388
Views
31
CrossRef citations to date
0
Altmetric
Reviews

Applications of biosensing atomic force microscopy in monitoring drug and nanoparticle delivery

, &

Bibliography

  • Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2012;64(Suppl 0):206-12
  • Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 2010;10(9):3223-30
  • Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010;9(8):615-27
  • Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett 1986;56(9):930-3
  • Horber JKH, Miles MJ. Scanning probe evolution in biology. Science 2003;302(5647):1002-5
  • Muller DJ, Janovjak H, Lehto T, et al. Observing structure, function and assembly of single proteins by AFM. Prog Biophys Mol Biol 2002;79(1-3):1-43
  • Scheuring S, Levy D, Rigaud JL. Watching the components of photosynthetic bacterial membranes and their in situ organisation by atomic force microscopy. Biochim Biophys Acta 2005;1712(2):109-27
  • Zaman MS, Goyal A, Dubey GP, et al. Imaging and analysis of Bacillus anthracis spore germination. Microsc Res Tech 2005;66(6):307-11
  • Jeremic A, Kelly M, Cho SJ, et al. Reconstituted fusion pore. Biophys J 2003;85(3):2035-43
  • Franz CM, Muller DJ. Analyzing focal adhesion structure by atomic force microscopy. J Cell Sci 2005;118(22):5315-23
  • Berquand A, Mingeot-Leclercq MP, Dufrene YF. Real-time imaging of drug-membrane interactions by atomic force microscopy. Biochim Biophys Acta 2004;1664(2):198-205
  • Selhuber-Unkel C, Erdmann T, Lopez-Garcia M, et al. Cell adhesion strength is controlled by intermolecular spacing of adhesion receptors. Biophys J 2010;98(4):543-51
  • Ludwig T, Kirmse R, Poole K, Schwarz US. Probing cellular microenvironments and tissue remodeling by atomic force microscopy. Pflugers Arch 2008;456(1):29-49
  • Lu YB, Franze K, Seifert G, et al. Viscoelastic properties of individual glial cells and neurons in the CNS. Proc Natl Acad Sci USA 2006;103(47):17759-64
  • Hinterdorfer P, Dufrene YF. Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 2006;3(5):347-55
  • Puchner EM, Gaub HE. Force and function: probing proteins with AFM-based force spectroscopy. Curr Opin Struct Biol 2009;19(5):605-14
  • Muller DJ, Helenius J, Alsteens D, Dufrene YF. Force probing surfaces of living cells to molecular resolution. Nat Chem Biol 2009;5(6):383-90
  • Kienberger F, Ebner A, Gruber HJ, Hinterdorfer P. Molecular recognition imaging and force spectroscopy of single biomolecules. Acc Chem Res 2006;39(1):29-36
  • Allison DP, Hinterdorfer P, Han WH. Biomolecular force measurements and the atomic force microscope. Curr Opin Biotechnol 2002;13(1):47-51
  • Evans EA, Calderwood DA. Forces and bond dynamics in cell adhesion. Science 2007;316(5828):1148-53
  • Florin EL, Moy VT, Gaub HE. Adhesion forces between individual ligand-receptor pairs. Science 1994;264(5157):415-17
  • Engel A, Muller DJ. Observing single biomolecules at work with the atomic force microscope. Nat Struct Biol 2000;7(9):715-18
  • Kienberger F, Ebner A, Gruber HJ, Hinterdorfer P. Molecular recognition imaging and force spectroscopy of single biomolecules. Acc Chem Res 2006;39(1):29-36
  • Rangl M, Ebner A, Yamada J, et al. Single-molecule analysis of the recognition forces underlying nucleo-cytoplasmic transport. Angew Chem 2013;125(39):10546-9
  • Posch S, Neundlinger I, Leitner M, et al. Activation induced morphological changes and integrin alphaIIbbeta3 activity of living platelets. Methods 2013;60(2):179-85
