1,219
Views
110
CrossRef citations to date
0
Altmetric
Reviews

Thermosensitive chitosan/glycerophosphate-based hydrogel and its derivatives in pharmaceutical and biomedical applications

, , , , &

Bibliography

  • Langer R. New methods of drug delivery. Science 1990;249:1527-33
  • Heller J. Polymers for controlled parenteral delivery of peptides and proteins. Adv Drug Deliv Rev 1993;10:163-204
  • Hatefi A, Amsden B. Biodegradable injectable in situ forming drug delivery systems. J Control Release 2002;80:9-28
  • Packhaeuser CB, Schnieders J, Oster CG, Kissel T. In situ forming parenteral drug delivery systems: an overview. Eur J Pharm Biopharm 2004;58:445-55
  • Dong WY, Korber M, Lopez Esguerra V, Bodmeier R. Stability of poly(d,l-lactide-co-glycolide) and leuprolide acetate in in-situ forming drug delivery systems. J Control Release 2006;115:158-67
  • Joshi R, Arora V, Desjardins JP, et al. In vivo properties of an in situ forming gel for parenteral delivery of macromolecular drugs. Pharm Res 1998;15:1189-95
  • Liu Y, Kemmer A, Keim K, et al. Poly(ethylene carbonate) as a surface-eroding biomaterial for in situ forming parenteral drug delivery systems: a Feasibility study. Eur J Pharm Biopharm 2010;76:222-9
  • Nickerson MT, Patel J, Heyd DV, et al. Kinetic and mechanistic considerations in the gelation of genipin-crosslinked gelatin. Int J Biol Macromol 2006;39:298-302
  • Kumar R, Muzzarelli RAA, Muzzarelli C, et al. Chitosan chemistry and pharmaceutical perspectives. Chem Rev 2004;104:6017-84
  • Pal K, Behera B, Roy S, et al. Chitosan based delivery systems on a length scale: nano to macro. Soft Mater 2011;11:125-42
  • Berger J, Reist M, Mayer JM, et al. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 2004;57:19-34
  • Chenite A, Chaput C, Wang D, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 2000;21:2155-61
  • Chenite A, Chaput C, Combes C, et al. BioSyntech LC, assignee. Temperature-controlled pH-dependent formation of ionic polysaccharide gels. US6344488; 1999
  • Ruel-Gariepy E, Chenite A, Chaput C, et al. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int J Pharm 2000;203:89-98
  • Cho JY, Heuzey MC, Begin A, Carreau PJ. Physical gelation of chitosan in the presence of beta-glycerophosphate: the effect of temperature. Biomacromolecules 2005;6:3267-75
  • Iliescu M, Hoemann CD, Shive MS, et al. Ultrastructure of hybrid chitosan−glycerol phosphate blood clots by environmental scanning electron microscopy. Microsc Res Tech 2008;71:236-47
  • Filion D, Buschmann MD. Chitosan - Glycerol-Phosphate (GP) gels release freely diffusible GP and possess titratable fixed charge. Carbohydr Polym 2013;98:813-19
  • Desbrieres J, Martinez C, Rinaudo M. Hydrophobic derivatives of chitosan: characterization and rheological behaviour. Int J Biol Macromol 1996;19:21-8
  • Filion D, Lavertu M, Buschmann MD. Ionization and solubility of chitosan solutions related to thermosensitive chitosan/glycerol-phosphate systems. Biomacromolecules 2007;8:3224-34
  • Lavertu M, Filion D, Buschmann MD. Heat-induced transfer of protons from chitosan to glycerol phosphate produces chitosan precipitation and gelation. Biomacromolecules 2008;9:640-50
  • Crompton KE, Prankerd RJ, Paganin DM, et al. Morphology and gelation of thermosensitive chitosan hydrogels. Biophys Chem 2005;117:47-53
  • Crompton KE, Forsythe JS, Horne MK, et al. Molecular level and microstructural characterisation of thermally sensitive chitosan hydrogels. Soft Mater 2009;5:4704-11
