1,689
Views
332
CrossRef citations to date
0
Altmetric
Reviews

Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges

, , , &

Bibliography

  • Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjug Chem 2011;22(10):1879-903
  • Mahmoudi M, Sant S, Wang B, et al. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 2011;63(1–2):24-46
  • Yen SK, Padmanabhan P, Selvan ST. Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics 2013;3(12):986
  • Anzai Y, Piccoli CW, Outwater EK, et al. Evaluation of neck and body metastases to nodes with ferumoxtran 10–enhanced MR imaging: phase III safety and efficacy study 1. Radiology 2003;228(3):777-88
  • Sakhtianchi R, Minchin RF, Lee K-B, et al. Exocytosis of nanoparticles from cells: role in cellular retention and toxicity. Adv Colloid Interface Sci 2013;201-202:18-29
  • Arruebo M, Galán M, Navascués N, et al. Development of magnetic nanostructured silica-based materials as potential vectors for drug-delivery applications. Chem Mater 2006;18(7):1911-19
  • Durán J, Arias J, Gallardo V, Delgado A. Magnetic colloids as drug vehicles. J Pharm Sci 2008;97(8):2948-83
  • Corot C, Robert P, Idée J-M, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 2006;58(14):1471-504
  • Saei AA, NazhadDolatabadi JE, Najafi-Marandi P, et al. Electrchemical biosensors for glucose based on metal nanoparticles. TrAC Trends Anal Chem 2013;42:216-27
  • Mahmoudi M, Hosseinkhani H, Hosseinkhani M, et al. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev 2010;111(2):253-80
  • Laurent S, Dutz S, Häfeli UO, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 2011;166(1):8-23
  • Larson TA, Joshi PP, Sokolov K. Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano 2012;6(10):9182-90
  • Larsen EKU, Nielsen T, Wittenborn T, et al. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors. Nanoscale 2012;4(7):2352-61
  • Koffie RM, Farrar CT, Saidi LJ, et al. Nanoparticles enhance brain delivery of blood–brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proc Natl Acad Sci USA 2011;108(46):18837-42
  • Roca A, Costo R, Rebolledo A, et al. Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 2009;42(22):224002
  • Lee H, Yu MK, Park S, et al. Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J Am Chem Soc 2007;129(42):12739-45
  • Larsen EK, Nielsen T, Wittenborn T, et al. Size-dependent accumulation of PEGylated silane-coated magnetic iron oxide nanoparticles in murine tumors. ACS Nano 2009;3(7):1947-51
  • Zhu XM, Wang YXJ, Leung KCF, et al. Enhanced cellular uptake of aminosilane-coated superparamagnetic iron oxide nanoparticles in mammalian cell lines. Int J Nanomed 2012;7:953
  • Maleki H, Simchi A, Imani M, Costa BFO. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications. J Magn Magn Mater 2012;324(23):3997-4005
  • Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 2008;108(6):2064-110
  • Fauconnier N, Pons J, Roger J, Bee A. Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J Colloid Interface Sci 1997;194(2):427-33
  • Răcuciu M, Creangă D, Airinei A. Citric-acid-coated magnetite nanoparticles for biological applications. Euro Phys J E Soft Matter 2006;21(2):117-21
  • Park J, Lee JJ, Kim IS, et al. Magnetic and MR relaxation properties of avidin–biotin conjugated superparamagnetic nanoparticles. Colloids Surf A 2008;313:288-91
  • Quan Q, Xie J, Gao H, et al. HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy. Mol Pharm 2011;8(5):1669-76
  • Lee YT, Woo K, Choi KS. Preparation of water-dispersible and biocompatible iron oxide nanoparticles for MRI agent. IEEE Trans Nanotechol 2008;7(2):111-14
  • Easo SL, Mohanan PV. Dextran stabilized iron oxide nanoparticles: synthesis, characterization and in vitro studies. Carbohydr Polym 2013;92(1):726-32