  • Hinterdorfer P, Van Oijen A. Handbook of single-molecule biophysics. Springer-Verlag, New York;2009
  • Helenius J, Heisenberg CP, Gaub HE, Muller DJ. Single-cell force spectroscopy. J Cell Sci 2008;121(Pt 11):1785-91
  • Pereira RS. Atomic force microscopy as a novel pharmacological tool. Biochem Pharmacol 2001;62(8):975-83
  • Francis LW, Lewis PD, Wright CJ, Conlan RS. Atomic force microscopy comes of age. Biol Cell 2010;102(2):133-43
  • Sitterberg J, Ozcetin A, Ehrhardt C, Bakowsky U. Utilising atomic force microscopy for the characterisation of nanoscale drug delivery systems. Eur J Pharm Biopharm 2010;74(1):2-13
  • Zolls S, Tantipolphan R, Wiggenhorn M, et al. Particles in therapeutic protein formulations, Part 1: overview of analytical methods. J Pharm Sci 2012;101(3):914-35
  • Meyer E, Hug HJ, Bennewitz R. Scanning probe microscopy the lab on a tip. Springer; Berlin, Heidelberg, New York: 2004
  • Cohen-Bouhacina T, MaAli A. AFM imaging in physiological environment: from biomolecules to living cells: thermodynamic and kinetic considerations in interfacial self-assembly. In: Borsali R, Pecora R, editors. Soft matter characterization: springer reference. Springer-Verlag; Berlin Heidelberg: 2008
  • Bhushan B, Fuchs H. editors. Applied scanning probe methods. Springer; Berlin: 2009
  • Eaton P, West P. Atomic force microscopy. Oxford University Press, Oxford;2010
  • Baro AM, Reifenberger RG. editors. Atomic force microscopy in liquid: biological applications. Wiley-VCH Verlag & Co. KGaA, Weinheim, Germany;2012
  • Raab A, Han W, Badt D, et al. Antibody recognition imaging by force microscopy. Nat Biotechnol 1999;17(9):901-5
  • Stroh C, Wang H, Bash R, et al. Single-molecule recognition imaging microscopy. Proc Natl Acad Sci USA 2004;101(34):12503-7
  • Stroh CM, Ebner A, Geretschlager M, et al. Simultaneous topography and recognition imaging using force microscopy. Biophys J 2004;87(3):1981-90
  • Gibson CT, Watson GS, Myhra S. Determination of the spring constants of probes for force microscopy/spectroscopy. Nanotechnology 1996;7(3):259
  • Cleveland JP, Manne S, Bocek D, Hansma PK. A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum 1993;64(2):403-5
  • Hutter JL, Bechhoefer J. Calibration of atomic-force microscope tips. Rev Sci Instrum 1993;64(7):1868-73
  • Sader JE, Larson I, Mulvaney P, White LR. Method for the calibration of atomic force microscope cantilevers. Rev Sci Instrum 1995;66(7):3789-98
  • Baumgartner W, Hinterdorfer P, Schindler H. Data analysis of interaction forces measured with the atomic force microscope. Ultramicroscopy 2000;82(1-4):85-95
  • Getfert S, Reimann P. Optimal evaluation of single-molecule force spectroscopy experiments. Phys Rev E Stat Nonlin Soft Matter Phys 2007;76(5):052901
  • Dudko OK, Hummer G, Szabo A. Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc Natl Acad Sci USA 2008;105(41):15755-60
  • Noy A. Handbook of molecular force spectroscopy. Springer; US: 2008
  • Bell GI. Models for the specific adhesion of cells to cells. Science 1978;200(4342):618
  • Ebner A, Wildling L, Zhu R, et al. Functionalization of probe tips and supports for single-molecule recognition force Microscopy. Top Curr Chem 2008;285:29-76
  • Chen A, Moy VT. Cross-linking of cell surface receptors enhances cooperativity of molecular adhesion. Biophys J 2000;78(6):2814-20
