471
Views
23
CrossRef citations to date
0
Altmetric
Reviews

An update on the use of rifapentine for tuberculosis therapy

, BPharm (Hons), , MM & , PhD

Bibliography

  • Arioli V, Berti M, Carniti G, et al. Antibacterial activity of DL 473, a new semisynthetic rifamycin derivative. J Antibiot (Tokyo) 1981;34(8):1026-32
  • Munsiff SS, Kambili C, Ahuja SD. Rifapentine for the treatment of pulmonary tuberculosis. Clin infect Dis 2006;43(11):1468-75
  • Wade MM, Zhang Y. Mechanisms of drug resistance in Mycobacterium tuberculosis. Front Biosci 2004;9:975-94
  • Mitchison DA. Basic mechanisms of chemotherapy. Chest 1979;76(6 Suppl):771-81
  • Dickinson JM, Mitchison DA. Experimental models to explain the high sterilizing activity of rifampin in the chemotherapy of tuberculosis. Am Rev Respir Dis 1981;123(4 Pt 1):367-71
  • van Ingen J, Aarnoutse RE, Donald PR, et al. Why do we use 600 mg of rifampicin in tuberculosis treatment? Clin infect Dis 2011;52(9):e194-9
  • Mitchison DA. Pharmacokinetic/pharmacodynamic parameters and the choice of high-dosage rifamycins. Int J Tuberc Lung Dis 2012;16(9):1186-9
  • Mor N, Simon B, Mezo N, et al. Comparison of activities of rifapentine and rifampin against Mycobacterium tuberculosis residing in human macrophages. Antimicrob Agents Chemother 1995;39(9):2073-7
  • Rastogi N, Goh KS, Berchel M, et al. Activity of rifapentine and its metabolite 25-O-desacetylrifapentine compared with rifampicin and rifabutin against Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis and M. bovis BCG. J Antimicrob Chemother 2000;46(4):565-70
  • Rosenthal IM, Zhang M, Williams KN, et al. Daily dosing of rifapentine cures tuberculosis in three months or less in the murine model. PLoS Med 2007;4(12):e344
  • Bemer-Melchior P, Bryskier A, Drugeon HB. Comparison of the in vitro activities of rifapentine and rifampicin against Mycobacterium tuberculosis complex. J Antimicrob Chemother 2000;46(4):571-6
  • Ji B, Truffot-Pernot C, Lacroix C, et al. Effectiveness of rifampin, rifabutin, and rifapentine for preventive therapy of tuberculosis in mice. Am Rev Respir Dis 1993;148(6 Pt 1):1541-6
  • Heifets LB, Lindholm-Levy PJ, Flory MA. Bactericidal activity in vitro of various rifamycins against Mycobacterium avium and Mycobacterium tuberculosis. Am Rev Respir Dis 1990;141(3):626-30
  • Sirgel FA, Fourie PB, Donald PR, et al. The early bactericidal activities of rifampin and rifapentine in pulmonary tuberculosis. Am J Respir Crit Care Med 2005;172(1):128-35
  • Dickinson JM, Mitchison DA. In vitro properties of rifapentine (MDL473) relevant to its use in intermittent chemotherapy of tuberculosis. Tubercle 1987;68(2):113-18
  • Moghazeh SL, Pan X, Arain T, et al. Comparative antimycobacterial activities of rifampin, rifapentine, and KRM-1648 against a collection of rifampin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Antimicrob Agents Chemother 1996;40(11):2655-7
  • Bodmer T, Zurcher G, Imboden P, et al. Mutation position and type of substitution in the beta-subunit of the RNA polymerase influence in-vitro activity of rifamycins in rifampicin-resistant Mycobacterium tuberculosis. J Antimicrob Chemother 1995;35(2):345-8
  • Mitchison DA. Role of individual drugs in the chemotherapy of tuberculosis. Int J Tuberc Lung Dis 2000;4(9):796-806
  • Holland DP, Sanders GD, Hamilton CD, et al. Costs and cost-effectiveness of four treatment regimens for latent tuberculosis infection. Am J Respir Crit Care Med 2009;179(11):1055-60
