395
Views
34
CrossRef citations to date
0
Altmetric
Reviews

High-density lipoproteins for the systemic delivery of short interfering RNA

, BS & , MD PhD

Bibliography

  • Guo PX, Coban O, Snead NM, et al. Engineering RNA for targeted siRNA delivery and medical application. Adv Drug Deliv Rev 2010;62(6):650-66
  • Weinstein S, Peer D. RNAi nanomedicines: challenges and opportunities within the immune system. Nanotechnology 2010;21(23):232001
  • Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 2007;8(1):23-36
  • Watts JK, Deleavey GF, Damha MJ. Chemically modified siRNA: tools and applications. Drug Discov Today 2008;13(19-20):842-55
  • Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411(6836):494-8
  • Kenski DM, Cooper AJ, Li JJ, et al. Analysis of acyclic nucleoside modifications in siRNAs finds sensitivity at position 1 that is restored by 5′-terminal phosphorylation both in vitro and in vivo. Nucleic Acids Res 2010;38(2):660-71
  • Wang Y, Sheng G, Juranek S, et al. Structure of the guide-strand-containing argonaute silencing complex. Nature 2008;456(7219):209-13
  • Wang Y, Juranek S, Li H, et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 2008;456(7224):921-6
  • Gaglione M, Messere A. Recent progress in chemically modified siRNAs. Mini Rev Med Chem 2010;10(7):578-95
  • Manoharan M. RNA interference and chemically modified small interfering RNAs. Curr Opin Chem Biol 2004;8(6):570-9
  • Jackson AL, Linsley PS. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 2010;9(1):57-67
  • Behlke MA. Chemical modification of siRNAs for in vivo use. Oligonucleotides 2008;18(4):305-19
  • Schutz CA, Juillerat-Jeanneret L, Mueller H, et al. Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine (Lond) 2013;8(3):449-67
  • Nguyen T, Menocal EM, Harborth J, Fruehauf JH. RNAi therapeutics: an update on delivery. Curr Opin Mol Ther 2008;10(2):158-67
  • Bumcrot D, Manoharan M, Koteliansky V, Sah DW. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2006;2(12):711-19
  • Vaishnaw AK, Gollob J, Gamba-Vitalo C, et al. A status report on RNAi therapeutics. Silence 2010;1(1):14
  • Pecot CV, Calin GA, Coleman RL, et al. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 2011;11(1):59-67
  • van Dongen S, Abreu-Goodger C, Enright AJ. Detecting microRNA binding and siRNA off-target effects from expression data. Nat Methods 2008;5(12):1023-5
  • Higuchi Y, Kawakami S, Hashida M. Strategies for in vivo delivery of siRNAs: recent progress. BioDrugs 2010;24(3):195-205
  • Miele E, Spinelli GP, Miele E, et al. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int J Nanomed 2012;7:3637-57
  • Gao Y, Liu XL, Li XR. Research progress on siRNA delivery with nonviral carriers. Int J Nanomed 2011;6:1017-25
  • Layzer JM, McCaffrey AP, Tanner AK, et al. In vivo activity of nuclease-resistant siRNAs. RNA 2004;10(5):766-71
  • Jackson AL, Burchard J, Leake D, et al. Position-specific chemical modification of siRNAs reduces "off-target" transcript silencing. RNA 2006;12(7):1197-205
  • Chiu YL, Rana TM. siRNA function in RNAi: a chemical modification analysis. RNA 2003;9(9):1034-48
  • Czauderna F, Fechtner M, Dames S, et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 2003;31(11):2705-16
  • Morrissey DV, Lockridge J, Shaw L, et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Hepatology 2005;42(4):576A-A
  • Overhoff M, Sczakiel G. Phosphorothioate-stimulated uptake of short interfering RNA by human cells. Embo Rep 2005;6(12):1176-81
  • Czech MP, Aouadl M, Tesz GJ, et al. RNAi-based therapeutic strategies for metabolic disease. Nat Rev Endocrinol 2011;7473-84
  • Hall AHS, Wan J, Shaughnessy EE, et al. RNA interference using boranophosphate siRNAs: structure-activity relationships. Nucleic Acids Res 2004;32(20):5991-6000
  • Harborth J, Elbashir SM, Vandenburgh K, et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic A 2003;13(2):83-105
  • Amarzguioui M, Holen T, Babaie E, Prydz H. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 2003;31(2):589-95