  • Fritz J, Katopodis AG, Kolbinger F, Anselmetti D. Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc Natl Acad Sci USA 1998;95(21):12283-8
  • Ebner A, Hinterdorfer P, Gruber HJ. Comparison of different aminofunctionalization strategies for attachment of single antibodies to AFM cantilevers. Ultramicroscopy 2007;107(10-11):922-7
  • Riener CK, Stroh CM, Ebner A, et al. Simple test system for single molecule recognition force microscopy. Anal Chim Acta 2003;479(1):59-75
  • Ros R, Schwesinger F, Anselmetti D, et al. Antigen binding forces of individually addressed single-chain Fv antibody molecules. Proc Natl Acad Sci USA 1998;95(13):7402-5
  • Ebner A, Wildling L, Kamruzzahan ASM, et al. A new, simple method for linking of antibodies to atomic force microscopy tips. Bioconjug Chem 2007;18(4):1176-84
  • Wildling L, Ebner A, Kamruzzahan ASM, et al. Linking of underivatized antibody molecules to AFM tips via long, distensible poly(ethylene glycol) chains. Biophys J 2005;88(1):154A-5A
  • Kamruzzahan ASM, Ebner A, Wildling L, et al. Antibody linking to atomic force microscope tips via disulfide bond formation. Bioconjug Chem 2006;17(6):1473-81
  • Tang J, Ebner A, Kraxberger B, et al. Detection of metal binding sites on functional S-layer nanoarrays using single molecule force spectroscopy. J Struct Biol 168(1):217-22
  • Barattin R, Voyer N. Chemical modifications of atomic force microscopy tips. In: Braga PC, Ricci D, editors. Atomic force microscopy in biomedical research. Humana Press; 2011. p. 457-83
  • Leitner M, Mitchell N, Kastner M, et al. Single-molecule AFM characterization of individual chemically tagged DNA tetrahedra. ACS Nano 2011;5(9):7048-54
  • Montasser I, Fessi H, Coleman AW. Atomic force microscopy imaging of novel type of polymeric colloidal nanostructures. Eur J Pharm Biopharm 2002;54(3):281-4
  • Heister E, Lamprecht C, Neves V, et al. Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments. ACS Nano 2010;4(5):2615-26
  • Das J, Das S, Samadder A, et al. Poly (lactide-co-glycolide) encapsulated extract of Phytolacca decandra demonstrates better intervention against induced lung adenocarcinoma in mice and on A549 cells. Eur J Pharm Sci 2012;47(2):313-24
  • Huo M, Zou A, Yao C, et al. Somatostatin receptor-mediated tumor-targeting drug delivery using octreotide-PEG-deoxycholic acid conjugate-modified N-deoxycholic acid-O, N-hydroxyethylation chitosan micelles. Biomaterials 2012;33(27):6393-407
  • Shen J, Sun H, Xu P, et al. Simultaneous inhibition of metastasis and growth of breast cancer by co-delivery of twist shRNA and paclitaxel using pluronic P85-PEI/TPGS complex nanoparticles. Biomaterials 2013;34(5):1581-90
  • Li W, Li H, Li J, et al. Self-assembled supramolecular nano vesicles for safe and highly efficient gene delivery to solid tumors. Int J Nanomedicine 2012;7:4661-77
  • Sun X, Pang Z, Ye H, et al. Co-delivery of pEGFP-hTRAIL and paclitaxel to brain glioma mediated by an angiopep-conjugated liposome. Biomaterials 2012;33(3):916-24
  • Luo K, Li C, Li L, et al. Arginine functionalized peptide dendrimers as potential gene delivery vehicles. Biomaterials 2012;33(19):4917-27
  • Samadder A, Das J, Das S, et al. Poly(lactic-co-glycolic) acid loaded nano-insulin has greater potentials of combating arsenic induced hyperglycemia in mice: some novel findings. Toxicol Appl Pharmacol 2013;267(1):57-73