  • Qiu X, Yang Y, Wang L, et al. Synergistic interactions during thermosensitive chitosan-beta-glycerophosphate hydrogel formation. RSC Adv 2011;1:282-9
  • Supper S, Anton N, Seidel N, et al. Rheological study of chitosan/polyol-phosphate systems: influence of the polyol part on the thermo-induced gelation mechanism. Langmuir 2013;29(32):10229-37
  • Ruel-Gariepy E, Leroux JC. In situ-forming hydrogels-review of temperature-sensitive systems. Eur J Pharm Biopharm 2004;58:409-26
  • Chenite A, Buschmann M, Wang D, et al. Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydr Polym 2001;46:39-47
  • Han HD, Nam DE, Seo DH, et al. Preparation and biodegradation of thermosensitive chitosan hydrogel as a function of pH and temperature. Macromol Res 2004;12:507-11
  • Ganji F, Abdekhodaie M, Ramazani SA. Gelation time and degradation rate of chitosan-based injectable hydrogel. J Sol-Gel Sci Technol 2007;42:47-53
  • Kempe S, Metz H, Bastrop M, et al. Characterization of thermosensitive chitosan-based hydrogels by rheology and electron paramagnetic resonance spectroscopy. Eur J Pharm Biopharm 2008;68:26-33
  • Zhou HY, Chen XG, Kong M, et al. Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system. Carbohydr Polym 2008;73:265-73
  • Cho J, Heuzey MC, Begin A, Carreau PJ. Chitosan and glycerophosphate concentration dependence of solution behaviour and gel point using small amplitude oscillatory rheometry. Food Hydrocoll 2006;20:936-45
  • Tsai ML, Chang HW, Yu HC, et al. Effect of chitosan characteristics and solution conditions on gelation temperatures of chitosan/2-glycerophosphate/nanosilver hydrogels. Carbohydr Polym 2011;84:1337-43
  • Chang HW, Lin YS, Tsai YD, Tsai ML. Effects of chitosan characteristics on the physicochemical properties, antibacterial activity, and cytotoxicity of chitosan/2-glycerophosphate/nanosilver hydrogels. J Appl Polym Sci 2013;127:169-76
  • Chen RH, Tsaih ML, Lin WC. Effects of chain flexibility of chitosan molecules on the preparation, physical, and release characteristics of the prepared capsule. Carbohydr Polym 1996;31:141-8
  • Zhao Q, Cheng X, Ji Q, et al. Effect of organic and inorganic acids on chitosan/glycerophosphate thermosensitive hydrogel. J Sol-Gel Sci Technol 2009;50:111-18
  • Dang QF, Zou SH, Chen XG, et al. Characterizations of chitosan-based highly porous hydrogel – the effects of the solvent. J Appl Polym Sci 2012;125:E88-98
  • Aliaghaie M, Mirzadeh H, Dashtimoghadam E, Taranejoo S. Investigation of gelation mechanism of an injectable hydrogel based on chitosan by rheological measurements for a drug delivery application. Soft Mater 2012;8:3128-37
  • Coutu JM, Fatimi A, Berrahmoune S, et al. A new radiopaque embolizing agent for the treatment of endoleaks after endovascular repair: influence of contrast agent on chitosan thermogel properties. J Biomed Mater Res B Appl Biomater 2013;101B:153-61
  • Mezger TG. The rheology hanbook. 3rd edition. Vincentz Network; Hanover, Germany; 2006
  • Cho J, Heuzey MC. Dynamic scaling for gelation of a thermosensitive chitosan-β-glycerophosphate hydrogel. Colloid Polym Sci 2008;286:427-34
  • Dang QF, Yan JQ, Li JJ, et al. Controlled gelation temperature, pore diameter and degradation of a highly porous chitosan-based hydrogel. Carbohydr Polym 2011;83:171-8
  • Berger J, Reist M, Chenite A, et al. Pseudo-thermosetting chitosan hydrogels for biomedical application. Int J Pharm 2005;288:197-206