  • Rosen JE, Chan L, Shieh DB, Gu FX. Iron oxide nanoparticles for targeted cancer imaging and diagnostics. Nanomedicine 2012;8(3):275-90
  • Lee SJ, Jeong JR, Shin SC, et al. Nanoparticles of magnetic ferric oxides encapsulated with poly (D, L latide-co-glycolide) and their applications to magnetic resonance imaging contrast agent. J Magn Magn Mater 2004;272:2432-3
  • Prashant C, Dipak M, Yang CT, et al. Superparamagnetic iron oxide–Loaded poly (lactic acid)-d-α-tocopherol polyethylene glycol 1000 succinate copolymer nanoparticles as MRI contrast agent. Biomaterials 2010;31(21):5588-97
  • Ai H, Flask C, Weinberg B, et al. Magnetite loaded polymeric micelles as ultrasensitive magnetic resonance probes. Adv Mater 2005;17(16):1949-52
  • Mahmoudi M, Simchi A, Imani M, et al. Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J Phys Chem B 2008;112(46):14470-81
  • Wang Y, Teng X, Wang JS, Yang H. Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3 polystyrene core-shell nanoparticles. Nano Lett 2003;3(6):789-93
  • Lee HY, Lim NH, Seo JA, et al. Preparation and magnetic resonance imaging effect of polyvinylpyrrolidone coated iron oxide nanoparticles. J Biomed Mater Res B Appl Biomater 2006;79(1):142-50
  • Xu Y-Y, Zhou M, Geng H-J, et al. A simplified method for synthesis of Fe3O4 PAA nanoparticles and its application for the removal of basic dyes. Appl Surf Sci 2012;258(8):3897-902
  • McBain S, Yiu H, El Haj A, Dobson J. Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection. J Mater Chem 2007;17(24):2561-5
  • Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 2008;3(11):397-415
  • Gomez-Lopera S, Plaza R, Delgado A. Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. J Colloid Interface Sci 2001;240(1):40-7
  • Schweiger C, Pietzonka C, Heverhagen J, Kissel T. Novel magnetic iron oxide nanoparticles coated with poly (ethylene imine)-g-poly (ethylene glycol) for potential biomedical application: synthesis, stability, cytotoxicity and MR imaging. Int J Pharm 2011;408(1):130-7
  • Al-Deen FN, Selomulya C, Williams T. On designing stable magnetic vectors as carriers for malaria DNA vaccine. Colloids Surf B 2013;102:492-503
  • Tombácz E, Szekeres M, Tóth IY, et al. Colloidal stability of carboxylated iron oxide nanomagnets for biomedical use. Chem Eng 2014;58:3-10
  • Sun X, Ma P, Cao X, et al. Positive hyaluronan/PEI/DNA complexes as a target-specific intracellular delivery to malignant breast cancer. Drug Deliv 2009;16(7):357-62
  • Hofmann-Amtenbrink M, von Rechenberg B, Hofmann H. Superparamagnetic nanoparticles for biomedical applications. Transworld Research Network, Kerala, India, 2009
  • Viali WR, da Silva Nunes E, dos Santos CC, et al. PEGylation of SPIONs by polycondensation reactions: a new strategy to improve colloidal stability in biological media. J Nanoparticle Res 2013;15(8):1-14
  • Huh YM, Jun YW, Song HT, et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J Am Chem Soc 2005;127(35):12387-91
  • Zhang C, Jugold M, Woenne EC, et al. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res 2007;67(4):1555-62
  • Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Controlled Release 2011;153(3):198
  • Koo YEL, Reddy GR, Bhojani M, et al. Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev 2006;58(14):1556-77
  • Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 2008;3(5):703-17
  • Choi HS, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol 2007;25(10):1165-70
  • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005;26(18):3995-4021