  • Packhaeuser CB, Kissel T. On the design of in situ forming biodegradable parenteral depot systems based on insulin loaded dialkylaminoalkyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) nanoparticles. J Control Release 2007;123(2):131-40
  • Bedi D, Gillespie JW, Petrenko VA, et al. Targeted delivery of siRNA into breast cancer cells via phage fusion proteins. Mol Pharm 2012;10(2):551-9
  • Ladiwala ARA, Bhattacharya M, Perchiacca JM, et al. Rational design of potent domain antibody inhibitors of amyloid fibril assembly. Proc Natl Acad Sci USA 2012;109(49):19965-70
  • Lamprecht C, Danzberger J, Lukanov P, et al. AFM imaging of functionalized double-walled carbon nanotubes. Ultramicroscopy 2009;109(8):899-906
  • Bendas G, Krause A, Bakowsky U, et al. Targetability of novel immunoliposomes prepared by a new antibody conjugation technique. Int J Pharm 1999;181(1):79-93
  • Craig GE, Brown SD, Lamprou DA, et al. Cisplatin-tethered gold nanoparticles that exhibit enhanced reproducibility, drug loading, and stability: a step closer to pharmaceutical approval? Inorg Chem 2012;51(6):3490-7
  • Xiao T, Hou W, Cao X, et al. Dendrimer-entrapped gold nanoparticles modified with folic acid for targeted gene delivery applications. Biomater Sci 2013;1(11):1172-80
  • Kneuer C, Ehrhardt C, Bakowsky H, et al. The influence of physicochemical parameters on the efficacy of non-viral DNA transfection complexes: a comparative study. J Nanosci Nanotechnol 2006;6(9-10):2776-82
  • de Assis DN, Mosqueira VCF, Vilela JMC, et al. Release profiles and morphological characterization by atomic force microscopy and photon correlation spectroscopy of 99mTechnetium-fluconazole nanocapsules. Int J Pharm 2008;349(1–2):152-60
  • Ruozi B, Tosi G, Leo E, Vandelli MA. Application of atomic force microscopy to characterize liposomes as drug and gene carriers. Talanta 2007;73(1):12-22
  • Berquand A, Mingeot-Leclercq MP, Dufrêne YF. Real-time imaging of drug–membrane interactions by atomic force microscopy. Biochim Biophys Acta BBABiomembr 2004;1664(2):198-205
  • Shahin V, Albermann L, Schillers H, et al. Steroids dilate nuclear pores imaged with atomic force microscopy. J Cell Physiol 2005;202(2):591-601
  • El Kirat K, Lins L, Brasseur R, Dufrêne YF. Fusogenic tilted peptides induce nanoscale holes in supported phosphatidylcholine bilayers. Langmuir 2005;21(7):3116-21
  • Brasseur R, Braun N, El Kirat K, et al. The biologically important surfactin lipopeptide induces nanoripples in supported lipid bilayers. Langmuir 2007;23(19):9769-72
  • Francius G, Dufour S, Deleu M, et al. Nanoscale membrane activity of surfactins: influence of geometry, charge and hydrophobicity. Biochim Biophys Acta BBABiomembr 2008;1778(10):2058-68
  • Greiner VJ, Shvadchak V, Fritz J, et al. Characterization of the mechanisms of HIV-1 Vpr(52–96) internalization in cells. Biochimie 2011;93(10):1647-58
  • Franquelim HG, Gaspar D, Veiga AS, et al. Decoding distinct membrane interactions of HIV-1 fusion inhibitors using a combined atomic force and fluorescence microscopy approach. Biochim Biophys Acta BBABiomembr 2013;1828(8):1777-85
  • Hong S, Bielinska AU, Mecke A, et al. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug Chem 2004;15(4):774-82
  • Hong S, Leroueil PR, Janus EK, et al. Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjug Chem 2006;17(3):728-34
  • Leroueil PR, Hong S, Mecke A, et al. Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? Acc Chem Res 2007;40(5):335-42
