142
Views
42
CrossRef citations to date
0
Altmetric
Original Research

Development of targeted 1,2-diacyl-sn-glycero-3-phospho-l-serine-coated gelatin nanoparticles loaded with amphotericin B for improved in vitro and in vivo effect in leishmaniasis

, , , , , & show all

Bibliography

  • Desjeux P. Human leishmaniases: epidemiology and public health aspects. World Health Stat Q 1992;45(2-3):267-75
  • Murray HW, Berman JD, Davies CR, et al. Advances in leishmaniasis. Lancet 2005;366(9496):1561-77
  • Medrano FJ, Canavate C, Leal M, et al. The role of serology in the diagnosis and prognosis of visceral leishmaniasis in patients coinfected with human immunodeficiency virus type-1. Am J Trop Med Hyg 1998;59:155-62
  • Rosenthal E, Marty P, Poizot-Martin I, et al. Visceral leishmaniasis and HIV-1 co-infection in southern france. Trans R Soc Trop Med Hyg 1995;89(2):159-62
  • Bora D. Epidemiology of visceral leishmaniasis in india. Natl Med J India 1999;12(2):62-8
  • Alvar J, Aparicio P, Aseffa A, et al. The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev 2008;21(2):334-59
  • Vyas SP, Quraishi S, Gupta S, et al. Aerosolized liposome-based delivery of amphotericin B to alveolar macrophages. Int J Pharm 2005;296(1-2):12-25
  • Adler-Moore JP, Proffitt RT. Amphotericin B lipid preparations: what are the differences? Clin Microbiol Infect 2008;4:25-36
  • Torrado JJ, Espada R, Ballesteros MP, et al. Amphotericin B formulations and drug targeting. J Pharm Sci 2008;97(7):2405-25
  • Banerjee G, Nandi G, Mahato SB, et al. Drug delivery system: targeting of pentamidines to specific sites using sugar grafted liposomes. J Antimicrob Chemother 1996;38:145-50
  • Baillie AJ, Coombs GH, Dolan TF, et al. Biodegradable microspheres: polyacryl starch microparticles as a delivery system for the antileishmanial drug, sodium stibogluconate. J Pharm Pharmacol 1987;39(10):832-5
  • Paul M, Durand R, Fessi H, et al. Activity of a new liposomal formulation of amphotericin B against two strains of Leishmania infantum in a murine model. Antimicrob Agents Chemother 1997;41(8):1731-4
  • Paul M, Durand R, Boulard Y, et al. Physicochemical characteristics of pentamidine-loaded polymethacrylate nanoparticles: implication in the intracellular drug release in Leishmania major infected mice. J Drug Target 1998;5(6):481-90
  • Kopecek J, Kopeckova P, Minko T, et al. HPMA copolymer-anticancer drug conjugates: design, activity, and mechanism of action. Eur J Pharm Biopharm 2000;50:61-81
  • Venier-Julienne MC, Benoit JP. Preparation, purification and morphology of polymeric nanoparticles as drug carriers. Pharm Acta Helv 1996;71(2):121-8
  • Espuelas MS, Legrand P, Campanero MA, et al. Polymeric carriers for amphotericin B: in vitro activity, toxicity and therapeutic efficacy against systemic candidiasis in neutropenic mice. J Antimicrob Chemother 2003;52(3):419-27
  • Chawla JS, Amiji MM. Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int J Pharm 2002;249(1-2):127-38
  • Tiyaboonchai W, Limpeanchob N. Formulation and characterization of amphotericin B-chitosan-dextran sulfate nanoparticles. Int J Pharm 2007;329(1-2):142-9
  • Narayani R, Rao KP. Controlled release of anticancer drug methotrexate from biodegradable gelatin microspheres. J Microencapsul 1994;11:69-77
  • Cascone MG, Lazzeri L, Carmignani C, et al. Gelatin nanoparticles produced by a simple W/O emulsion as delivery system for methotrexate. J Mater Sci Mater Med 2002;13(5):523-6
  • Leo E, Angela Vandelli M, Cameroni R, et al. Doxorubicin-loaded gelatin nanoparticles stabilized by glutaraldehyde: involvement of the drug in the cross-linking process. Int J Pharm 1997;155:75-82