  • Holland DP, Sanders GD, Hamilton CD, et al. Potential economic viability of two proposed rifapentine-based regimens for treatment of latent tuberculosis infection. PLoS One 2011;6(7):e22276
  • de Castilla DL, Rakita RM, Spitters CE, et al. Short-course isoniazid plus rifapentine directly observed therapy for latent tuberculosis in solid-organ transplant candidates. Transplantation 2013. [ Epub ahead of print]
  • Sterling TR, Villarino ME, Borisov AS, et al. Three months of rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med 2011;365(23):2155-66
  • Bemis K, Lobato M, Sosa L. Use of 12-Dose Isoniazid and Rifapentine for the Treatment of Latent Tuberculosis in Connecticut. 2013 CSTE Annual Conference; California; 2013
  • Sharma SK, Sharma A, Kadhiravan T, et al. Rifamycins (rifampicin, rifabutin and rifapentine) compared to isoniazid for preventing tuberculosis in HIV-negative people at risk of active TB. Cochrane Database Syst Rev 2013;7:CD007545
  • Dooley KE, Bliven-Sizemore EE, Weiner M, et al. Safety and pharmacokinetics of escalating daily doses of the antituberculosis drug rifapentine in healthy volunteers. Clin Pharmacol Ther 2012;91(5):881-8
  • Gao XF, Li J, Yang ZW, et al. Rifapentine vs. rifampicin for the treatment of pulmonary tuberculosis: a systematic review. Int J Tuberc Lung Dis 2009;13(7):810-19
  • Centers for Disease Control and Prevention (CDC). Treatment of tuberculosis. Atlanta, USA; 2003
  • Rosenthal IM, Tasneen R, Peloquin CA, et al. Dose-ranging comparison of rifampin and rifapentine in two pathologically distinct murine models of tuberculosis. Antimicrob Agents Chemother 2012;56(8):4331-40
  • Dorman SE, Johnson JL, Goldberg S, et al. Substitution of moxifloxacin for isoniazid during intensive phase treatment of pulmonary tuberculosis. Am J Respir Crit Care Med 2009;180(3):273-80
  • Rosenthal IM, Zhang M, Grosset JH, et al. Rifapentine-containing regimens cure murine tuberculosis in weeks rather than months. Am J Respir Crit Care Med 2008;177:A789
  • Zhang T, Zhang M, Rosenthal IM, et al. Short-course therapy with daily rifapentine in a murine model of latent tuberculosis infection. Am J Respir Crit Care Med 2009;180(11):1151-7
  • Zhang T, Li SY, Williams KN, et al. Short-course chemotherapy with TMC207 and rifapentine in a murine model of latent tuberculosis infection. Am J Respir Crit Care Med 2011;184(6):732-7
  • Harper J, Skerry C, Davis SL, et al. Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. J Infect Dis 2012;205(4):595-602
  • Dutta NK, Illei PB, Peloquin CA, et al. Rifapentine is not more active than rifampin against chronic tuberculosis in guinea pigs. Antimicrob Agents Chemother 2012;56(7):3726-31
  • Ahmad Z, Klinkenberg LG, Pinn ML, et al. Biphasic kill curve of isoniazid reveals the presence of drug-tolerant, not drug-resistant, Mycobacterium tuberculosis in the guinea pig. J Infect Dis 2009;200(7):1136-43
  • Ahmad Z, Nuermberger EL, Tasneen R, et al. Comparison of the ‘Denver regimen’ against acute tuberculosis in the mouse and guinea pig. J Antimicrob Chemother 2010;65(4):729-34
  • Aristoff PA, Garcia GA, Kirchhoff PD, et al. Rifamycins–obstacles and opportunities. Tuberculosis 2010;90(2):94-118
  • Coates AR, Hu Y, Jindani A, et al. Contradictory results with high-dosage rifamycin in mice and humans. Antimicrob Agents Chemother 2013;57(2):1103
  • Nuermberger EL, Rosenthal IM, Tasneen R, et al. Reply to Contradictory results with high-dosage rifamycin in mice and humans. Antimicrob Agents Chemother 2013;57(2):1104-5