  • Leroueil PR, Berry SA, Duthie K, et al. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett 2008;8(2):420-4
  • Peetla C, Labhasetwar V. Effect of molecular structure of cationic surfactants on biophysical interactions of surfactant-modified nanoparticles with a model membrane and cellular uptake. Langmuir 2009;25(4):2369-77
  • Lamprecht C, Liashkovich I, Neves V, et al. AFM imaging of functionalized carbon nanotubes on biological membranes. Nanotechnology 2009;20:434001
  • Huang N-P, Stubenrauch M, Köser J, et al. Towards monitoring transport of single cargos across individual nuclear pore complexes by time-lapse atomic force microscopy. J Struct Biol 2010;171(2):154-62
  • Müller DJ, Dufrêne YF. Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol 2011;21(8):461-9
  • Parot P, Dufrêne YF, Hinterdorfer P, et al. Past, present and future of atomic force microscopy in life sciences and medicine. J Mol Recognit 2007;20(6):418-31
  • Pan Y-L, Cai J-Y, Qin L, Wang H. Atomic force microscopy-based cell nanostructure for ligand-conjugated quantum dot endocytosis. Acta Biochim Biophys Sin (Shanghai) 2006;38(9):646-52
  • Wang J, Wan Z, Liu W, et al. Atomic force microscope study of tumor cell membranes following treatment with anti-cancer drugs. Biosens Bioelectron 2009;25(4):721-7
  • Francis LW, Lewis PD, Gonzalez D, et al. Progesterone induces nano-scale molecular modifications on endometrial epithelial cell surfaces. Biol Cell 2009;101(8):481-93
  • Lapotko DO, Lukianova-Hleb EY, Oraevsky AA. Clusterization of nanoparticles during their interaction with living cells. Nanomedicine 2007;2(2):241-53
  • Prasanth R, Nair G, Girish CM. Enhanced endocytosis of nano-curcumin in nasopharyngeal cancer cells: an atomic force microscopy study. Appl Phys Lett 2011;99:163706
  • Samuel SP, Jain N, O’Dowd F, et al. Multifactorial determinants that govern nanoparticle uptake by human endothelial cells under flow. Int J Nanomedicine 2012;7:2943-56
  • Kong SD, Lee J, Ramachandran S, et al. Magnetic targeting of nanoparticles across the intact blood–brain barrier. J Control Release 2012;164(1):49-57
  • Hoskins C, Cuschieri A, Wang L. The cytotoxicity of polycationic iron oxide nanoparticles: common endpoint assays and alternative approaches for improved understanding of cellular response mechanism. J Nanobiotechnology 2012;10:15
  • Lamprou DA, Venkatpurwar V, Kumar MN. Atomic force microscopy images label-free, drug encapsulated nanoparticles in vivo and detects difference in tissue mechanical properties of treated and untreated: a tip for nanotoxicology. PLoS One 2013;8(5):e64490
  • Verbelen C, Dupres V, Menozzi FD, et al. Ethambutol-induced alterations in Mycobacterium bovis BCG imaged by atomic force microscopy. FEMS Microbiol Lett 2006;264(2):192-7
  • Yang L, Wang K, Tan W, et al. Atomic force microscopy study of different effects of natural and semisynthetic beta-lactam on the cell envelope of Escherichia coli. Anal Chem 2006;78(20):7341-5
  • Kanno S, Furuyama A, Hirano S. A murine scavenger receptor MARCO recognizes polystyrene nanoparticles. Toxicol Sci 2007;97(2):398-406
  • Alsteens D, Verbelen C, Dague E, et al. Organization of the mycobacterial cell wall: a nanoscale view. Pflugers Arch 2008;456(1):117-25
  • Francius G, Domenech O, Mingeot-Leclercq MP, Dufrêne YF. Direct observation of Staphylococcus aureus cell wall digestion by lysostaphin. J Bacteriol 2008;190(24):7904-9
