995
Views
119
CrossRef citations to date
0
Altmetric
Reviews

Gold nanoparticle conjugates: recent advances toward clinical applications

, PhD & , PhD

Bibliography

  • Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 2011;40:1647-71
  • Moyano DF, Rotello VM. Nano meets biology: structure and function at the nanoparticle interface. Langmuir 2011;27:10376-85
  • Sardar R, Funston AM, Mulvaney P, Murray RW. Gold nanoparticles: past, present, and future. Langmuir 2009;25:13840-51
  • Morton SM, Silverstein DW, Jensen L. Theoretical studies of plasmonics using electronic structure methods. Chem Rev 2011;111:3962-94
  • Liz-Marzan LM. Plasmonics. Electron oscillations and beyond. J Phys Chem Lett 2013;4:1197-8
  • Dreaden EC, Alkilany AM, Huang X, et al. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 2012;41:2740-79
  • Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 2012;41:2256-82
  • Lasagna-Reeves C, Gonzalez-Romero D, Barria MA, et al. Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice. Biochem Biophys Res Commun 2010;93:649-55
  • Giljohann DA, Sefereos DS, Daniel WL, et al. Gold nanoparticles for biology and medicine. Angew Chem Int Ed 2010;49:3280-94
  • Sapsford KE, Algar WR, Berti L, et al. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 2013;113:1904-2074
  • Briñas RP, Sundgren A, Sahoo P, et al. Design and synthesis of multifunctional gold nanoparticles bearing tumor-associated glycopeptide antigens as potential cancer vaccines. Bioconjug Chem 2012;23:1513-23
  • Kumar S, Aaron J, Sokolov K. Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties. Nat Protoc 2008;3:314-20
  • Lehner R, Wang X, Marsch S, Hunziker P. Intelligent nanomaterials for medicine: carrier platforms and targeting strategies in the context of clinical application. Nanomedicine 2013;9:742-57
  • Yezhelyev MV, Qi L, O’Regan RM, et al. Proton-sponge coated quantum dots for sirna delivery and intracellular imaging. J Am Chem Soc 2008;130:9006-12
  • Rodríguez-Fernández J, Pérez-Juste J, García de Abajo FJ, Liz-Marzán LM. Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. Langmuir 2006;22:7007-10
  • Gibson MI, Danial M, Klok HA. Sequentially modified, polymers-stabilized gold nanoparticles libraries: convergent synthesis and aggregation behavior. ACS Comb Sci 2011;13:286-97
  • Popovtzer R, Agrawal A, Kotov NA, et al. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 2008;8:4593-6
  • Hainfield JF, Dilmanian FA, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 2008;60:977-85
  • Huang X, El Sayed EH, Qian W, El Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006;128:2115-20
  • Lundquist JJ, Toone EJ. The cluster glycoside effect. Chem Rev 2002;102:555-78
  • Reichardt NC, Martín-Lomas M, Penadés S. Glyconanotechnology. Chem Soc Rev 2013;42:4358-76
  • van Kasterena SI, Campbell SJ, Serres S, et al. Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease. Proc Natl Acad Sci USA 2009;106:18-23
  • Marradi M, Chiodo F, García I, Penadés S. Glyconanoparticles as multifunctional and multimodal carbohydrate systems. Chem Soc Rev 2013;42:4728-45
  • de la Fuente JM, Barrientos AG, Rojas TC, et al. Gold glyconanoparticles as water-soluble polyvalent models to study carbohydrate interactions. Angew Chem Int Ed 2001;40:2257-61
  • Hernáiz MJ, de la Fuente JM, Barrientos AG, Penadés S. A model system mimicking glycosphingolipid clusters to quantify carbohydrate self-interactions by surface plasmon resonance. Angew Chem Int Ed 2002;41:1554-7
  • Barrientos AG, de la Fuente JM, Rojas TC, et al. Gold glyconanoparticles: synthetic polyvalent ligands mimicking glycocalyx-like surfaces as tools for glycobiological studies. Chemistry 2003;9:1909-21
  • de la Fuente JM, Eaton P, Barrientos AG, et al. Thermodynamic evidence for Ca2+ -mediated self-aggregation of lewis x gold glyconanoparticles. A model for cell adhesion via carbohydrate carbohydrate interaction. J Am Chem Soc 2005;127:6192-7
  • Rojo J, Díaz V, de la Fuente JM, et al. Gold glyconanoparticles as new tools in antiadhesive therapy. ChemBioChem 2004;5:291-7
  • Svarovsky SA, Szekely Z, Barchi JJ. Synthesis of gold nanoparticles bearing the thomsen–friedenreich disaccharide: a new multivalent presentation of an important tumor antigen. Tetrahedron Asymmetry 2005;16:587-98
  • Ojeda R, de Paz JL, Barrientos AG, et al. Preparation of multifunctional glyconanoparticles as a platform for potential carbohydrate-based anticancer vaccines. Carbohydr Res 2007;342:448-59