  • Kim S, Nishimoto SK, Bumgardner JD, et al. A Chitosan/beta-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials 2010;31:4157-66
  • Sun J, Jiang G, Qiu T, et al. Injectable chitosan-based hydrogel for implantable drug delivery: body response and induced variations of structure and composition. J Biomed Mater Res 2010;95A:1019-27
  • Peng Q, Sun X, Gong T, et al. Injectable and biodegradable thermosensitive hydrogels loaded with PHBHHx nanoparticles for the sustained and controlled release of insulin. Acta Biomater 2013;9:5063-9
  • Schuetz YB, Gurny R, Jordan O. A novel thermoresponsive hydrogel based on chitosan. Eur J Pharm Biopharm 2008;68:19-25
  • Ji C, Shi J. Sterilization-free chitosan hydrogels for controlled drug release. Mater Lett 2012;72:110-12
  • Zahraoui C, Sharrock P. Influence of sterilization on injectable bone biomaterials. Bone 1999;25:63S-5S
  • Jarry C, Leroux JC, Haeck J, Chaput C. Irradiating or autoclaving chitosan/polyol solutions: effect on thermogelling chitosan-beta-glycerophosphate systems. Chem Pharm Bull (Tokyo) 2002;50:1335-40
  • Molinaro G, Leroux JC, Damas J, Adam A. Biocompatibility of thermosensitive chitosan-based hydrogels: an in vivo experimental approach to injectable biomaterials. Biomaterials 2002;23:2717-22
  • Ruel-Gariepy E, Shive M, Bichara A, et al. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm 2004;57:53-63
  • Ahmadi R, de Bruijn JD. Biocompatibility and gelation of chitosan−glycerol phosphate hydrogels. J Biomed Mater Res 2008;86A:824-32
  • Jarry C, Chaput C, Chenite A, et al. Effects of steam sterilization on thermogelling chitosan-based gels. J Biomed Mater Res 2001;58:127-35
  • Dang QF, Yan JQ, Lin H, et al. Design and evaluation of a highly porous thermosensitive hydrogel with low gelation temperature as a 3D culture system for Penaeus chinensis lymphoid cells. Carbohydr Polym 2012;88:361-8
  • San Juan A, Montembault A, Gillet D, et al. Degradation of chitosan-based materials after different sterilization treatments. IOP Conf Ser Mater Sci Eng 2012;31:012007
  • Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 2010;62:3-11
  • Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan: a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 2011;36:981-1014
  • Topp H, Hochfeld O, Bark S, et al. Glycerophosphate does not interact with components of parenteral nutrition. Pharmacology 2011;88:114-20
  • Wu J, Wei W, Wang LY, et al. A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomaterials 2007;28:2220-32
  • Zhou HY, Zhang YP, Zhang WF, Chen XG. Biocompatibility and characteristics of injectable chitosan-based thermosensitive hydrogel for drug delivery. Carbohydr Polym 2011;83:1643-51
  • Foley PL, Ulery BD, Kan HM, et al. A chitosan thermogel for delivery of ropivacaine in regional musculoskeletal anesthesia. Biomaterials 2013;34:2539-46
  • Varum KM, Myhr MM, Hjerde RJN, Smidsrod O. In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydr Res 1997;299:99-101
  • Ren D, Yi H, Wang W, Ma X. The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydr Res 2005;340:2403-10
  • Tian M, Yang Z, Kuwahara K, et al. Delivery of demineralized bone matrix powder using a thermogelling chitosan carrier. Acta Biomater 2012;8:753-62
  • Peng Y, Li J, Li J, et al. Optimization of thermosensitive chitosan hydrogels for the sustained delivery of venlafaxine hydrochloride. Int J Pharm 2013;441:482-90