  • El-Kirat-Chatel S, Beaussart A, Alsteens D, et al. Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicans. Nanoscale 2013;5(3):1105-15
  • Rotsch C, Radmacher M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J 2000;78(1):520-35
  • Oberleithner H, Callies C, Kusche-Vihrog K, et al. Potassium softens vascular endothelium and increases nitric oxide release. Proc Natl Acad Sci USA 2009;106(8):2829-34
  • Jeong KH, Lee TW, Ihm CG, et al. Real-time monitoring of the effects of telmisartan on angiotensin II-induced mechanical changes in live mesangial cells using atomic force microscopy. Kidney Blood Press Res 2012;35(6):573-82
  • Vasir JK, Labhasetwar V. Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials 2008;29(31):4244-52
  • Lee-Thedieck C, Rauch N, Fiammengo R, et al. Impact of substrate elasticity on human hematopoietic stem and progenitor cell adhesion and motility. J Cell Sci 2012;125(Pt 16):3765-75
  • Schillers H, Walte M, Urbanova K, Oberleithner H. Real-time monitoring of cell elasticity reveals oscillating myosin activity. Biophys J 2010;99(11):3639-46
  • Cuerrier CM, Gagner A, Lebel R, et al. Effect of thrombin and bradykinin on endothelial cell mechanical properties monitored through membrane deformation. J Mol Recognit 2009;22(5):389-96
  • Cuerrier CM, Benoit M, Guillemette G, et al. Real-time monitoring of angiotensin II-induced contractile response and cytoskeleton remodeling in individual cells by atomic force microscopy. Pflugers Arch 2009;457(6):1361-72
  • Zuk A, Targosz-Korecka M, Szymonski M. Effect of selected drugs used in asthma treatment on morphology and elastic properties of red blood cells. Int J Nanomedicine 2011;6:249-57
  • Buyukhatipoglu K, Clyne AM. Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J Biomed Mater Res A 2011;96A(1):186-95
  • Cross SE, Jin YS, Rao J, Gimzewski JK. Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2007;2(12):780-3
  • Iyer S, Gaikwad RM, Subba-Rao V, et al. Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. Nat Nanotechnol 2009;4(6):389-93
  • Plodinec M, Loparic M, Monnier CA, et al. The nanomechanical signature of breast cancer. Nat Nanotechnol 2012;7(11):757-65
  • Lekka M, Gil D, Pogoda K, et al. Cancer cell detection in tissue sections using AFM. Arch Biochem Biophys 2012;518(2):151-6
  • Lekka M. Atomic force microscopy: a tip for diagnosing cancer. Nat Nanotechnol 2012;7(11):691-2
  • Deniz AA, Mukhopadhyay S, Lemke EA. Single-molecule biophysics: at the interface of biology, physics and chemistry. J R Soc Interface 2008;5(18):15-45
  • Neuman KC, Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 2008;5(6):491-505
  • Dufrene YF, Hinterdorfer P. Recent progress in AFM molecular recognition studies. Pflugers Arch 2008;456(1):237-45
  • Muller DJ, Dufrene YF. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol 2008;3(5):261-9
  • Picas L, Milhiet PE, Hernandez-Borrell J. Atomic force microscopy: a versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale. Chem Phys Lipids 2012;165(8):845-60
  • Van Vliet KJ, Hinterdorfer P. Probing drug-cell interactions. Nano Today 2006;1(3):18-25
  • Rogueda PGA, Price R, Smith T, et al. Particle synergy and aerosol performance in non-aqueous liquid of two combinations metered dose inhalation formulations: an AFM and Raman investigation. J Colloid Interface Sci 2011;361(2):649-55
  • Rigby-Singleton SM, Allen S, Davies MC, et al. Direct measurement of drug-enzyme interactions by atomic force microscopy; dihydrofolate reductase and methotrexate. J Chem Soc Perkin Trans2 2002(10):1722-7
