519
Views
47
CrossRef citations to date
0
Altmetric
Reviews

Vaginal drug delivery: strategies and concerns in polymeric nanoparticle development

, &

Bibliography

  • Gupta S, Gabrani R, Ali J, Dang S. Exploring novel approaches to vaginal drug delivery. Recent Pat Drug Deliv Formul 2011;5(2):82-94
  • Rathbone MJ, Macmillan KL, Bunt CR, Burggraaf S. Conceptual and commercially available intravaginal veterinary drug delivery systems. Adv Drug Deliv Rev 1997;28:363-92
  • Rathbone MJ, Bunt CR, Ogle CR, et al. Development of an injection molded poly(epsilon-caprolactone) intravaginal insert for the delivery of progesterone to cattle. J Control Release 2002;85:61-71
  • Rathbone MJ, Bunt CR, Ogle CR, et al. Reengineering of a commercially available bovine intravaginal insert (CIDR insert) containing progesterone. J Control Release 2002;85:105-15
  • Cross PS, Künnemeyer R, Bunt CR, et al. Control, communication and monitoring of intravaginal drug delivery in dairy cows. Int J Pharm 2004;282:35-44
  • Neves JD, Bahia MF. Gels as vaginal drug delivery systems. Int J Pharm 2006;318:1-14
  • Tortora GJ, Derrickson B. The reproductive systems. In: Tortora GJ, Derrickson B, editors. Introduction to the human body: the essentials of anatomy and physiology. John Wiley & Sons, USA; 2007. p. 556-85
  • Hussain A, Ahsan F. The vagina as a route for systemic drug delivery. J Control Release 2005;103:301-13
  • Fatakdawala H, Uhland SA. Hydrogen peroxide mediated transvaginal drug delivery. Int J Pharm 2011;409:121-7
  • Vermani K, Garg S. The scope and potential of vaginal drug delivery. Pharm Sci Technolo Today 2000;3(10):359-64
  • Larsen B, Monif GRG. Understanding the bacterial flora of the female genital tract. Clin infect Dis 2001;32:69-77
  • Yamamoto T, Zhou X, Williams CJ, et al. Bacterial populations in the vaginas of healthy adolescent women. J Pediatr Adolesc Gynecol 2009;22:11-18
  • Vanić Ž, Škalko-Basnet N. Nanopharmaceuticals for improved topical vaginal therapy: can they deliver? Eur J Pharm Sci 2013;50:29-41
  • Yang S, Chen Y, Ahmadie R, Ho EA. Advancements in the field of intravaginal siRNA delivery. J Control Release 2013;167:29-39
  • Marques MRC, Loebenberg R, Almukainzi M. Simulated biological fluids with possible application in dissolution testing. Dissolution Technol 2011;8:15-28
  • Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 2009;61:158-71
  • Cu Y, Booth CJ, Saltzman WM. In vivo distribution of surface-modified PLGA nanoparticles following intravaginal delivery. J Control Release 2011;156:258-64
  • Yoo JW, Giri N, Lee CH. pH-sensitive Eudragit nanoparticles for mucosal drug delivery. Int J Pharm 2011;403:262-7
  • Woolfson AD, Melcolm RK, Gallagher R. Drug delivery by the intravaginal route. Crit Rev Ther Drug Carr Syst 2000;17:509-55
  • Hay PE. Bacterial vaginosis as a mixed infection. In: Brogden KA, Guthmiller JM, editors. Polymicrobial diseases. ASM Press, Washington, USA; 2002
  • Briery CM, Chauhan SP, Magann EF, et al. Treatment of bacterial vaginosis does not reduce preterm birth among high-risk asymptomatic women in fetal fibronectin positive patients. J Miss State Med Assoc 2011;52(3):72-5
  • Centers for Disease Control and Prevention. Incidence, prevalence, and cost of sexually transmitted infections in the United States. CDC fact sheet 2013:1-4.