  • Emary WB, Toren PC, Mathews B, et al. Disposition and metabolism of rifapentine, a rifamycin antibiotic, in mice, rats, and monkeys. Drug Metab Dispos 1998;26(8):725-31
  • Dooley K, Flexner C, Hackman J, et al. Repeated administration of high-dose intermittent rifapentine reduces rifapentine and moxifloxacin plasma concentrations. Antimicrob Agents Chemother 2008;52(11):4037-42
  • Dutta NK, Alsultan A, Peloquin CA, et al. Preliminary pharmacokinetic study of repeated doses of rifampin and rifapentine in guinea pigs. Antimicrob Agents Chemother 2013;57(3):1535-7
  • Hosagrahara V, Reddy J, Ganguly S, et al. Effect of repeated dosing on rifampin exposure in BALB/c mice. Eur J Pharm Sci 2013;49(1):33-8
  • Dorman SE, Goldberg S, Stout JE, et al. Substitution of rifapentine for rifampin during intensive phase treatment of pulmonary tuberculosis: study 29 of the tuberculosis trials consortium. J Infect Dis 2012;206(7):1030-40
  • Temple ME, Nahata MC. Rifapentine: its role in the treatment of tuberculosis. Ann Pharmacother 1999;33(11):1203-10
  • Zvada SP, Van Der Walt JS, Smith PJ, et al. Effects of four different meal types on the population pharmacokinetics of single-dose rifapentine in healthy male volunteers. Antimicrob Agents Chemother 2010;54(8):3390-4
  • Peloquin CA, Namdar R, Singleton MD, et al. Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids. Chest 1999;115(1):12-18
  • Pandey R, Khuller GK. Antitubercular inhaled therapy: opportunities, progress and challenges. J Antimicrob Chemother 2005;55(4):430-5
  • Mathias NR, Hussain MA. Non-invasive systemic drug delivery: developability considerations for alternate routes of administration. J Pharm Sci 2010;99(1):1-20
  • Misra A, Hickey AJ, Rossi C, et al. Inhaled drug therapy for treatment of tuberculosis. Tuberculosis 2011;91(1):71-81
  • Garcia-Contreras L, Fiegel J, Telko MJ, et al. Inhaled large porous particles of capreomycin for treatment of tuberculosis in a guinea pig model. Antimicrob Agents Chemother 2007;51(8):2830-6
  • Coowanitwong I, Arya V, Kulvanich P, et al. Slow release formulations of inhaled rifampin. AAPS J 2008;10(2):342-8
  • Dharmadhikari AS, Kabadi M, Gerety B, et al. Phase I, single-dose, dose-escalating study of inhaled dry powder capreomycin: a new approach to therapy of drug-resistant tuberculosis. Antimicrob Agents Chemother 2013;57(6):2613-19
  • Weiner M, Bock N, Peloquin CA, et al. Pharmacokinetics of rifapentine at 600, 900, and 1,200 mg during once-weekly tuberculosis therapy. Am J Respir Crit Care Med 2004;169(11):1191-7
  • Mizoe T, Ozeki T, Okada H. Application of a four-fluid nozzle spray drier to prepare inhalable rifampicin-containing mannitol microparticles. AAPS PharmSciTech 2008;9(3):755-61
  • Muttil P, Kaur J, Kumar K, et al. Inhalable microparticles containing large payload of anti-tuberculosis drugs. Eur J Pharm Sci 2007;32(2):140-50
  • O'Hara P, Hickey AJ. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization. Pharm Res 2000;17(8):955-61
  • Sharma R, Saxena D, Dwivedi AK, et al. Inhalable microparticles containing drug combinations to target alveolar macrophages for treatment of pulmonary tuberculosis. Pharm Res 2001;18(10):1405-10
  • Sharma R, Yadav AB, Muttil P, et al. Inhalable microparticles modify cytokine secretion by lung macrophages of infected mice. Tuberculosis 2011;91(1):107-10
  • Sung JC, Garcia-Contreras L, Verberkmoes JL, et al. Dry powder nitroimidazopyran antibiotic PA-824 aerosol for inhalation. Antimicrob Agents Chemother 2009;53(4):1338-43