  • Sulchek TA, Friddle RW, Langry K, et al. Dynamic force spectroscopy of parallel individual Mucin1–antibody bonds. Proc Natl Acad Sci USA 2005;102(46):16638-43
  • Vincent A, Babu S, Heckert E, et al. Protonated nanoparticle surface governing ligand tethering and cellular targeting. ACS Nano 2009;3(5):1203-11
  • Van Vliet KJ, Bao G, Suresh S. The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Mater 2003;51(19):5881-905
  • Chtcheglova LA, Waschke J, Wildling L, et al. Nano-scale dynamic recognition imaging on vascular endothelial cells. Biophys J 2007;93(2):L11-13
  • Pfister G, Stroh CM, Perschinka H, et al. Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J Cell Sci 2005;118(8):1587-94
  • Trache A, Trzeciakowski JP, Gardiner L, et al. Histamine effects on endothelial cell fibronectin interaction studied by atomic force microscopy. Biophys J 2005;89(4):2888-98
  • Gilbert Y, Deghorain M, Wang L, et al. Single-molecule force spectroscopy and imaging of the vancomycin/d-Ala-d-Ala interaction. Nano Lett 2007;7(3):796-801
  • Zhang J, Wu G, Song C, et al. Single molecular recognition force spectroscopy study of a luteinizing hormone-releasing hormone analogue as a carcinoma target drug. J Phys Chem B 2012;116(45):13331-7
  • Lama G, Papi M, Angelucci C, et al. Leuprorelin acetate long-lasting effects on GnRH receptors of prostate cancer cells: an atomic force microscopy study of agonist/receptor interaction. PLoS One 2013;8(1):e52530
  • Wildling L, Rankl C, Haselgrubler T, et al. Probing binding pocket of serotonin transporter by single molecular force spectroscopy on living cells. J Biol Chem 2012;287(1):105-13
  • McNamee CE, Pyo N, Higashitani K. Atomic force microscopy study of the specific adhesion between a colloid particle and a living melanoma cell: effect of the charge and the hydrophobicity of the particle surface. Biophys J 2006;91(5):1960-9
  • Shinto H, Ohta Y, Fukasawa T. Adhesion of melanoma cells to the microsphere surface is reduced by exposure to nanoparticles. Adv Powder Technol 2012;23(5):693-9
  • Shinto H, Aso Y, Fukasawa T, Higashitani K. Adhesion of melanoma cells to the surfaces of microspheres studied by atomic force microscopy. Colloids Surf B Biointerfaces 2012;91(0):114-21
  • Sboros V, Glynos E, Ross JA, et al. Probing microbubble targeting with atomic force microscopy. Colloids Surf B Biointerfaces 2010;80(1):12-17
  • Gunning AP, Chambers S, Pin C, et al. Mapping specific adhesive interactions on living human intestinal epithelial cells with atomic force microscopy. FASEB J 2008;22(7):2331-9
  • Oliveira H, Rangl M, Ebner A, et al. Molecular recognition force spectroscopy: a new tool to tailor targeted nanoparticles. Small 2011;7(9):1236-41
  • Lamprecht C, Plochberger B, Ruprecht V, et al. A single-molecule approach to explore binding, uptake and transport of cancer cell targeting nanotubes. Nanotechnology 2014;25(12):125704
  • El Kirat K, Burton I, Dupres V, Dufrene YF. Sample preparation procedures for biological atomic force microscopy. J Microsc 2005;218(3):199-207
  • Dufrene YF, Evans E, Engel A, et al. Five challenges to bringing single-molecule force spectroscopy into living cells. Nat Methods 2011;8(2):123-7
  • Noy A. Force spectroscopy 101: how to design, perform, and analyze an AFM-based single molecule force spectroscopy experiment. Curr Opin Chem Biol 2011;15(5):710-18