  • Kalinka J, Hanke W, Wasiela M, Laudanski T. Socioeconomic and environmental risk factors of bacterial vaginosis in early pregnancy. J Perinat Med 2002;30:467-75
  • Steinbach JM, Weller CE, Booth CJ, Saltzman WM. Polymer nanoparticles encapsulating siRNA for treatment of HSV-2 genital infection. J Control Release 2012;162:102-10
  • Cherpes TL, Hillier SL, Meyn LA, et al. A delicate balance: risk factors for acquisition of bacterial vaginosis include sexual activity, absence of hydrogen peroxide-producing lactobacilli, black race, and positive herpes simplex virus type 2 serology. Sex Transm Dis 2008;35(1):78-83
  • Koumans EH, Sternberg M, Bruce C, et al. The prevalence of bacterial vaginosis in the United States, 2001-2004: associations with symptoms, sexual behaviours, and reproductive health. Sex Transm Dis 2007;34(11):864-9
  • Nelson DB, Macones G. Bacterial vaginosis in pregnancy: current findings and future directions. Epidemiol Rev 2002;24(2):102-8
  • Pretorius C, Jagatt A, Lamont RF. The relationship between periodontal disease, bacterial vaginosis, and preterm birth. J Perinat Med 2007;35(2):93-9
  • Bassi P, Kaur G. Innovations in bioadhesive vaginal drug delivery system. Expert Opin Ther Pat 2012;229:1019-32
  • Li WZ, Zhao N, Zhou YQ, et al. Post-expansile hydrogel foam aerosol of PG-liposomes: a novel delivery system for vaginal drug delivery applications. Eur J Pharm Sci 2012;47:162-9
  • Price CF, Tyssen D, Sonza S, et al. SPL7013 gel (VivaGel®) retains potent HIV-1 and HSV-2 inhibitory activity following vaginal administration in humans. PLoS One 2011;6:e24095
  • Yoo JW, Acharya G, Lee CH. In vivo evaluation of vaginal films for mucosal delivery of nitric oxide. Biomaterials 2009;30:3978-85
  • Date AA, Shibata A, Goede M, et al. Development and evaluation of a thermosensitive vaginal gel containing raltegravir + efavirenz loaded nanoparticles for HIV prophylaxis. Antiviral Res 2012;96:430-6
  • Esposito E, Ravani L, Contado C, et al. Clotrimazole nanoparticle gel for mucosal administration. Mat Sci Eng C 2013;33:411-18
  • Bernkop-Schnurch A, Hornof M. Intravaginal drug delivery systems: design, challenges and solutions. Am J Drug Deliv 2003;1:241-54
  • Garg S, Goldman D, Krumme M, et al. Advances in development, scale-up and manufacturing of microbicide gels, films and tablets. Antiviral Res 2010;88(Suppl 1):s19-29
  • Hughes G. Nanostructure-mediated drug delivery. Nanomedicine 2005;1:22-30
  • Emerich DF, Thanos CG. The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol Eng 2006;23:171-84
  • Liu Z, Y, Jiao Y, et al. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 2008;60:1650-62
  • Diebold Y, Calonge M. Applications of nanoparticles in ophthalmology. Prog Retin Eye Res 2010;29:596-609
  • Li X, Anton N, Arpagaus C, et al. Nanoparticles by spray drying using innovative new technology: the Büchi nano spray dryer B-90. J Control Release 2010;147:304-10
  • Lee SH, Heng D, Ng WK, et al. Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int J Pharm 2011;403:192-200
  • McNeil SE. Unique benefits of nanotechnology to drug delivery and diagnostics. In: McNeil SE, editor. Characterization of nanoparticles intended for drug delivery, methods in molecular biology. (Volume 697) Springer, New York; 2011. p. 3-8
  • Kadir A, Mohd Mokhtar MT, Wong TW. Nanoparticulate assembly of mannuronic acid- and guluronic acid-rich alginate: oral insulin carrier and glucose binder. J Pharm Sci 2013;102:4353-63
  • Janes KA, Calvo P, Alonso MJ. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 2001;47:83-97
  • Soppimath KS, Aminabhavi TM, Kulkarni AR. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001;70:1-20
  • Sailaja AK, Amareshwar P, Chakravarty P. Chitosan nanoparticles as a drug delivery system. Res J Pharm Biol Chem Sci 2010;1:474-84
  • Plapied L, Duhem N, des Rieux A, Préat V. Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci 2011;16:228-37
  • Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. Am Chem Soc Pub 2009;3:16-20
  • Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res 2008;25:999-1022