  • Parry AL, Clemson NA, Ellis S, et al. “Multicopy multivalent” glycopolymer-stabilized gold nanoparticles as potential synthetic cancer vaccines. J Am Chem Soc 2013;135:9362-5
  • Marradi M, di Gianvincenzo P, Enríquez-Navas PM, et al. Gold nanoparticles coated with oligomannosidesof HIV-1 glycoprotein gp120 Mimic the carbohydrate epitope of antibody 2G12. J Mol Biol 2011;410:798-810
  • Chen YS, Hung YC, Lin WH, Huang GS. Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology 2010;21:195101-18
  • Niikura K, Matsunaga T, Suzuki T, et al. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano 2013;7:3926-38
  • Yen HJ, Hsu SH, Tsai CL. Cytotoxicity and immuno-logical response of gold and silver nanoparticles of different sizes. Small 2009;5:1553-61
  • Jiang W, Kim BYS, Rutka JT, Chan WCW. Nano-particle-mediated cellular response is size-dependent. Nat Nanotechnol 2008;3:145-50
  • Mottram PL, Leong D, Irwin BC. Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol Pharm 2007;4:73-84
  • Zaman M, Good MF, Toth I. Nanovaccines and their mode of action. Methods 2013;60:226-31
  • Patil SD, Rhodes DG, Burguess DJ. DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J 2005;7:E61-77
  • Chou LYT, Ming K, Chan WCW. Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 2011;40:233-45
  • Mousavi SA, Malerod L, Berg T, Kjeken R. Clathrin-dependent endocytosis. Biochem J 2004;377:1-16
  • Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Ed 2008;47:1382-95
  • Rosi NL, Giljohann DA, Thaxton CS, et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006;312:1027-30
  • Patel PC, Giljohann DA, Seferos DS, Mirkin CA. Peptide antisense nanoparticles. Proc Natl Acad Sci USA 2008;105:17222-6
  • Prigoich AE, Seferos DS, Matthew DM, et al. Nano-flares for mRNA regulation and detection. ACS Nano 2009;3:2147-52
  • Giljohann DA, Seferos DS, Prigodich AE, et al. Gene regulation with polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc 2009;131:2072
  • Seferos DS, Prigodich AE, Giljohann DA, et al. Polyvalent DNA nanoparticle conjugates stabilize nucleic Acids. Nano Lett 2009;9:308-11
  • Giljohann DA, Seferos DS, Patel DA, et al. Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 2007;7:3818-21
  • Kim CK, Ghosh P, Pagliuca C, et al. Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells. J Am Chem Soc 2009;131:1360-1
  • Bowman MC, Ballard TE, Ackerson CJ, et al. Inhibition of HIV fusion with multivalent gold nanoparticles. J Am Chem Soc 2008;130:6896-7
  • Ghosh PS, Kim CK, Han G, et al. Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano 2008;2:2213-18
  • Thomas M, Klibanov AM. Enhancing polyethylenimine's delivery of plasmid DNA into mammalian cells. Proc Natl Acad Sci USA 2002;99:14640-5
  • Sandhu KK, McIntosh CM, Simard JM, et al. Gold nanoparticle-mediated transfection of mammalian cells. Bioconjug Chem 2002;13:3-6
  • Han G, You CC, Kim BJ, et al. Light-regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles. Angew Chem Int Ed 2006;45:3165-9
  • Alberts B. The promise of cancer research. Science 2008;320:19
  • Kong T, Zeng J, Wang X, et al. Enhancement of radiation cytotoxicity in breast-cancer Cells by localized attachment of gold nanoparticles. Small 2008;4:1537-43
  • Butterworth KT, Coulter JA, Jain S, et al. Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy. Nanotechnology 2010;21:295101-10
  • Liu CJ, Wang CH, Chen ST, et al. Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys Med Biol 2010;55:931-45
  • Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 2004;49:N309-15
  • Hainfeld JF, Dilmanian FA, Zhong Z, et al. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol 2010;55:3045-59
  • Cho SH. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys Med Biol 2005;50:N163-73
  • Montenegro M, Nahar SN, Pradhan AK, et al. Monte carlo simulations and atomic calculations for auger processes in biomedical nanotheranostics. J Phys Chem A 2009;113:12364-9
  • Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 2007;15:457-64
  • Huang K, Ma H, Liu J, et al. Size-dependent localization and penetration of ultrasmall gold nano-particles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 2012;6:4483-93
  • Liu X, Xu H, Xia H, Wang D. Rapid seeded growth of monodisperse, quasi-spherical, citrate-stabilized gold nanoparticles via H2O2 reduction. Langmuir 2012;28:13720-6
  • Huang X, Neretina S, El-Sayed MA. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 2009;21:4880-910