  • Braasch DA, Jensen S, Liu YH, et al. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 2003;42(26):7967-75
  • Chen QM, Butler D, Querbes W, et al. Lipophilic siRNAs mediate efficient gene silencing in oligodendrocytes with direct CNS delivery. J Control Release 2010;144(2):227-32
  • DiFiglia M, Sena-Esteves M, Chase K, et al. Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci USA 2007;104(43):17204-9
  • Wolfrum C, Shi S, Jayaprakash KN, et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol 2007;25(10):1149-57
  • Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004;432(7014):173-8
  • Moschos SA, Jones SW, Perry MM, et al. Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem 2007;18(5):1450-9
  • Arima H, Yoshimatsu A, Ikeda H, et al. Folate-PEG-Appended Dendrimer Conjugate with alpha-Cyclodextrin as a Novel Cancer Cell-Selective siRNA Delivery Carrier. Mol Pharmaceut 2012;9(9):2591-604
  • Yu B, Zhao X, Lee LJ, Lee RJ. Targeted delivery systems for oligonucleotide therapeutics. AAPS J 2009;11(1):195-203
  • Zhou JH, Rossi JJ. Therapeutic potential of aptamer-siRNA conjugates for treatment of HIV-1. BioDrugs 2012;26(6):393-400
  • McNamara JO, Andrechek ER, Wang Y, et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 2006;24(8):1005-15
  • Rozema DB, Lewis DL, Wakefield DH, et al. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci USA 2007;104(32):12982-7
  • Nishina K, Unno T, Uno Y, et al. Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol. Mol Ther 2008;16(4):734-40
  • Yuan X, Naguib S, Wu Z. Recent advances of siRNA delivery by nanoparticles. Expert Opin Drug Deliv 2011;8(4):521-36
  • Inaba S, Nagahara S, Makita N, et al. Atelocollagen-mediated systemic delivery prevents immunostimulatory adverse effects of siRNA in mammals. Mol Ther 2012;20(2):356-66
  • Wang Y, Li Z, Han Y, et al. Nanoparticle-based delivery system for application of siRNA in vivo. Curr Drug Metab 2010;11(2):182-96
  • Davis ME, Zuckerman JE, Choi CH, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010;464(7291):1067-70
  • Alameh M, Dejesus D, Jean M, et al. Low molecular weight chitosan nanoparticulate system at low N:P ratio for nontoxic polynucleotide delivery. Int J Nanomed 2012;7:1399-414
  • Singha K, Namgung R, Kim WJ. Polymers in small-interfering RNA delivery. Nucleic acid Ther 2011;21(3):133-47
  • Kesharwani P, Tekade RK, Gajbhiye V, et al. Cancer targeting potential of some ligand-anchored poly(propylene imine) dendrimers: a comparison. Nanomedicine 2011;7(3):295-304
  • Taratula O, Garbuzenko OB, Kirkpatrick P, et al. Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. J Control Release 2009;140(3):284-93
  • Rossi JJ. RNAi therapeutics: SNALPing siRNAs in vivo. Gene Ther 2006;13(7):583-4
  • Akinc A, Querbes W, De S, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther 2010;18(7):1357-64
  • Zimmermann TS, Lee AC, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature 2006;441(7089):111-14
  • Geisbert TW, Lee AC, Robbins M, et al. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet 2010;375(9729):1896-905
  • Lobovkina T, Jacobson GB, Gonzalez-Gonzalez E, et al. In vivo sustained release of siRNA from solid lipid nanoparticles. ACS Nano 2011;5(12):9977-83
  • Lee JM, Yoon TJ, Cho YS. Recent developments in nanoparticle-based siRNA delivery for cancer therapy. Biomed Res Int 2013;2013:782041
  • Zhang Z, Yang X, Zhang Y, et al. Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin Cancer Res 2006;12(16):4933-9
  • Podesta JE, Al-Jamal KT, Herrero MA, et al. Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. Small 2009;5(10):1176-85
  • Liu Z, Tabakman S, Welsher K, Dai HJ. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2009;2(2):85-120
  • Shvedova AA, Kisin ER, Porter D, et al. Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus? Pharmacol Ther 2009;121(2):192-204
  • Firme CP III, Bandaru PR. Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine 2010;6(2):245-56
  • Poland CA, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 2008;3(7):423-8