  • te Riet J, Katan AJ, Rankl C, et al. Interlaboratory round robin on cantilever calibration for AFM force spectroscopy. Ultramicroscopy 2011;111(12):1659-69
  • Ebner A, Wildling L, Zhu R, et al. Functionalization of probe tips and supports for single-molecule recognition force Microscopy. In: Samori P, editor. STM and AFM studies on. Springer-Verlag Berlin; Berlin: 2008. p. 29-76
  • Pfister G, Stroh CM, Perschinka H, et al. Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J Cell Sci 2005;118(Pt 8):1587-94
  • Madl J, Rhode S, Stangl H, et al. A combined optical and atomic force microscope for live cell investigations. Ultramicroscopy 2006;106(8-9):645-51
  • Duman M, Pfleger M, Zhu R, et al. Improved localization of cellular membrane receptors using combined fluorescence microscopy and simultaneous topography and recognition imaging. Nanotechnology 2010;21(11):115504
  • Poole K, Meder D, Simons K, Muller D. The effect of raft lipid depletion on microvilli formation in MDCK cells, visualized by atomic force microscopy. FEBS Lett 2004;565(1-3):53-8
  • Kassies R, van der Werf KO, Lenferink A, et al. Combined AFM and confocal fluorescence microscope for applications in bio-nanotechnology. J Microsc 2005;217(Pt 1):109-16
  • Doak S, Rogers D, Jones B, et al. High-resolution imaging using a novel atomic force microscope and confocal laser scanning microscope hybrid instrument: essential sample preparation aspects. Histochem Cell Biol 2008;130(5):909-16
  • Mathur AB, Truskey GA, Reichert WM. Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophys J 2000;78(4):1725-35
  • Trache A, Lim SM. Integrated microscopy for real-time imaging of mechanotransduction studies in live cells. J Biomed Opt 2009;14(3):034024
  • Chacko JV, Zanacchi FC, Diaspro A. Probing cytoskeletal structures by coupling optical superresolution and AFM techniques for a correlative approach. Cytoskeleton (Hoboken) 2013;70(11):729-40
  • Moertelmaier M, Huber HP, Rankl C, Kienberger F. Continuous capacitance–voltage spectroscopy mapping for scanning microwave microscopy. Ultramicroscopy 2014;136(0):67-72
  • Roy D, Kwon SH, Kwak J-W, Park JW. “Seeing and counting” individual antigens captured on a microarrayed spot with force-based atomic force microscopy. Anal Chem 2010;82(12):5189-94
  • Chopinet L, Formosa C, Rols MP, et al. Imaging living cells surface and quantifying its properties at high resolution using AFM in QI™ mode. Micron 2013;48(0):26-33
  • Alsteens D, Trabelsi H, Soumillion P, Dufrêne YF. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nat Commun 2013;4:2926
  • Casuso I, Rico F, Scheuring S. Biological AFM: where we come from – where we are – where we may go. J Mol Recognit 2011;24(3):406-13
  • Shibata M, Yamashita H, Uchihashi T, et al. High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. Nat Nano 2010;5(3):208-12
  • Ando T. High-speed atomic force microscopy coming of age. Nanotechnology 2012;23(6):062001
  • Ando T, Uchihashi T, Scheuring S. Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 2014;114(6):3120-88
  • Lin L, Wang H, Liu Y, et al. Recognition imaging with a DNA aptamer. Biophys J 2006;90(11):4236-8
  • Neundlinger I, Poturnayova A, Karpisova I, et al. Characterization of enhanced monovalent and bivalent thrombin DNA aptamer binding using single molecule force spectroscopy. Biophys J 2011;101(7):1781-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.