  • Saito S, Tsugeno M, Koto D, et al. Impact of surface coating and particle size on the uptake of small and ultrasmall superparamagnetic iron oxide nanoparticles by macrophages. Int J Nanomed 2012;7:5415
  • Chouly C, Pouliquen D, Lucet I, et al. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J. Microencapsulation 1996;13(3):245-55
  • Osaka T, Nakanishi T, Shanmugam S, et al. Effect of surface charge of magnetite nanoparticles on their internalization into breast cancer and umbilical vein endothelial cells. Colloids Surf B 2009;71(2):325-30
  • Kenzaoui BH, Vilà MR, Miquel JM, et al. Evaluation of uptake and transport of cationic and anionic ultrasmall iron oxide nanoparticles by human colon cells. Int J Nanomed 2012;7:1275
  • Mahmoudi M, Simchi A, Imani M, Haífeli UO. Superparamagnetic iron oxide nanoparticles with rigid cross-linked polyethylene glycol fumarate coating for application in imaging and drug delivery. J Phys Chem C 2009;113(19):8124-31
  • Karlsson HL, Cronholm P, Gustafsson J, Moller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 2008;21(9):1726-32
  • Ankamwar B, Lai T, Huang J, et al. Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology 2010;21(7):075102
  • Thoeny HC, Triantafyllou M, Birkhaeuser FD, et al. Combined ultrasmall superparamagnetic particles of iron oxide–enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur Urol 2009;55(4):761-9
  • Mahmoudi M, Simchi A, Imani M. Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles. J Phys Chem C 2009;113(22):9573-80
  • Mahmoudi M, Simchi A, Vali H, et al. Cytotoxicity and cell cycle effects of bare and poly (vinyl alcohol) coated iron oxide nanoparticles in mouse fibroblasts. Adv Eng Mater 2009;11(12):B243-B50
  • Mahmoudi M, Simchi A, Imani M, et al. A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf B 2010;75(1):300-9
  • Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M. Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 2011;5(9):7263-76
  • Yang WJ, Lee JH, Hong SC, et al. Difference between toxicities of iron oxide magnetic nanoparticles with various surface-functional groups against human normal fibroblasts and fibrosarcoma cells. Materials 2013;6(10):4689-706
  • Jain TK, Reddy MK, Morales MA, et al. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 2008;5(2):316-27
  • Weissleder RA, Stark D, Engelstad B, et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol 1989;152(1):167-73
  • Gaasch JA, Lockman PR, Geldenhuys WJ, et al. Brain iron toxicity: differential responses of astrocytes, neurons, and endothelial cells. Neurochem Res 2007;32(7):1196-208
  • Walczyk D, Bombelli FB, Monopoli MP, et al. What the cell “sees” in bionanoscience. J Am Chem Soc 2010;132(16):5761-8
  • Mahmoudi M, Lohse SE, Murphy CJ, et al. Variation of protein corona composition of gold nanoparticles following plasmonic heating. Nano Lett 2014;14(1):6-12
  • Krol S, Macrez R, Docagne F, et al. Therapeutic benefits from nanoparticles: the potential significance of nanoscience in diseases with compromise to the blood brain barrier. Chem Rev 2013;113(3):1877-903
  • Monopoli MP, Walczyk D, Campbell A, et al. Physical− chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 2011;133(8):2525-34
  • Ghavami M, Saffar S, Emamy BA, et al. Plasma concentration gradient influences the protein corona decoration on nanoparticles. RSC Adv 2013;3(4):1119-26
  • Salvati A, Pitek AS, Monopoli MP, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 2013;8(2):137-43
  • Mirshafiee V, Mahmoudi M, Lou K, et al. Protein corona significantly reduces active targeting yield. Chem Commun 2013;49(25):2557-9
  • Xie J, Xu C, Kohler N, et al. Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non specific uptake by macrophage cells. Adv Mater 2007;19(20):3163-6