  • Medarova Z, Pham W, Farrar C, et al. In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 2007;13(3):372-7
  • Lee JH, Lee K, Moon SH, et al. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem Int Ed Engl 2009;48(23):4174-9
  • Yu Y, Sun D. Superparamagnetic iron oxide nanoparticle ‘theranostics' for multimodality tumor imaging, gene delivery, targeted drug and prodrug delivery. Expert Rev Clin Pharmacol 2010;3(1):117-30
  • Su Y, He Y, Lu H, et al. The cytotoxicity of cadmium based, aqueous phase - synthesized, quantum dots and its modulation by surface coating. Biomaterials 2009;30(1):19-25
  • Subramaniam P, Lee SJ, Shah S, et al. Generation of a library of non-toxic quantum dots for cellular imaging and siRNA delivery. Adv Mater 2012;24(29):4014-19
  • Ghosh P, Han G, De M, et al. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008;60(11):1307-15
  • Connor EE, Mwamuka J, Gole A, et al. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005;1(3):325-7
  • Rosi NL, Giljohann DA, Thaxton CS, et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006;312(5776):1027-30
  • Giljohann DA, Seferos DS, Prigodich AE, et al. Gene regulation with polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc 2009;131(6):2072-3
  • Zheng D, Giljohann DA, Chen DL, et al. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc Natl Acad Sci USA 2012;109(30):11975-80
  • Kim ST, Chompoosor A, Yeh YC, et al. Dendronized gold nanoparticles for siRNA delivery. Small 2012;8(21):3253-6
  • Bonoiu AC, Mahajan SD, Ding H, et al. Nanotechnology approach for drug addiction therapy: gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proc Natl Acad Sci USA 2009;106(14):5546-50
  • Camont L, Chapman MJ, Kontush A. Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol Med 2011;17(10):594-603
  • Xu S, Laccotripe M, Huang X, et al. Apolipoproteins of HDL can directly mediate binding to the scavenger receptor SR-BI, an HDL receptor that mediates selective lipid uptake. J Lipid Res 1997;38(7):1289-98
  • Warnick GR, McNamara JR, Boggess CN, et al. Polyacrylamide gradient gel electrophoresis of lipoprotein subclasses. Clin Lab Med 2006;26(4):803-46
  • Tabet F, Rye KA. High-density lipoproteins, inflammation and oxidative stress. Clin Sci 2009;116(1-2):87-98
  • Damiano MG, Mutharasan RK, Tripathy S, et al. Templated high density lipoprotein nanoparticles as potential therapies and for molecular delivery. Adv Drug Deliv Rev 2013;65(5):649-62
  • Rosenson RS, Brewer HB, Chapman MJ, et al. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin Chem 2011;57(3):392-410
  • Asztalos BF, Tani M, Schaefer EJ. Metabolic and functional relevance of HDL subspecies. Curr Opin Lipidol 2011;22(3):176-85
  • Bonow RO. Braunwald's heart disease - a textbook of cardiovascular medicine. 9th edition. Elsevier Saunders; Philadelphia, PA: 2012
  • Ikonen E. Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol 2008;9(2):125-38
  • Calabresi L, Gomaraschi M, Rossoni G, Franceschini G. Synthetic high density lipoproteins for the treatment of myocardial ischemia/reperfusion injury. Pharmacol Ther 2006;111(3):836-54
  • Silva RAGD, Huang R, Morris J, et al. Structure of apolipoprotein A-I in spherical high density lipoproteins of different sizes. Proc Natl Acad Sci USA 2008;105(34):12176-81
  • Segrest JP, Li L, Anantharamaiah GM, et al. Structure and function of apolipoprotein A-I and high-density lipoprotein. Curr Opin Lipidol 2000;11(2):105-15
  • Cheung MC, Albers JJ. Distribution of high-density lipoprotein particles with different apoprotein composition - particles with a-I and a-Ii and particles with a-I but no a-Ii. J Lipid Res 1982;23(5):747-53
  • Vickers KC, Palmisano BT, Shoucri BM, et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 2011;13(4):423-U182
  • Liu X, Suo R, Xiong SL, et al. HDL drug carriers for targeted therapy. Clin Chim Acta 2013;415:94-100
  • Vickers KC, Remaley AT. Functional diversity of HDL cargo. J Lipid Res 2013; doi: 10.1194/jlr.R035964