  • Liz-Marzán LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006;22:32-41
  • Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 2008;41:1842-51
  • Chen J, McLellan JM, Siekkinen A, et al. Facile synthesis of gold−silver nanocages with controllable pores on the surface. J Am Chem Soc 2006;128:14776-7
  • Skrabalak SE, Chen J, Sun Y, et al. Gold nanocages: synthesis, properties, and applications. Acc Chem Res 2008;41:1587-95
  • Guerrero-Martínez A, Barbosa S, Pastoriza-Santos I, Liz-Marzán LM. Nanostars shine bright for you colloidal synthesis, properties and applications of branched metallic nanoparticles. Curr Opin Colloid Interface Sci 2011;16:118-27
  • Blakey I, Merican Z, Thurecht KJ. A method for controlling the aggregation of gold nanoparticles: tuning of optical and spectroscopic properties. Langmuir 2013;29:8266-74
  • Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol 2001;19:316-17
  • Dreaden EC, Mackey MA, Huang X, et al. Beating cancer in multiple ways using nanogold. Chem Soc Rev 2011;40:3391-404
  • Chen J, Glaus C, Laforest R, et al. Gold nanocages as photothermal transducers for cancer treatment. Small 2010;6:811-17
  • Dickerson EB, Dreaden EC, Huang X, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 2008;269:57-66
  • Pitsillides CM, Joe EK, Wei X, et al. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 2003;84:4023-32
  • El-Sayed IH, Huang X, El-Sayed MA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 2006;239:129-35
  • Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003;100:13549-54
  • Huang X, El-Sayed IH, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006;128:2115-20
  • Chen J, Wang D, Xi J, et al. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 2007;7:1318-22
  • von Maltzahn G, Park JH, Agrawal A, et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 2009;69:3892-900
  • Hu M, Chen J, Li ZY, et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 2006;35:1084-94
  • Cole JR, Mirin NA, Knight MW, et al. Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications. J Phys Chem C 2009;113:12090-4
  • Yuan H, Fales AM, Vo-Dinh T. TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc 2012;134:11358-61
  • Chen H, Zhang X, Dai S, et al. Multifunctional gold nanostar conjugates for tumor imaging and combined photothermal and chemo-therapy. Theranostics 2013;3:633-49
  • Han J, Li J, Jia W, et al. Photothermal therapy of cancer cells using novel hollow gold nanoflowers. Int J Nanomed 2014;9:517-26
  • Timko BP, Dvir T, Kohane DS. Remotely triggerable drug delivery systems. Adv Mater 2010;22:4925-43
  • Luo YL, Shiao YS, Huang YF. Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano 2011;5:7796-804
  • Adeli M, Sarabi RS, Farsi RY, et al. Polyrotaxane/gold nanoparticle hybrid nanomaterials as anticancer drug delivery systems. J Mater Chem 2011;21:18686-95
  • You J, Zhang G, Li C. Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release. ACS Nano 2010;4:1033-41
  • Yavuz MS, Cheng Y, Chen J, et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Mater 2009;8:935-9
  • An X, Zhang F, Zhu Y, Shen W. Photoinduced drug release from thermosensitive AuNPs-liposome using a AuNPs-switch. Chem Commun (Camb) 2010;46:7202-4
  • Volodkin DV, Skirtach AG, Mohwald H. Near-IR remote release from assemblies of liposomes and nanoparticles. Angew Chem Int Ed 2009;48:1807-9
  • Zhao X, Wang T, Liu W, et al. Multifunctional Au-IPN-pNIPAAm nanogels for cancer cell imaging and combined chemo-photothermal treatment. J Mater Chem 2011;21:7240-7
  • Gautier J, Allard-Vannier E, Munnier E, et al. Recent advances in theranostic nanocarriers of doxorubicin based on iron oxide and gold nanoparticles. J Control Release 2013;169:48-61
  • Brown SD, Nativo P, Smith JA, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 2010;132:4678-84
  • Ren L, Huang X, Zhang B, et al. Cisplatin loaded Au-Au2S nanoparticles for potential cancer therapy: cytotoxicity, in vitro carcinogenicity, and cellular uptake. J Biomed Mater Res Part A 2008;85A:787-96
  • Voliani V, Ricci F, Signore G, et al. Multiphoton molecular photorelease in click-chemistry-functionalized gold nanoparticles. Small 2011;7:3271-5
  • Voliani V, Signore G, Vittorio O, et al. Cancer phototherapy in living cells by multiphoton release of doxorubicin from gold nanospheres. J Mat Chem B 2013;1:4225-30

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.