  • Ni F, Jiang L, Yang R, et al. Effects of PEG length and iron oxide nanoparticles size on reduced protein adsorption and non-specific uptake by macrophage cells. J Nanosci Nanotechnol 2012;12(3):2094-100
  • Ehrenberg MS, Friedman AE, Finkelstein JN, et al. The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 2009;30(4):603-10
  • Mahmoudi M, Sheibani S, Milani A, et al. Crucial role of protein corona for specific targeting of nanoparticles. Nanomedicine 2014; In press
  • Amiri H, Bordonali L, Lascialfari A, et al. Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles. Nanoscale 2013;5(18):8656-65
  • Mahmoudi M, Shokrgozar MA, Sardari S, et al. Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. Nanoscale 2011;3(3):1127-38
  • Zhang D, Neumann O, Wang H, et al. Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Lett 2009;9(2):666-71
  • Gref R, Lück M, Quellec P, et al. ‘Stealth’corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B 2000;18(3):301-13
  • Lee H, Lee E, Kim DK, et al. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc 2006;128(22):7383-9
  • García KP, Zarschler K, Barbaro L, et al. Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 2014. [ Epub ahead of print]
  • Ge C, Du J, Zhao L, et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci USA 2011;108(41):16968-73
  • Dominguez-Medina S, Blankenburg J, Olson J, et al. Adsorption of a protein monolayer via hydrophobic interactions prevents nanoparticle aggregation under harsh environmental conditions. ACS Sustain Chem Eng 2013;1(7):833-42
  • Kah JCY, Chen J, Zubieta A, Hamad-Schifferli K. Exploiting the protein corona around gold nanorods for loading and triggered release. ACS Nano 2012;6(8):6730-40
  • Cifuentes-Rius A, de Puig H, Kah JCY, et al. Optimizing the properties of the protein corona surrounding nanoparticles for tuning payload release. ACS Nano 2013;7(11):10066-74
  • Caracciolo G, Cardarelli F, Pozzi D, et al. Selective targeting capability acquired with a protein corona adsorbed on the surface of DOTAP/DNA nanoparticles. ACS Appl Mater Interfaces 2013;5(24):13171-9
  • Nagayama S, Ogawara KI, Fukuoka Y, et al. Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm 2007;342(1):215-21
  • Ogawara KI, Furumoto K, Nagayama S, et al. Pre-coating with serum albumin reduces receptor-mediated hepatic disposition of polystyrene nanosphere: implications for rational design of nanoparticles. J Controlled Release 2004;100(3):451-5
  • Kubo T, Sugita T, Shimose S, et al. Targeted delivery of anticancer drugs with intravenously administered magnetic liposomes in osteosarcoma-bearing hamsters. Inter J Oncol 2000;17(2):309-24
  • Widder KJ, Senyei AE, Ranney DF. Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumor agents. Adv Pharmacol Chemother 1979;16:213-71
  • Lübbe AS, Bergemann C, Huhnt W, et al. Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res 1996;56(20):4694-701
  • Lübbe AS, Bergemann C, Riess H, et al. Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 1996;56(20):4686-93
  • Widder KJ, Morris RM, Poore G, et al. Tumor remission in Yoshida sarcoma-bearing rts by selective targeting of magnetic albumin microspheres containing doxorubicin. Proc Natl Acad Sci USA 1981;78(1):579-81
  • Landfester K, Mailänder V. Nanocapsules with specific targeting and release properties using miniemulsion polymerization. Expert Opin Drug Deliv 2013;10(5):593-609
  • Kong SD, Zhang W, Lee JH, et al. Magnetically vectored nanocapsules for tumor penetration and remotely switchable on-demand drug release. Nano Lett 2010;10(12):5088-92
