392
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Nanocarriers for ocular delivery for possible benefits in the treatment of anterior uveitis: focus on current paradigms and future directions

, M Pharm PhD & , M Pharm

Bibliography

  • Myles ME, Neumann DM, Hill JM. Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Del Rev 2005;57:2063-79
  • Weinberg RS. Anterior uveitis. Ophthalmol Clin North Am 1993;6:23-8
  • Schlaegel TF. Essentials of uveitis. Little, Brown & Co, Boston, MA, USA;1969
  • Rothova A, Van VW, Linssen A, et al. Clinical features of acute anterior uveitis. Am J Ophthalmol 1987;103:137-45
  • Rosenbaum JT, Nozik RA. Uveitis: many diseases, one diagnosis. Am J Med 1985;79:545-7
  • Callen JP, Mahl CF. Oculocutaneous manifestations observed in multisystem disorders. Dermatol Clin 1992;10:709-16
  • Bloch ME, Nussenblatt RB. International Uveitis Study Group recommendations for the evaluation of intraocular inflammatory disease. Am J Ophthalmol 1987;103:234-5
  • Albert DM, Jakobiec FA. Principles and practice of ophthalmology. 2nd edition. Sauders Co., Philadelphia, PA, USA; 2000
  • Hunter RS, Lobo AM. Dexamethasone intravitreal implant for the treatment of noninfectious uveitis. Clin Ophalmol 2011;5:1613-21
  • Jabs DA, Akpek EK. Immunosuppression for posterior uveitis. Retina 2005;25:1-18
  • Weinberg RS. Anterior uveitis. Ophthalmol Clin North Am 1993;6:23-8
  • Wakefield D, Montanaro A, McCluskey P. Acute anterior uveitis and HLA-B27. Surv Ophthalmol 1991;36:223-32
  • Rosenbaum JT. Acute anterior uveitis and spondyloarthropathies. Rheum Dis Clin North Am 1992;18:143-9
  • Brewerton DA, Caffrey M, Nicholls A, et al. Acute anterior uveitis and HLA-B27. Lancet 1973;2:994-6
  • Henderly DE, Genestler AJ, Smith RE, et al. Changing patterns of uveitis. Am J Ophthalmol 1987;103:131-6
  • Badeeb O, Anwar M, Farwan K, et al. Leukemic infiltrate versus anterior uveitis. Ann Ophthalmol 1992;24:295-8
  • Southward TR, Ryder CAJ. Ophthalmological screening in juvenile arthritis: should the frequency of screening be based on the risk of developing chronic iridocyclitis. Br J Rheumatol 1992;31:633-4
  • Kanski JJ. Screening for uveitis in juvenile chronic arthritis. Br J Ophthalmol 1989;73:225-38
  • Rosenbaum JT. Systemic associations of anterior uveitis. Int Ophthalmol Clin 1991;31:131-52
  • Mauger TF, Benses SC, Havener WH. Misdiagnosis of iridocyclitis. Ann Ophthalmol 1987;19:310-20
  • Hogan MJ, Kimura SJ, Thygeson P. Sign and symptom of uveitis: I. Anterior uveitis. Am J Ophthlmol 1959;47:155-70
  • Araújo J, Gonzalez E, Egea MA, et al. Nanomedicines for ocular NSAIDs: safety on drug delivery. Nanomed Nanotech Biol Med 2009;5:394-401
  • Haghjou N, Soheilian M, Abdekhodaie MJ. Sustained release intraocular drug delivery devices for treatment of uveitis. J Ophthal Vis Res 2011;6:317-29
  • Short BG. Safety evaluation of ocular drug delivery formulation: techniques and practical considerations. Toxicol Pathol 2008;36:49-62
  • Jaanus SD, Bartlett JD. Clinical ocular pharmacology. 2nd edition. Butterworth’s, Boston, USA; 1989. p. 172
  • Foster CS, Alter G, De Barge LR. Efficacy and safety of rimexolone 1% ophthalmic suspension vs. 1% prednisolone acetate in the treatment of uveitis. Am J Ophthalmol 1996;122:171-82
  • Havener WH. Ocular pharmacology. CV Mosby, St Louis, MO, USA;1983
  • Olson NY, Lindsley CB, Godfrey WA. Treatment of chronic childhood iridocyclitis with nonsteroidal anti-inflammatory drugs. J Allergy Clin Immunol 1987;79:220
  • Sheppard J, Bartlett J. Loteprednol Etabonate in Ocular Inflammation. US Ophthalmic Review 2011;4:57-62
  • Jaanus SD, Lesher GA. Anti-inflammatory drugs. In: Bartlett JD, editor. Clinical ocular pharmacology. Butterworth- Heineman, Oxford, London, UK;1995
  • Campbell WB, Halushka PV. Lipid derived autocoids. In: Hardman LE, editor, Goodman and Gilman’s. The Pharmacological Basis of Therapeutics. 9th edition. Mcgraw-Hill, NY, USA; 1990
  • Jaffe GJ, Ben-Nun J, Guo H, et al. Fluocinolone acetonide sustained drug delivery device treat severe uveitis. Ophthalmology 2000;107:2024-33
  • Jaffe GJ, Pearson PA, Ashton P. Dexamethasone sustained drug delivery implant for the treatment of severe uveitis. Retina 2000;20:533-47
  • Samudre SS, Lattanzio FA Jr, Williams PB, et al. Comparison of topical steroids for acute anterior uveitis. J Ocular Pharmacol Ther 2004;20:533-47
  • Racasens JF, Green K. Effects of endotoxin and anti-inflammatory agents on superoxide dismutase in the rabbit iris. Ophthalmic Res 1990;22:12-18
  • Raizman M. Corticosteroid therapy of eye disease. Fifty years later. Arch Ophthalmol 1996;114:1000-1