  • Berrada M, Serreqi A, Dabbarh F, et al. A novel non-toxic camptothecin formulation for cancer chemotherapy. Biomaterials 2005;26:2115-20
  • Han HD, Song CK, Park YS, et al. A chitosan hydrogel-based cancer drug delivery system exhibits synergistic antitumor effects by combining with a vaccinia viral vaccine. Int J Pharm 2008;350:27-34
  • Paulson DP, Abuzeid W, Jiang H, et al. A novel controlled local drug delivery system for inner ear disease. Laryngoscope 2008;118:706-11
  • Lajud SA, Han Z, Chi FL, et al. A Regulated delivery system for inner ear drug application. J Control Release 2013;166(3):268-76
  • Agarwal P, Rupenthal ID. Injectable implants for the sustained release of protein and peptide drugs. Drug Discov Today 2013;18:337-49
  • Khodaverdi E, Tafaghodi M, Ganji F, et al. In vitro insulin release from thermosensitive chitosan hydrogel. AAPS PharmSciTech 2012;13:460-6
  • Kim GO, Kim N, Kim DY, et al. An electrostatically crosslinked chitosan hydrogel as a drug carrier. Molecules 2012;17:13704-11
  • Shamji MF, Hwang P, Bullock RW, et al. Release and activity of anti-TNFa therapeutics from injectable chitosan preparations for local drug delivery. J Biomed Mater Res B Appl Biomater 2009;90B:319-26
  • Gordon S, Saupe A, McBurney W, et al. Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery. J Pharm Pharmacol 2008;60:1591-600
  • Richardson SM, Hughes N, Hunt JA, et al. Human mesenchymal stem cell differentiation to NP-like cells in chitosan−glycerophosphate hydrogels. Biomaterials 2008;29:85-93
  • Hastings CL, Kelly HM, Murphy MJ, et al. Development of a thermoresponsive chitosan gel combined with human mesenchymal stem cells and desferrioxamine as a multimodal pro-angiogenic therapeutic for the treatment of critical limb ischaemia. J Control Release 2012;161:73-80
  • Liu Z, Wang H, Wang Y, et al. The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials 2012;33:3093-106
  • Shive MS, Hoemann CD, Restrepo A, et al. BST-CarGel: in situ chondroinduction for cartilage repair. Oper Tech Orthop 2006;16:271-8
  • Marchand C, Rivard GE, Sun J, Hoemann CD. Solidification mechanisms of chitosan−glycerol phosphate/blood implant for articular cartilage repair. Osteoarthritis Cartilage 2009;17:953-60
  • Chevrier A, Hoemann CD, Sun J, Buschmann MD. Chitosanglycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects. Osteoarthritis Cartilage 2007;15:316-27
  • Chevrier A, Hoemann CD, Sun J, Buschmann MD. Temporal and spatial modulation of chondrogenic foci in subchondral microdrill holes by chitosan-glycerol phosphate/blood implants. Osteoarthritis Cartilage 2011;19:136-44
  • Hoemann CD, Sun J, Legare A, et al. Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthritis Cartilage 2005;13:318-29
  • Hoemann CD, Sun J, McKee MD, et al. Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects. Osteoarthritis Cartilage 2007;15:78-89
  • Couto DS, Hong Z, Mano JF. Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles. Acta Biomater 2009;5:115-23
  • Kim S, Tsao H, Kang Y, et al. In vitro evaluation of an injectable chitosan gel for sustained local delivery of BMP-2 for osteoblastic differentiation. J Biomed Mater Res B Appl Biomater 2011;99B:380-90
  • Ashley A. Injectable hydrogels for bone and cartilage repair. Biomed Mater 2012;7:024105
  • Alinaghi A, Rouini MR, Johari Daha F, Moghimi HR. Hydrogel-embeded vesicles, as a novel approach for prolonged release and delivery of liposome, in vitro and in vivo. J Liposome Res 2013;23:235-43