  • Verma AK, Sachin K, Saxena A, et al. Release kinetics from bio-polymeric nanoparticles encapsulating protein synthesis inhibitor- cycloheximide, for possible therapeutic applications. Curr Pharm Biotechnol 2005;6(2):121-30
  • Yeh TK, Lu Z, Wientjes MG, et al. Formulating paclitaxel in nanoparticles alters its disposition. Pharm Res 2005;22(6):867-74
  • Bajpai AK, Choubey J. Design of gelatin nanoparticles as swelling controlled delivery system for chloroquine phosphate. J Mater Sci Mater Med 2006;17(4):345-58
  • Sham JO, Zhang Y, Finlay WH, et al. Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. Int J Pharm 2004;269(2):457-67
  • Truong-Le VL, Walsh SM, Schweibert E, et al. Gene transfer by DNA-gelatin nanospheres. Arch Biochem Biophys 1999;361:47-56
  • Kaul G, Amiji M. Cellular interactions and in vitro DNA transfection studies with poly(ethylene glycol)-modified gelatin nanoparticles. J Pharm Sci 2005;94:184-98
  • Kaul G, Amiji M. Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm Res 2005;22(6):951-61
  • Balthasar S, Michaelis K, Dinauer N, et al. Preparation and characterisation of antibody modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes. Biomaterials 2005;26(15):2723-32
  • Dinauer N, Balthasar S, Weber C, et al. Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes. Biomaterials 2005;26(29):5898-906
  • Li JK, Wang N, Wu XS. Gelatin nanoencapsulation of protein/peptide drugs using an emulsifier-free emulsion method. J Microencapsul 1998;15(2):163-72
  • de Freitas Balanco JM, Moreira ME, Bonomo A, et al. Apoptotic mimicry by an obligate intracellular parasite downregulates macrophage microbicidal activity. Curr Biol 2001;11(23):1870-3
  • Fadok VA, de Cathelineau A Daleke DL, et al. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J Biol Chem 2001;276(2):1071-7
  • Fadok VA, Bratton DL, Frasch SC, et al. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 1998;5(7):551-62
  • Dhaliwal BS, Steinbrecher UP. Scavenger receptors and oxidized low density lipoproteins. Clin Chim Acta 1999;286(1-2):191-205
  • Freire-de-Lima CG, Nascimento DO, Soares MB, et al. Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages. Nature 2000;403(6766):199-203
  • Nishikawa K, Arai H, Inoue K. Scavenger receptor-mediated uptake and metabolism of lipid vesicles containing acidic phospholipids by mouse peritoneal macrophages. J Biol Chem 1990;265(9):5226-31
  • Rigotti A, Acton SL, Krieger M. The class B scavenger receptors SR-BI and CD36 are receptors for anionic phospholipids. J Biol Chem 1995;270(27):16221-4
  • Yamaguchi A, Yamamoto N, Akamatsu N, et al. PS-liposome and ox-LDL bind to different sites of the immunodominant domain (#155-183) of CD36: a study with GS95, a new anti-CD36 monoclonal antibody. Thromb Res 2000;97(5):317-26
  • van der Laan LJ, Dopp EA, Haworth R, et al. Regulation and functional involvement of macrophage scavenger receptor MARCO in clearance of bacteria in vivo. J Immunol 1999;162(2):939-47
  • Coester CJ, Langer K, van Briesen H, et al. Gelatin nanoparticles by two step desolvation--a new preparation method, surface modifications and cell uptake. J Microencapsul 2000;17(2):187-93
  • Dwivedi P, Kansal S, Sharma M, et al. Exploiting 4-sulphate N-acetyl galactosamine decorated gelatin nanoparticles for effective targeting to professional phagocytes in vitro and in vivo. J Drug Target 2012;20(10):883-96
  • Leo E, Cameroni R, Forni F. Dynamic dialysis for the drug release evaluation from doxorubicin–gelatin nanoparticle conjugates. Int J Pharm 1999;180:23-30