  • Tsapis N, Bennett D, O'Driscoll K, et al. Direct lung delivery of para-aminosalicylic acid by aerosol particles. Tuberculosis 2003;83(6):379-85
  • Verma RK, Kaur J, Kumar K, et al. Intracellular time course, pharmacokinetics, and biodistribution of isoniazid and rifabutin following pulmonary delivery of inhalable microparticles to mice. Antimicrob Agents Chemother 2008;52(9):3195-201
  • Verma RK, Singh AK, Mohan M, et al. Inhaled therapies for tuberculosis and the relevance of activation of lung macrophages by particulate drug-delivery systems. Ther Deliv 2011;2(6):753-68
  • Yadav AB, Sharma R, Muttil P, et al. Inhalable microparticles containing isoniazid and rifabutin target macrophages and ‘stimulate the phagocyte’ to achieve high efficacy. Indian J Exp Biol 2009;47(6):469-74
  • Suarez S, O'Hara P, Kazantseva M, et al. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: screening in an infectious disease model. Pharm Res 2001;18(9):1315-19
  • Ziakas PD, Mylonakis E. 4 months of rifampin compared with 9 months of isoniazid for the management of latent tuberculosis infection: a meta-analysis and cost-effectiveness study that focuses on compliance and liver toxicity. Clin infect Dis 2009;49(12):1883-9
  • Garcia-Contreras L, Sung JC, Muttil P, et al. Dry powder PA-824 aerosols for treatment of tuberculosis in guinea pigs. Antimicrob Agents Chemother 2010;54(4):1436-42
  • Kumar Verma R, Mukker JK, Singh RS, et al. Partial biodistribution and pharmacokinetics of isoniazid and rifabutin following pulmonary delivery of inhalable microparticles to rhesus macaques. Mol Pharm 2012;9(4):1011-16
  • Hickey AJ, Misra A, Fourie PB. Dry powder antibiotic aerosol product development: inhaled therapy for tuberculosis. J Pharm Sci 2013;102(11):3900-7
  • Son YJ, McConville JT. A new respirable form of rifampicin. Eur J Pharm Biopharm 2011;78(3):366-76
  • Son YJ, McConville JT. Preparation of sustained release rifampicin microparticles for inhalation. J Pharm Pharmacol 2012;64(9):1291-302
  • Zhang M, Li SY, Rosenthal IM, et al. Treatment of tuberculosis with rifamycin-containing regimens in immune-deficient mice. Am J Respir Crit Care Med 2011;183(9):1254-61
  • Shu JY, Quan XY, Shu Y, et al. Preparation, characterization, and pulmonary delivery of rifapentine liposomes modified by lauric diethanolamide. Yao Xue Xue Bao 2006;41(8):761-4
  • Yang Z. Study on rifapentine-sodium alginate microspheres for lung targeting drug delivery [PhD]. Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China; 2011
  • Pandey R, Sharma S, Khuller GK. Nebulization of liposome encapsulated antitubercular drugs in guinea pigs. Int J Antimicrob Agents 2004;24(1):93-4
  • Ahmad Z, Sharma S, Khuller GK. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int J Antimicrob Agents 2005;26(4):298-303
  • Vyas SP, Kannan ME, Jain S, et al. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int J Pharm 2004;269(1):37-49
  • Gursoy A, Kut E, Ozkirimli S. Co-encapsulation of isoniazid and rifampicin in liposomes and characterization of liposomes by derivative spectroscopy. Int J Pharm 2004;271(1-2):115-23
  • Prankerd RJ, Walters JM, Parnes JH. Kinetics for degradation of rifampicin, an azomethine-containing drug which exhibits reversible hydrolysis in acidic solutions. Int J Pharm 1992;78(1):59-67