  • Ruel-Gariepy E, Leclair G, Hildgen P, et al. Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J Control Release 2002;82:373-83
  • Mulik R, Kulkarni V, Murthy RSR. Chitosan-based thermosensitive hydrogel containing liposomes for sustained delivery of cytarabine. Drug Dev Ind Pharm 2009;35:49-56
  • Gordon S, Teichmann E, Young K, et al. In vitro and in vivo investigation of thermosensitive chitosan hydrogels containing silica nanoparticles for vaccine delivery. Eur J Pharm Sci 2010;41:360-8
  • Huang FY, Huang LK, Lin WY, et al. Development of a thermosensitive hydrogel system for local delivery of 188Re colloid drugs. Appl Radiat Isot 2007;67:1405-11
  • Huang LK, Chen WM, Lin WY, et al. Local delivery of rhenium-188 colloid into hepatic tumor sites in rats using thermo-sensitive chitosan hydrogel: effects of gelling time of chitosan as delivery system. J Radioanal Nucl Chem 2011;290:39-44
  • Nair LS, Starnes T, Ko JWK, Laurencin CT. Development of injectable thermogelling chitosan-inorganic phosphate solutions for biomedical applications. Biomacromolecules 2007;8:3779-85
  • Laurencin CT, Nair LS. Methods for regulating gelation of polysaccharide solutions and uses thereof. WO2007087350A2; 2007
  • Ta HT, Han H, Larson I, et al. Chitosan-dibasic orthophosphate hydrogel: a potential drug delivery system. Int J Pharm 2009;371:134-41
  • Ta HT, Dass CR, Larson I, et al. A chitosan-dipotassium orthophosphate hydrogel for the delivery of Doxorubicin in the treatment of osteosarcoma. Biomaterials 2009;30:3605-13
  • Li X, Kong X, Wang X, et al. Gel-Sol-Gel Thermo-gelation behavior study of chitosan-inorganic phosphate solutions. Eur J Pharm Biopharm 2010;75:388-92
  • Li X, Kong X, Zhang J, et al. A novel composite hydrogel based on chitosan and inorganic phosphate for local drug delivery of camptothecin nanocolloids. J Pharm Sci 2011;100:232-41
  • Casettari L, Cespi M, Palmieri GF, Bonacucina G. Characterization of the interaction between chitosan and inorganic sodium phosphates by means of rheological and optical microscopy studies. Carbohydr Polym 2013;91:597-602
  • LeHoux JG, Dupuis G. Recovery of chitosan from aqueous acidic solutions by salting-out: part 1. Use of inorganic salts. Carbohydr Polym 2007;68:295-304
  • Liu L, Tang X, Wang Y, Guo S. Smart gelation of chitosan solution in the presence of NaHCO3 for injectable drug delivery system. Int J Pharm 2011;414:6-15
  • Patois E, Osorio-da Cruz S, Tille JC, et al. Novel thermosensitive chitosan hydrogels: in vivo evaluation. J Biomed Mater Res 2009;91A:324-30
  • Chenite A, Selmani A. Highly biocompatible dual thermogelling chitosan/glucosamine salt compositions. US20120052012A1; 2010
  • Cheng YH, Yang SH, Su WY, et al. Thermosensitive chitosan-gelatin-glycerol phosphate hydrogels as a cell carrier for nucleus pulposus regeneration: an in vitro study. Tissue Eng Part A 2010;16:695-703
  • Cheng YH, Yang SH, Lin FH. Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration. Biomaterials 2011;32:6953-61
  • Yang KC, Wu CC, Cheng YH, et al. Chitosan/gelatin hydrogel prolonged the function of insulinoma/agarose microspheres in vivo during xenogenic transplantation. Transplant Proc 2008;40:3623-6
  • Yang KC, Wu CC, Lin FH, et al. Chitosan/gelatin hydrogel as immunoisolative matrix for injectable bioartificial pancreas. Xenotransplantation 2008;15:407-16