  • Pirillo A, Norata GD, Catapano AL. High-density lipoprotein subfractions. what the clinicians need to know. Cardiology 2013;124(2):116-25
  • Rader DJ, Alexander ET, Weibel GL, et al. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res 2009;50(Suppl):S189-94
  • Gomaraschi M, Ossoli A, Vitali C, Calabresi L. HDL and endothelial protection: examining evidence from HDL inherited disorders. Clin Lipidol 2013;8(3):361-70
  • Nicholls SJ, Dusting GJ, Cutri B, et al. Reconstituted high-density lipoproteins inhibit the acute pro-oxidant and proinflammatory vascular changes induced by a periarterial collar in normocholesterolemic rabbits. Circulation 2005;111(12):1543-50
  • Cockerill GW, Rye KA, Gamble JR, et al. High-density-lipoproteins inhibit cytokine-induced expression of endothelial-cell adhesion molecules. Arterioscl Throm Vas 1995;15(11):1987-94
  • Navab M, Imes SS, Hama SY, et al. Monocyte transmigration induced by modification of low-density-lipoprotein in cocultures of human aortic-wall cells is due to induction of monocyte chemotactic protein-1 synthesis and is abolished by high-density-lipoprotein. J Clin Invest 1991;88(6):2039-46
  • Kontush A, Chapman MJ. Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr Opin Lipidol 2010;21(4):312-18
  • Davidson WS, Silva RAGD, Chantepie S, et al. Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters relevance to antioxidative function. Arterioscl Throm Vas 2009;29(6):870-U234
  • Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circ Res 2006;98(11):1352-64
  • Yuhanna IS, Zhu Y, Cox BE, et al. High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat Med 2001;7(7):853-7
  • Furie B, Furie BC. Role of platelet P-selectin and microparticle PSGL-1 in thrombus formation. Trends Mol Med 2004;10(4):171-8
  • Farmer JA, Liao J. Evolving concepts of the role of high-density lipoprotein in protection from atherosclerosis. Curr Atheroscler Rep 2011;13(2):107-14
  • Naqvi TZ, Shah PK, Ivey PA, et al. Evidence that high-density lipoprotein cholesterol is an independent predictor of acute platelet-dependent thrombus formation. Am J Cardiol 1999;84(9):1011-17
  • Calkin AC, Drew BG, Ono A, et al. Reconstituted high-density lipoprotein attenuates platelet function in individuals with type 2 diabetes mellitus by promoting cholesterol efflux. Circulation 2009;120(21):2095-104
  • Bijsterbosch MK, Rump ET, De Vrueh RLA, et al. Modulation of plasma protein binding and in vivo liver cell uptake of phosphorothioate oligodeoxynucleotides by cholesterol conjugation. Nucleic Acids Res 2000;28(14):2717-25
  • Lorenz C, Hadwiger P, John M, et al. Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorg Med Chem Lett 2004;14(19):4975-7
  • Thaxton CS, Daniel WL, Giljohann DA, et al. Templated spherical high density lipoprotein nanoparticles. J Am Chem Soc 2009;131(4):1384-5
  • Luthi AJ, Zhang H, Kim D, et al. Tailoring of biomimetic high-density lipoprotein nanostructures changes cholesterol binding and efflux. ACS Nano 2012;6(1):276-85
  • McMahon KM, Mutharasan RK, Tripathy S, et al. Biomimetic high density lipoprotein nanoparticles for nucleic acid delivery. Nano Lett 2011;11(3):1208-14
  • Zhang ZH, Chen J, Ding LL, et al. HDL-mimicking peptide-lipid nanoparticles with improved tumor targeting. Small 2010;6(3):430-7
  • Yang M, Jin HL, Chen JA, et al. Efficient cytosolic delivery of siRNA using HDL-mimicking nanoparticles. Small 2011;7(5):568-73
  • Lacko AG, Nair M, Paranjape S, et al. High density lipoprotein complexes as delivery vehicles for anticancer drugs. Anticancer Res 2002;22(4):2045-9
  • Shahzad MM, Mangala LS, Han HD, et al. Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia 2011;13(4):309-19
  • Ding Y, Wang W, Feng MQ, et al. A biomimetic nanovector-mediated targeted cholesterol-conjugated siRNA delivery for tumor gene therapy. Biomaterials 2012;33(34):8893-905
  • Nakayama T, Butler JS, Sehgal A, et al. Harnessing a physiologic mechanism for siRNA delivery with mimetic lipoprotein particles. Mol Ther 2012;20(8):1582-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.