  • Kong SD, Choi C, Khamwannah J, Jin S. Magnetically vectored delivery of cancer drug using remotely on–off switchable nanocapsules. IEEE Trans Magnet 2013;49(1):349-52
  • Tan H, Wang M, Yang CT, et al. Silica nanocapsules of fluorescent conjugated polymers and superparamagnetic nanocrystals for dual mode cellular imaging. Chem A Eur J 2011;17(24):6696-706
  • Kim TH, Jiang HL, Jere D, et al. Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog Polym Sci 2007;32(7):726-53
  • Bae KH, Ha YJ, Kim C, et al. Pluronic/chitosan shell cross-linked nanocapsules encapsulating magnetic nanoparticles. J Biomater Sci Polym Ed 2008;19(12):1571-83
  • Kumar A, Jena PK, Behera S, et al. Multifunctional magnetic nanoparticles for targeted delivery. Nanomedicine 2010;6(1):64-9
  • Zhang J, Misra R. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core–shell nanoparticle carrier and drug release response. Acta Biomater 2007;3(6):838-50
  • Purushotham S, Chang P, Rumpel H, et al. Thermoresponsive core–shell magnetic nanoparticles for combined modalities of cancer therapy. Nanotechnology 2009;20(30):305101
  • Yang X, Grailer JJ, Rowland IJ, et al. Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. ACS Nano 2010;4(11):6805-17
  • Yang X, Grailer JJ, Rowland IJ, et al. Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging. Biomaterials 2010;31(34):9065-73
  • Wang CH, Kang ST, Yeh CK. Superparamagnetic iron oxide and drug complex-embedded acoustic droplets for ultrasound targeted theranosis. Biomaterials 2013;34(7):1852-61
  • Ketkar-Atre A, Struys T, Dresselaers T, et al. In vivo hepatocyte MR imaging using lactose functionalized magnetoliposomes. Biomaterials 2014;35(3):1015-24
  • Lamanna G, Kueny-Stotz M, Mamlouk-Chaouachi H, et al. Dendronized iron oxide nanoparticles for multimodal imaging. Biomaterials 2011;32(33):8562-73
  • Walter GA, Cahill KS, Huard J, et al. Noninvasive monitoring of stem cell transfer for muscle disorders. Magn Reson Med 2004;51(2):273-7
  • Yallapu MM, Othman SF, Curtis ET, et al. Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials 2011;32(7):1890-905
  • Matsuoka F, Shinkai M, Honda H, et al. Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma. Biomagn Res Technol 2004;2(1):3
  • Qiang Y, Antony J, Sharma A, et al. Iron/iron oxide core-shell nanoclusters for biomedical applications. J Nanopart Res 2006;8(3-4):489-96
  • Hua MY, Yang HW, Liu HL, et al. Superhigh-magnetization nanocarrier as a doxorubicin delivery platform for magnetic targeting therapy. Biomaterials 2011;32(34):8999-9010
  • Rosengart AJ, Kaminski MD. Decorporation of biohazards utilizing nanoscale magnetic carrier systems. Nanofabricat Towards Biomed Appl 2005;343-63
  • Goodwin S, Peterson C, Hoh C, Bittner C. Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy. J Magn Magn Mater 1999;194(1):132-9
  • Grief AD, Richardson G. Mathematical modelling of magnetically targeted drug delivery. J Magn Magn Mater 2005;293(1):455-63
  • Takeda SI, Mishima F, Fujimoto S, et al. Development of magnetically targeted drug delivery system using superconducting magnet. J Magn Magn Mater 2007;311(1):367-71
  • Forbes ZG, Yellen BB, Halverson DS, et al. Validation of high gradient magnetic field based drug delivery to magnetizable implants under flow. IEEE Trans Biomed Eng 2008;55(2):643-9
  • Chen H, Ebner AD, Kaminski MD, et al. Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent—2: parametric study with multi-wire two-dimensional model. J Magn Magn Mater 2005;293(1):616-32
  • Mahmoudi M, Meng J, Xue X, et al. Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnol Adv 2013. [ Epub ahead of print]
  • Mahmoudi M, Lohse SE, Murphy CJ, et al. Variation of protein corona composition of gold nanoparticles following plasmonic heating. Nano Lett 2014;14(1):6-12