  • Betancourt T, Doiron A, Homan KA, Peppas LB. Controlled release and nanotechnology. In: Villiers MM, Aramwit P, Kwon GS, editors, Nanotechnology in drug delivery. Springer, New York; 2009. p. 283-312
  • Xiong XY, Tam KC, Gan LH. Release kinetics of hydrophobic and hydrophilic model drugs from pluronic F127/poly(lactic acid) nanoparticles. J Control Release 2005;103:73-82
  • Rodríguez-Cruz IM, Domínguez-Delgado CL, Escobar-Chávez JJ, et al. Nanoparticle infiltration to prepare solvent-free controlled drug delivery systems. Int J Pharm 2009;371:177-81
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010;75:1-18
  • Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 2011;36:981-1014
  • Ochekpe NA, Olorunfemi PO, Ndidi C. Nanotechnology and drug delivery Part 1: background and applications. Trop J Pharm Res 2009;8:265-74
  • Xu Q, Boylan NJ, Cai S, et al. Scalable method to produce biodegradable nanoparticles that rapidly penetrate human mucus. J Control Release 2013;170:279-86
  • Zhang T, Sturgis TF, Youan BBC. pH-responsive nanoparticles releasing tenofovir intended for the prevention of HIV transmission. Eur J Pharm Biopharm 2011;79:526-36
  • Neves JD, Amiji MM, Bahia MF, Sarmento B. Nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Adv Drug Deliv Rev 2010;62:458-77
  • Dukhin SS, Labib ME. Convective diffusion of nanoparticles from the epithelial barrier toward regional lymph nodes. Adv Colloid Interface Sci 2013;199-200:23-43
  • Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev 2009;61:75-85
  • Rosen H, Abribat T. The rise and rise of drug delivery. Nat Rev Drug Discov 2005;4:381-5
  • Schmulewitz A, Langer R, Patton J. Convergence in biomedical technology. Nat Biotechnol 2006;24:277-80
  • Smart JD. The basics and underlying mechanisms of mucoadhesion. Adv Drug Deliv Rev 2005;57:1556-68
  • Musa N, Wong TW. Fast-scan vs conventional differential scanning calorimetry (DSC) techniques in detection of crystallization events of tolbutamide-polyethylene glycol composite. J Therm Anal Calorim 2013;111:2195-202
  • Nurulaini H, Wong TW. Design of in-situ dispersible and calcium crosslinked alginate pellets as intestinal-specific drug carrier by melt pelletization technique. J Pharm Sci 2011;100(6):2248-57
  • Razali S, Wong TW. Design of superdisintegrant- and effervescent agent-less dispersible fast-release melt pellets. Powder Technol 2013;235:289-98
  • Wong TW, Musa N. Centrifugal air-assisted melt agglomeration for fast release “granulet” design. Int J Pharm 2012;430:184-96
  • Wong TW, Nurulaini H. Sustained-release alginate-chitosan pellets prepared by melt pelletization technique. Drug Dev Ind Pharm 2012;38(12):1417-27
  • Cu Y, Saltzman WM. Controlled surface modification with poly(ethylene)glycol enhances diffusion of PLGA nanoparticles in human cervical mucus. Mol Pharm 2009;6(1):173-81
  • das Neves J, Michiels J, Ariën KK, et al. Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine. Pharm Res 2012;29(6):1468-84
  • das Neves J, Araújo F, Andrade F, et al. In vitro and ex vivo evaluation of polymeric nanoparticles for vaginal and rectal delivery of the anti-HIV drug dapivirine. Mol Pharm 2013;10(7):2793-807
  • Mert O, Lai SK, Ensign L, et al. A poly(ethylene glycol)-based surfactant for formulation of drug-loaded mucus penetrating particles. J Control Release 2012;157:455-60
  • Lai SK, O’Hanlon DE, Harrold S, et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci USA 2007;104:1482-7
  • Touitou E, Dayan N, Bergelson L, et al. Ethosomes-novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release 2000;65:403-18
  • Chourasia MK, Kang L, Chan SY. Nanosized ethosomes bearing ketoprofen for improved transdermal delivery. Results Pharm Sci 2011;1:60-7
  • Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM. Deformable liposomes and ethosomes as carriers for skin delivery of ketotifen. Pharmazie 2007;62:133-7
  • Fang YP, Tsai YH, Wu PC, Huang YB. Comparison of 5-aminolevulinic acid-encapsulated liposomes versus ethosomes for skin delivery for photodynamic therapy. Int J Pharm 2008;356(1-2):144-52
  • Jain S, Tiwary AK, Sapra B, Jain NK. Formulation and evaluation of ethosomes for transdermal delivery of ethosomes. AAPS PharmSciTech 2007;8(4):E1-9