  • Duverger A, Jackson RJ, van Ginkel FW, et al. Bacillus anthracis edema toxin acts as an adjuvant for mucosal immune responses to nasally administered vaccine antigens. J Immunol 2006;176(3):1776-83
  • Coester C, Nayyar P, Samuel J. In vitro uptake of gelatin nanoparticles by murine dendritic cells and their intracellular localisation. Eur J Pharm Biopharm 2006;62(3):306-14
  • Kole L, Sakar K, Mahato SB, et al. Neoglycoprotein conjugated liposomes as macrophage specific drug carrier in the therapy of leishmaniasis. Biochem Biophys Res Commun 1994;200:351-8
  • Pal R, Anuradha Rizvi SY, et al. Leishmania donovani in hamsters: stimulation of non-specific resistance by some novel glycopeptides and impact on therapeutic efficacy. Experientia 1991;47(5):486-90
  • Garg R, Gupta SK, Tripathi P, et al. Immunostimulatory cellular responses of cured Leishmania-infected patients and hamsters against the integral membrane proteins and non-membranous soluble proteins of a recent clinical isolate of Leishmania donovani. Clin Exp Immunol 2005;140:149-56
  • Dube A, Singh N, Sundar S. Refractoriness to the treatment of sodium stibogluconate in Indian kala-azar field isolates persist in in vitro and in vivo experimental models. Parasitol Res 2005;96(4):216-23
  • Berman JD, Hanson WL, Chapman WL, et al. Antileishmanial activity of liposome-encapsulated amphotericin B in hamsters and monkeys. Antimicrob Agents Chemother 1986;30(6):847-51
  • Guru PY, Agrawal AK, Singha UK, et al. Drug targeting in Leishmania donovani infections using tuftsin-bearing liposomes as drug vehicles. FEBS Lett 1989;245(1-2):204-8
  • Gupta S, Dube A, Vyas SP. Antileishmanial efficacy of amphotericin B bearing emulsomes against experimental visceral leishmaniasis. J Drug Target 2007;15(6):437-44
  • Wang J-J, Sung KC, Hu OY-P, et al. Submicron lipid emulsion as a drug delivery system for nalbuphine and its prodrugs. J Control Release 2006;115(2):140-9
  • Bern C, Adler-Moore J, Berenguer J, et al. Liposomal amphotericin B for the treatment of visceral leishmaniasis. Clin Infect Dis 2006;43(7):917-24
  • Saraogi GK, Sharma B, Joshi B, et al. Mannosylated gelatin nanoparticles bearing isoniazid for effective management of tuberculosis. J Drug Target 2011;19(3):219-27
  • Owens DE III, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006;307:93-102
  • Wasan EK, Bartlett K, Gershkovich P, et al. Development and characterization of oral lipid-based amphotericin B formulations with enhanced drug solubility, stability and antifungal activity in rats infected with Aspergillus fumigatus or Candida albicans. Int J Pharm 2009;372(1-2):76-84
  • Nagata K, Ohashi K, Nakano T, et al. Identification of the product of growth arrest-specific gene 6 as a common ligand for Axl, Sky, and Mer receptor tyrosine kinases. J Biol Chem 1996;271(47):30022-7
  • Anderson HA, Maylock CA, Williams JA, et al. Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat Immunol 2003;4:87-91
  • Kole L, Das L, Das PK. Synergistic effect of interferon-gamma and mannosylated liposome-incorporated doxorubicin in the therapy of experimental visceral leishmaniasis. J Infect Dis 1999;180(3):811-20
  • Park D, Tosello-Trampont AC, Elliott MR, et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 2007;450(7168):430-4
  • Kansal S, Tandon R, Dwivedi P, et al. Development of nanocapsules bearing doxorubicin for macrophage targeting through the phosphatidylserine ligand: a system for intervention in visceral leishmaniasis. J Antimicrob Chemother 2012;67(11):2650-60

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.