-wall carbon nanotube carriers. J Control Release 2013;169(1-2):126-40
  • Yang D, Yang F, Hu J, et al. Hydrophilic multi-walled carbon nanotubes decorated with magnetite nanoparticles as lymphatic targeted drug delivery vehicles. Chem Commun 2009(29):4447-9
  • McDevitt MR, Chattopadhyay D, Kappel BJ, et al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 2007;48(7):1180-9
  • Murakami T, Sawada H, Tamura G, et al. Water-dispersed single-wall carbon nanohorns as drug carriers for local cancer chemotherapy. Nanomedicine 2008;3(4):453-63
  • Shimada M, Natsugoe S, Aikou T. Enhanced efficacy of Bleomycin adsorbed on silica particles against lymph node metastasis derived from a transplanted tumor. Anticancer Res 1995;15(1):109
  • Lucci A, Turner RR, Morton DL. Carbon dye as an adjunct to isosulfan blue dye for sentinel lymph node dissection. Surgery 1999;126(1):48-53
  • Park M-J, Balakrishnan P, Yang S-G. Polymeric nanocapsules with SEDDS oil-core for the controlled and enhanced oral absorption of cyclosporine. Int J Pharm 2013;441(1-2):757-64
  • Nishioka Y, Yoshino H. Lymphatic targeting with nanoparticulate system. Adv Drug Deliv Rev 2001;47(1):55-64
  • Feng L, Zhang L, Liu M, et al. Roles of dextrans on improving lymphatic drainage for liposomal drug delivery system. J Drug Target 2010;18(3):168-78
  • Van der Lubben I, Verhoef J, Borchard G, et al. Chitosan for mucosal vaccination. Adv Drug Deliv Rev 2001;52(2):139-44
  • Janes K, Calvo P, Alonso M. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 2001;47(1):83-97
  • An P, Lei H, Zhang J, et al. Suppression of tumor growth and metastasis by a VEGFR-1 antagonizing peptide identified from a phage display library. Int J Cancer 2004;111(2):165-73
  • Starzec A, Vassy R, Martin A, et al. Antiangiogenic and antitumor activities of peptide inhibiting the vascular endothelial growth factor binding to neuropilin-1. Life Sci 2006;79(25):2370
  • Laakkonen P, Porkka K, Hoffman JA, et al. A tumor-homing peptide with a targeting specificity related to lymphatic vessels. Nat Med 2002;8(7):751-5
  • Ichihara H, Ueno J, Umebayashi M, et al. Chemotherapy with hybrid liposomes for acute lymphatic leukemia leading to apoptosis in vivo. Int J Pharm 2011;406(1-2):173-8
  • Luo G, Yu X, Jin C, et al. LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors. Int J Pharm 2010;385(1):150-6
  • Jain RK. Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 2001;46(1-3):149-68
  • Pirollo KF, Chang EH. Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol 2008;26(10):552-8
  • Barrett ADT, Stanberry LR. Vaccines for biodefense and emerging and neglected diseases. Academic Press; The Netherlands: 2009
  • Bergqvist L, Strand S, Haftstrom L, et al. The characterisation of radio colloids used for administration to the lymphatic system. In: Davis SS, Ilium L, McVic JG, Tomlinson E, editors. Microspheres and drug therapy: pharmaceutical immunological and medical aspects. Elsevier; Amsterdam, The Netherlands: 1984. p. 263-7
  • Oussoren C, Storm G. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection: III. Influence of surface modification with poly (ethyleneglycol). Pharm Res 1997;14(10):1479-84
  • Reddy ST, van der Vlies AJ, Simeoni E, et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 2007;25(10):1159-64
  • Oussoren C, Zuidema J, Crommelin DJA, et al. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection: II. Influence of liposomal size, lipid composition and lipid dose. Biochim Biophys Acta 1997;1328(2):261-72
  • Liu J, Reilly RM, Scollard D, et al. Effect of particle size on the pharmacokinetics and distribution of 111In-aminopolystyrene microspheres for intrapleural lymphatic targeting. AACR Meeting Abstracts; 2005. p. 335
  • Bettendorf U. Electronmicroscopic studies on the peritoneal resorption of intraperitoneally injected latex particles via the diaphragmatic lymphatics. Lymphology 1979;12(2):66
  • Muranishi S. Lymphatic delivery of drugs and its application to cancer chemotherapy (author's transl)]. Yakugaku Zasshi 1980;100(7):687
  • Hirano K, Hunt CA, Strubbe A, et al. Lymphatic transport of liposome-encapsulated drugs following intraperitoneal administration–effect of lipid composition. Pharm Res 1985;2(6):271-8
  • Swart PJ, Beljaars L, Kuipers ME, et al. Homing of negatively charged albumins to the lymphatic system: general implications for drug targeting to peripheral tissues and viral reservoirs. Biochem Pharmacol 1999;58(9):1425-35
  • Patel HM, Boodle KM, Vaughan-Jones R. Assessment of the potential uses of liposomes for lymphoscintigraphy and lymphatic drug delivery. Failure of 99m-technetium marker to represent intact liposomes in lymph nodes. Biochim Biophys Acta 1984;801(1):76-86
  • Supersaxo A, Hein WR, Steffen H. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res 1990;7(2):167-9
  • Bagby TR, Cai S, Duan S, et al. Impact of molecular weight on lymphatic drainage of a biopolymer-based imaging agent. Pharmaceutics 2012;4(2):276-95