  • Hirota K, Hasegawa T, Nakajima T, et al. Delivery of rifampicin-PLGA microspheres into alveolar macrophages is promising for treatment of tuberculosis. J Control Release 2010;142(3):339-46
  • Garcia-Contreras L, Sethuraman V, Kazantseva M, et al. Evaluation of dosing regimen of respirable rifampicin biodegradable microspheres in the treatment of tuberculosis in the guinea pig. J Antimicrob Chemother 2006;58(5):980-6
  • Gler MT, Skripconoka V, Sanchez-Garavito E, et al. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med 2012;366(23):2151-60
  • Singh R, Manjunatha U, Boshoff HI, et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 2008;322(5906):1392-5
  • Nikonenko BV, Protopopova M, Samala R, et al. Drug therapy of experimental tuberculosis (TB): improved outcome by combining SQ109, a new diamine antibiotic, with existing TB drugs. Antimicrob Agents Chemother 2007;51(4):1563-5
  • Lanoix JP, Nuermberger E. Sutezolid, oxazolidinone antibacterial treatment of tuberculosis. Drug Fut 2013;38(6):387-94
  • Salomon JJ, Galeron P, Schulte N, et al. Biopharmaceutical in vitro characterization of CPZEN-45, a drug candidate for inhalation therapy of tuberculosis. Ther Deliv 2013;4(8):915-23
  • Hoshino K, Inoue K, Murakami Y, et al. In vitro and in vivo antibacterial activities of DC-159a, a new fluoroquinolone. Antimicrob Agents Chemother 2008;52(1):65-76
  • Nikonenko BV, Reddy VM, Protopopova M, et al. Activity of SQ641, a capuramycin analog, in a murine model of tuberculosis. Antimicrob Agents Chemother 2009;53(7):3138-9
  • Balasubramanian V, Solapure S, Iyer H, et al. Bactericidal activity and mechanism of action of AZD5847: a novel oxazolidinone for the treatment of tuberculosis. Antimicrob Agents Chemother 2013. [ Epub ahead of print]
  • Diacon AH, Dawson R, von Groote-Bidlingmaier F, et al. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet 2012;380(9846):986-93
  • Chan JG, Chan HK, Prestidge CA, et al. A novel dry powder inhalable formulation incorporating three first-line anti-tubercular antibiotics. Eur J Pharm Biopharm 2012. [ Epub ahead of print]
  • Ober CA, Kalombo L, Swai H, et al. Preparation of rifampicin/lactose microparticle composites by a supercritical antisolvent-drug excipient mixing technique for inhalation delivery. Powder Technol 2013;236:132-8
  • Doan TV, Couet W, Olivier JC. Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery. Int J Pharm 2011;414(1-2):112-17
  • Sung JC, Padilla DJ, Garcia-Contreras L, et al. Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm Res 2009;26(8):1847-55
  • Hu C, Feng H, Zhu C. Preparation and characterization of rifampicin-PLGA microspheres/sodium alginate in situ gel combination delivery system. Colloids Surf B Biointerfaces 2012;95:162-9
  • Diab R, Brillault J, Bardy A, et al. Formulation and in vitro characterization of inhalable polyvinyl alcohol-free rifampicin-loaded PLGA microspheres prepared with sucrose palmitate as stabilizer: efficiency for ex vivo alveolar macrophage targeting. Int J Pharm 2012;436(1-2):833-9
  • Bhise SB, More AB, Malayandi R. Formulation and in vitro evaluation of rifampicin loaded porous microspheres. Sci Pharm 2010;78(2):291-302
  • Cassano R, Trombino S, Ferrarelli T, et al. Respirable rifampicin-based microspheres containing isoniazid for tuberculosis treatment. J Biomed Mater Res A 2011. [ Epub ahead of print]
  • Nimje N, Agarwal A, Saraogi GK, et al. Mannosylated nanoparticulate carriers of rifabutin for alveolar targeting. J Drug Target 2009;17(10):777-87

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.