  • Li H, El-Dakdouki MH, Zhu DC, et al. Synthesis of β-cyclodextrin conjugated superparamagnetic iron oxide nanoparticles for selective binding and detection of cholesterol crystals. Chem Commun 2012;48(28):3385-7
  • Grootendorst DJ, Fratila RM, Visscher M, et al. Intra operative ex vivo photoacoustic nodal staging in a rat model using a clinical superparamagnetic iron oxide nanoparticle dispersion. J Biophotonics 2013;6(6-7):493-504
  • Huang G, Chen H, Dong Y, et al. Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics 2013;3(2):116
  • Sharifi S, Daghighi S, Motazacker M, et al. Superparamagnetic iron oxide nanoparticles alter expression of obesity and T2D-associated risk genes in human adipocytes. Sci Rep 2013;3:2173
  • Bhattacharya D, Das M, Mishra D, et al. Folate receptor targeted, carboxymethyl chitosan functionalized iron oxide nanoparticles: a novel ultradispersed nanoconjugates for bimodal imaging. Nanoscale 2011;3(4):1653-62
  • Das M, Mishra D, Maiti T, et al. Bio-functionalization of magnetite nanoparticles using an aminophosphonic acid coupling agent: new, ultradispersed, iron-oxide folate nanoconjugates for cancer-specific targeting. Nanotechnology 2008;19(41):415101
  • Sonvico F, Mornet S, Vasseur S, et al. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjug Chem 2005;16(5):1181-8
  • Mahajan S, Koul V, Choudhary V, et al. Preparation and in vitro evaluation of folate-receptor-targeted SPION–polymer micelle hybrids for MRI contrast enhancement in cancer imaging. Nanotechnology 2013;24(1):015603
  • Zhang L, Gong F, Zhang F, et al. Targeted therapy for human hepatic carcinoma cells using folate-functionalized polymeric micelles loaded with superparamagnetic iron oxide and sorafenib in vitro. Int J Nanomed 2013;8:1517
  • Kaaki K, Herveí-Aubert K, Chiper M, et al. Magnetic nanocarriers of doxorubicin coated with poly (ethylene glycol) and folic acid: relation between coating structure, surface properties, colloidal stability, and cancer cell targeting. Langmuir 2011;28(2):1496-505
  • Maeng JH, Lee DH, Jung KH, et al. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 2010;31(18):4995-5006
  • Guo M, Que C, Wang C, et al. Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery. Biomaterials 2011;32(1):185-94
  • Lin JJ, Chen JS, Huang SJ, et al. Folic acid–Pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications. Biomaterials 2009;30(28):5114-24
  • Kohler N, Sun C, Wang J, Zhang M. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 2005;21(19):8858-64
  • Kohler N, Sun C, Fichtenholtz A, et al. Methotrexate immobilized poly (ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small 2006;2(6):785-92
  • Taratula O, Garbuzenko O, Savla R, et al. Multifunctional nanomedicine platform for cancer specific delivery of siRNA by superparamagnetic iron oxide nanoparticles-dendrimer complexes. Curr Drug Deliv 2011;8(1):59-69
  • Leuschner C, Kumar CS, Hansel W, Hormes J. Targeting breast cancer cells and their metastases through luteinizing hormone releasing hormone (LHRH) receptors using magnetic nanoparticles. J Biomed Nanotechol 2005;1(2):229-33
  • Kim DK, Chang JH, Kang YJ. Efficient internalization of peptide-conjugated SPIONs in dendritic cells for tumor targeting. J Nanosci Nanotechnol 2012;12(7):5191-8
  • Cho H-S, Dong Z, Pauletti GM, et al. Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: a multifunctional nanocarrier system for cancer diagnosis and treatment. ACS Nano 2010;4(9):5398-404
  • El-Dakdouki MH, Zhu DC, El-Boubbou K, et al. Development of multifunctional hyaluronan-coated nanoparticles for imaging and drug delivery to cancer cells. Biomacromolecules 2012;13(4):1144-51