  • Wang L, Stegemann JP. Thermogelling chitosan and collagen composite hydrogels initiated with beta-glycerophosphate for bone tissue engineering. Biomaterials 2010;31:3976-85
  • Huang Z, Feng Q, Yu B, Li S. Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite. Mater Sci Eng C 2011;31:683-7
  • Song K, Qiao M, Liu T, et al. Preparation, fabrication and biocompatibility of novel injectable temperature-sensitive chitosan/glycerophosphate/collagen hydrogels. J Mat Sci Mater Med 2010;21:2835-42
  • Sun B, Ma W, Su F, et al. The osteogenic differentiation of dog bone marrow mesenchymal stem cells in a thermo-sensitive injectable chitosan/collagen/beta-glycerophosphate hydrogel: in vitro and in vivo. J Mater Sci Mater Med 2011;22:2111-18
  • Huang Z, Yu B, Feng Q, et al. In situ-forming chitosan/nano-hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells. Carbohydr Polym 2011;85:261-7
  • Nair S, Remya NS, Remya S, Nair PD. A biodegradable in situ injectable hydrogel based on chitosan and oxidized hyaluronic acid for tissue engineering applications. Carbohydr Polym 2011;85:838-44
  • Ngoenkam J, Faikrua A, Yasothornsrikul S, Viyoch J. Potential of an injectable chitosan/starch/beta-glycerol phosphate hydrogel for sustaining normal chondrocyte function. Int J Pharm 2010;391:115-24
  • Tang Y, Wang X, Li Y, et al. Production and characterisation of novel injectable chitosan/methylcellulose/salt blend hydrogels with potential application as tissue engineering scaffolds. Carbohydr Polym 2010;82:833-41
  • Hoemann CD, Chenite A, Sun J, et al. Cytocompatible gel formation of chitosan-glycerol phosphate solutions supplemented with hydroxyl ethyl cellulose is due to the presence of glyoxal. J Biomed Mater Res 2007;83A:521-9
  • Tang YF, Du YM, Hu XW, et al. Rheological characterisation of a novel thermosensitive chitosan/poly(vinyl alcohol) blend hydrogel. Carbohydr Polym 2007;67:491-9
  • Tang Y, Zhao Y, Li Y, Du Y. A thermosensitive chitosan/poly(vinyl alcohol) hydrogel containing nanoparticles for drug delivery. Polym Bull 2010;64:791-804
  • Tang Y, Du Y, Li Y, et al. A thermosensitive chitosan/poly(vinyl alcohol) hydrogel containing hydroxyapatite for protein delivery. J Biomed Mater Res 2009;91A:953-63
  • Nazar H, Fatouros DG, van der Merwe SM, et al. Thermosensitive hydrogels for nasal drug delivery: the formulation and characterisation of systems based on N-trimethyl chitosan chloride. Eur J Pharm Biopharm 2011;77:225-32
  • Wu J, Su ZG, Ma GH. A thermo- and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate. Int J Pharm 2006;315:1-11
  • Ji Q, Chen X, Zhao Q, et al. Injectable thermosensitive hydrogel based on chitosan and quaternized chitosan and the biomedical properties. J Mater Sci Mater Med 2009;20:1603-10
  • Ji QX, Deng J, Xing XM, et al. Biocompatibility of a chitosan-based injectable thermosensitive hydrogel and its effects on dog periodontal tissue regeneration. Carbohydr Polym 2010;82:1153-60
  • Chen C, Dong A, Yang J, Deng L. Preparation and properties of an injectable thermo-sensitive double crosslinking hydrogel based on thiolated chitosan/beta-glycerophosphate. J Mater Sci 2012;47:2509-17
  • Hsiao MH, Larsson M, Larsson A, et al. Design and characterization of a novel amphiphilic chitosan nanocapsule-based thermo-gelling biogel with sustained in vivo release of the hydrophilic anti-epilepsy drug ethosuximide. J Control Release 2012;161:942-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.