  • Moghimi S, Hawley A, Christy N, et al. Surface engineered nanospheres with enhanced drainage into lymphatics and uptake by macrophages of the regional lymph nodes. FEBS Lett 1994;344(1):25-30
  • Patel H. Serum opsonins and liposomes: their interaction and opsonophagocytosis. Crit Rev Ther Drug Carrier Syst 1992;9(1):39-90
  • Florence AT, Attwood D. Physicochemical principles of pharmacy. Pharmaceutical Press; London, UK: 2011
  • Charman WNA, Noguchi T, Stella VJ. An experimental system designed to study the in situ intestinal lymphatic transport of lipophilic drugs in anesthetized rats. Int J Pharm 1986;33(1):155-64
  • Caliph SM, Charman WN, Porter CJH. Effect of short, medium, and long chain fatty acid based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph cannulated and noncannulated rats. J Pharm Sci 2000;89(8):1073-84
  • Holm R, Mullertz A, Pedersen GP, et al. Comparison of the lymphatic transport of halofantrine administered in disperse systems containing three different unsaturated fatty acids. Pharm Res 2001;18(9):1299-304
  • Gosk S, Moos T, Gottstein C, et al. VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo. Biochim Biophys Acta 2008;1778(4):854-63
  • Moghimi SM. Modulation of lymphatic distribution of subcutaneously injected poloxamer 407-coated nanospheres: the effect of the ethylene oxide chain configuration. FEBS Lett 2003;540(1):241-4
  • Oussoren C, Storm G. Liposomes to target the lymphatics by subcutaneous administration. Adv Drug Deliv Rev 2001;50(1):143-56
  • Phillips WT, Andrews T, Liu H, et al. Evaluation of [(99m) Tc] liposomes as lymphoscintigraphic agents: comparison with [(99m) Tc] sulfur colloid and [(99m) Tc] human serum albumin. Nucl Med Biol 2001;28(4):435
  • Zhuang Y, Ma Y, Wang C, et al. PEGylated cationic liposomes robustly augment vaccine-induced immune responses: role of lymphatic trafficking and biodistribution. J Control Release 2012;159(1):135-42
  • Allen TM, Hansen CB, Guo LSS. Subcutaneous administration of liposomes: a comparison with the intravenous and intraperitoneal routes of injection. Biochim Biophys Acta 1993;1150(1):9-16
  • Moghimi M, Moein Moghimi S. Lymphatic targeting of immuno-PEG-liposomes: evaluation of antibody-coupling procedures on lymph node macrophage uptake. J Drug Target 2008;16(7-8):7-8
  • Jain S, Tiwary AK, Jain NK. PEGylated elastic liposomal formulation for lymphatic targeting of zidovudine. Curr Drug Deliv 2008;5(4):275-81
  • Kaminskas LM, Kota J, McLeod VM, et al. PEGylation of polylysine dendrimers improves absorption and lymphatic targeting following SC administration in rats. J Control Release 2009;140(2):108-16
  • Shin S-B, Cho H-Y, Kim D-D, et al. Preparation and evaluation of tacrolimus-loaded nanoparticles for lymphatic delivery. Eur J Pharm Biopharm 2010;74(2):164-71
  • Mangat S, Patel HM. Lymph node localization of non-specific antibody-coated liposomes. Life Sci 1985;36(20):1917-25
  • Kaur CD, Nahar M, Jain NK. Lymphatic targeting of zidovudine using surface-engineered liposomes. J Drug Target 2008;16(10):798-805
  • Kim CK, Jeong EJ. Enhanced lymph node delivery and immunogenicity of hepatitis B surface antigen entrapped in galactosylated liposomes. Int J Pharm 1997;147(2):143-51
  • Akande J, Yeboah KG, Addo RT, et al. Targeted delivery of antigens to the gut-associated lymphoid tissues: 2. Ex vivo evaluation of lectin-labelled albumin microspheres for targeted delivery of antigens to the M-cells of the Peyer's patches. J Microencapsul 2010;27(4):325-36
  • Goutayer M, Dufort S, Josserand V, et al. Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging. Eur J Pharm Biopharm 2010;75(2):137-47
  • Hauff P, Reinhardt M, Briel A, et al. Molecular targeting of lymph nodes with L-selectin ligand-specific US contrast agent: a feasibility study in mice and dogs1. Radiology 2004;231(3):667-73
  • Yan Z, Wang F, Wen Z, et al. LyP-1-conjugated PEGylated liposomes: a carrier system for targeted therapy of lymphatic metastatic tumor. J Control Release 2012;157(1):118-25
  • Medina LA, Calixto SM, Klipper R, et al. Avidin/biotin-liposome system injected in the pleural space for drug delivery to mediastinal lymph nodes. J Pharm Sci 2004;93(10):2595-608
  • Medina LA, Klipper R, Phillips WT, et al. Pharmacokinetics and biodistribution of [111In]-avidin and [99mTc]-biotin-liposomes injected in the pleural space for the targeting of mediastinal nodes. Nucl Med Biol 2004;31(1):41-51
  • Phillips WT, Klipper R, Goins B. Novel method of greatly enhanced delivery of liposomes to lymph nodes. J Pharmacol Exp Ther 2000;295(1):309-13
  • Gu B, Xie C, Zhu J, et al. Folate-PEG-CKK 2-DTPA, A potential carrier for lymph-metastasized tumor targeting. Pharm Res 2010;27(5):933-42
  • Sinha R, Kim GJ, Nie S, et al. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 2006;5(8):1909-17
  • Drobnik J. Hyaluronan in drug delivery. Adv Drug Deliv Rev 1991;7(2):295-308
  • Coppi G, Iannuccelli V. Alginate/chitosan microparticles for tamoxifen delivery to the lymphatic system. Int J Pharm 2009;367(1):127-32

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.