  • Yu MK, Park J, Jeong YY, et al. Integrin-targeting thermally cross-linked superparamagnetic iron oxide nanoparticles for combined cancer imaging and drug delivery. Nanotechnology 2010;21(41):415102
  • Wu C, Gong F, Pang P, et al. An RGD-modified MRI-visible polymeric vector for targeted siRNA delivery to hepatocellular carcinoma in nude mice. PLoS One 2013;8(6):e66416
  • Yang X, Hong H, Grailer JJ, et al. cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 2011;32(17):4151-60
  • Cavalli S, Carbajo D, Acosta M, et al. Efficient gamma-amino-proline-derived cell penetrating peptide–superparamagnetic iron oxide nanoparticle conjugates via aniline-catalyzed oxime chemistry as bimodal imaging nanoagents. Chem Commun 2012;48(43):5322-4
  • Sun C, Fang C, Stephen Z, et al. Tumor-targeted drug delivery and MRI contrast enhancement by chlorotoxin-conjugated iron oxide nanoparticles. Nanomedicine (Lond) 2008;3(4):495-505
  • Veiseh O, Gunn JW, Kievit FM, et al. Inhibition of tumor cell invasion with chlorotoxin bound superparamagnetic nanoparticles. Small 2009;5(2):256-64
  • Veiseh O, Kievit FM, Fang C, et al. Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials 2010;31(31):8032-42
  • Kievit FM, Veiseh O, Fang C, et al. Chlorotoxin labeled magnetic nanovectors for targeted gene delivery to glioma. ACS Nano 2010;4(8):4587-94
  • Kumar M, Yigit M, Dai G, et al. Image-guided breast tumor therapy using a small interfering RNA nanodrug. Cancer Res 2010;70(19):7553-61
  • Yu MK, Kim D, Lee IH, et al. Image guided prostate cancer therapy using aptamer functionalized thermally cross linked superparamagnetic iron oxide nanoparticles. Small 2011;7(15):2241-9
  • Wang AZ, Bagalkot V, Vasilliou CC, et al. Superparamagnetic iron oxide nanoparticle–aptamer bioconjugates for combined prostate cancer imaging and therapy. ChemMedChem 2008;3(9):1311-15
  • Min K, Jo H, Song K, et al. Dual-aptamer-based delivery vehicle of doxorubicin to both PSMA (+) and PSMA (−) prostate cancers. Biomaterials 2011;32(8):2124-32
  • Chen W, Cao Y, Liu M, et al. Rotavirus capsid surface protein VP4-coated Fe3O4 nanoparticles as a theranostic platform for cellular imaging and drug delivery. Biomaterials 2012;33(31):7895-902
  • Chen G, Chen W, Wu Z, et al. MRI-visible polymeric vector bearing CD3 single chain antibody for gene delivery to T cells for immunosuppression. Biomaterials 2009;30(10):1962-70
  • Yang C, Rait A, Pirollo KF, et al. Nanoimmunoliposome delivery of superparamagnetic iron oxide markedly enhances targeting and uptake in human cancer cells in vitro and in vivo. Nanomedicine 2008;4(4):318-29
  • Jiang W, Xie H, Ghoorah D, et al. Conjugation of functionalized SPIONs with transferrin for targeting and imaging brain glial tumors in rat model. PLoS One 2012;7(5):e37376
  • Liang S, Wang Y, Yu J, et al. Surface modified superparamagnetic iron oxide nanoparticles: as a new carrier for bio-magnetically targeted therapy. J Mater Sci Mater Med 2007;18(12):2297-302
  • Zou P, Yu Y, Wang YA, et al. Superparamagnetic iron oxide nanotheranostics for targeted cancer cell imaging and pH-dependent intracellular drug release. Mol Pharm 2010;7(6):1974-84
  • Kievit FM, Stephen ZR, Veiseh O, et al. Targeting of primary breast cancers and metastases in a transgenic mouse model using rationally designed multifunctional SPIONs. ACS Nano 2012;6(3):2591-601
  • Hadjipanayis CG, Machaidze R, Kaluzova M, et al. EGFRvIII antibody–conjugated iron oxide nanoparticles for magnetic resonance imaging–guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res 2010;70(15):6303-12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.