  • Trommer H, Neubert RHH. Overcoming the stratum corneum: the modulation of skin penetration. Skin Pharmacol Physiol 2006;19:106-21
  • Limsuwan T, Amnuaikit T. Development of ethosomes containing mycophenolic acid. Procedia Chem 2012;4:328-35
  • Caddeo C, Sales OD, Valenti D, et al. Inhibition of skin inflammation in mice by diclofenac in vesicular carriers: liposomes, ethosomes and PEVs. Int J Pharm 2013;443:128-36
  • Vanić Ž, Hafner A, Bego M, Škalko-Basnet N. Characterization of various deformable liposomes with metronidazole. Drug Dev Ind Pharm 2013;39(3):481-8
  • Felber AE, Dufresne MH, Leroux JC. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliv Rev 2012;64:979-92
  • Chen D, Sun K, Mu H, et al. pH and temperature dual-sensitive liposome gels based on novel cleavable Mpeg-Hz-CHEMS polymeric vaginal delivery system. Int J Nanomedicine 2012;7:2621-30
  • Ur-Rehman T, Tavelin S, Gröbner G. Chitosan in situ gelation for improved drug loading and retention in poloxamer 407 gels. Int J Pharm 2011;409:19-29
  • Wong TW. Design of oral insulin delivery systems. J Drug Target 2010;18(2):79-92
  • Hayakawa T, Kawamura M, Okamoto M, et al. Concanavalin A-immobilized polystyrene nanospheres capture HIV-1 virions and gp120: potential approach towards prevention of viral transmission. J Med Virol 1998;56:327-31
  • Du Toit LC, Pillay V, Choonara YE. Nano-microbicides: challenges in drug delivery, patient ethics and intellectual property in the war against HIV/AIDS. Adv Drug Deliv Rev 2010;62:532-46
  • de la Fuente JM, Penadés S. Understanding carbohydrate-carbohydrate interactions by means of glyconanotechnology. Glycoconj J 2004;21:149-63
  • Martínez-Ávila O, Clavel C, Penadés S, et al. Gold manno-nanoparticles as potential microbicides against HIV Infection. TNT2007-Trends in NanoTechnology; San Sebastian, Spain; 2007
  • Schäfer V, von Briesen H, Andreesen R, et al. Phagocytosis of nanoparticles by human immunodeficiency virus (HIV)-infected macrophages: a possibility for antiviral drug targeting. Pharm Res 1992;9:541-6
  • Florence AT. Targeting nanoparticles: some inconvenient physical laws and biological barriers. PharmaTech 2012: International Conference and Exhibition on Pharmaceutical, Nutraceutical and Cosmeceutical Technology. 2012. PL1:28-30
  • Garg S, Vermani K, Kohli G, et al. Survey of vaginal formulations available on the Indian market: physicochemical characterization of selected products. Int J Pharm Med 2002;16:141-52
  • Yang S, Chen Y, Gu K, et al. Novel intravaginal nanomedicine for the targeted delivery of saquinavir to CD4+ immune cells. Int J Nanomedicine 2013;8:2847-58
  • Meng J, Sturgis TF, Youan B-BC. Engineering tenofovir loaded chitosan nanoparticles to maximize microbicide mucoadhesion. Eur J Pharm Sci 2011;44:57-67
  • Lara HH, Ayala-Nunez NV, Lxtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 2010;8:1
  • Lara HH, Lxtepan-Turrent L, Garza-Trevino EN, Rodriguez-Padilla C. PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture. J Nanobiotechnol 2010;8:15
  • Bowman MC, Ballard TE, Ackerson CJ, et al. Inhibition of HIV fusion with multivalent gold nanoparticles. J Am Chem Soc 2008;130:6896-7
  • Gupta PN, Pattani A, Curran RM, et al. Development of liposome gel based formulations for intravaginal delivery of the recombinant HIV-1 envelope protein CN54gp140. Eur J Pharm Sci 2012.46:315-22
  • Singh A, Malviya R, Sharma PK. Novasome – a breakthrough in pharmaceutical technology a review article. Adv Biol Res 2011;5:184-9
  • Kish-Catalone T, Pal R, Parrish J, et al. Evaluation of -2 RANTES vaginal microbicide formulations in a nonhuman primate simian/human immunodeficiency virus (SHIV) challenge model. AIDS Res Hum Retroviruses 2007;23:33-42
  • Wu SY, Chang HI, Burgess M, McMillan NAJ. Vaginal delivery of siRNA using a novel PEGylated lipoplex-entrapped alginate scaffold system. J Control Release 2011;155:418-26
  • Yang H, Parniak MA, Isaacs CE, et al. Characterization of cyclodextrin inclusion complexes of the anti-HIV non-nucleoside reverse transcriptase inhibitor UC781. AAPS J 2008;10:606-13

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.