  • Renfro L, Snow JS. Ocular effects of topical and systemic steroids. Dermatol Clin 1992;10:505-12
  • Bhattacherjee P. The role of arachidonate metabolites in ocular inflammation. Prog Clin Biol Res 1989;312:211-27
  • Agrawal RV, Murthy S, Sangwan V, et al. Current approach in diagnosis and management of anterior uveitis. Indian J Ophthalmol 2010;58:11-19
  • Congdon NG, Schein OD, von Kulajta P, et al. Corneal complications associated with topical ophthalmic use of nonsteroidal antiinflammatory drugs. J Cataract Refract Surg 2001;27:622-31
  • Lallemanda F, Felt-Baeyensa O, Besseghirb K, et al. Cyclosporine A delivery to the eye: a pharmaceutical challenge. Eur J Pharm Biopharm 2003;56:307-18
  • Suresh PK, Dewangan D. Ophthalmic delivery system for dexamethasone: an overview. Int J Inno Pharm Res 2011;2:161-5
  • Yeh S, Nussenblatt RB. Fluocinolone acetonide for the treatment of uveitis: weighing the balance between local and systemic immunosuppression. Arch Ophthalmol 2008;126:1287-9
  • Zhang W, Prausnitz MR, Edwards A. Modal of transient drug diffusion across cornea. J. Control. Rel 2004;99:241-58
  • Indu PK, Smitha R. Penetration enhancers and ocular bioadhesive: two new avenues for ophathalmic drug delivery. Drug Devel Ind Pharm 2002;28:353-69
  • Joana A, Elisabet G, Antonia EM, et al. Nanomedicines for ocular NSAIDs: safety on drug delivery. Nanomed Nanotechnol Biol Med 2009;5:394-401
  • Ding S. Recent developments in ophthalmic drug delivery. Pharm Sci Technol Today 1998;1:328-35
  • Hill JM, O’Callaghan RJ, Hobden JA, Kaufman E. Corneal collagen shields for ocular drug delivery. In: Mita AK, editors, Ophthalmic drug delivery systems. Marcel Dekker, New York, NY, USA;1993
  • Pleyer U, Lutz S, Jusko W, et al. Ocular absorption of topically applied FK506 from liposomal and oil formulations in rabbit eye. Invest Ophthalmol Vis Sci 1993;34:2737-42
  • Bochot A, Fattal E, Grossiord JL, et al. Characterization of a new ocular delivery system based on a dispersion of liposomes in a thermosensitive gel. Int J Pharm 1998;162:119-27
  • Losa C, Calvo P, Castro E, et al. Improvement of ocular penetration of amikacin sulphate by association to poly(butylcyanoacrylate) nanoparticles. J Pharm Pharmacol 1991;43:548-52
  • De Campos AM, Diebold Y, Carvaiho ELS, et al. Chitosan nanoparticles as new ocular drug delivery system: in vitro stability, in vivo fate, and cellular toxicity. Pharm Res 2004;21:803-10
  • Losa C, Marchal-Heussler L, Orallo F, et al. Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm Res 1993;10:80-7
  • De Campos AM, Sánchez A, Gref R, et al. The effect of PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur J Pharm Sci 2003;20:73-81
  • Diebold Y, Calonge M. Applications of nanoparticles in ophthalmology. Prog Retin Eye Res 2010;29:596-609
  • Searle AE, Pearce JL, Shaw DE. Topical use of indomethacin on the day of cataract surgery. Br J Ophthalmol 1990;74:19-21
  • Cooper CA, Bergamini MVW, Leopold IH. Use of flurbiprofen to inhibit corneal neovascularization. Arch Ophthalmol 1980;98:1102-5
  • Gan L, Han S, Shen J, et al. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: improving preocular retention and ocular bioavailability. Int J Pharm 2010;396:179-87
  • Solomen KD, Cheetham JK, DeGryse R, et al. Topical ketoralac tromethamine 0.5% ophthalmic solution in ocular inflammation after cataract surgery. Ophthalmology 2001;108:331-7
  • Kraff MC, Saunders DR, Mcguigan L, Rannan MG. Inhibition of blood-aqueous humor barrier breakdown with diclofenac: a fluorometric study. Arch Ophthalmol 1990;108:380-3
  • Das S, Suresh PK, Desmukh R. Design of Eudragit RL 100 nanoparticles by nanoprecipitation method for ocular drug delivery. Nanomed Nanotech Biol Med 2010;6:318-23
  • Katara R, Majumdar DK. Eudragit RL 100-based nanoparticulate system of aceclofenac for ocular delivery. Colloids Surf B Biointerfaces 2013;103:455-62
  • Aksungur P, Demirbilek M, Denkbaş EB, et al. Development and characterization of Cyclosporine A loaded nanoparticles for ocular drug delivery: cellular toxicity, uptake and kinetic studies. J Control Release 2011;151(3):286-94
  • Shen J, Wang Y, Ping Q, et al. Mucoadhesive effect of thiolated PEG stearate and its modified NLC for ocular drug delivery. J Control Release 2009;137(3):217-23
  • Gökçe EH, Sandri G, Eğrilmez S, et al. Cyclosporine A-loaded solid lipid nanoparticles: ocular tolerance and in vivo drug release in rabbit eyes. Curr Eye Res 2009;34(11):996-1003
  • Pouvreau I, Zech JC, Goldenberg BT, et al. Effect of macrophage depletion by liposomes containing dichloromethylene-diphosphonate on endotoxin-induced uveitis. J Neuroimmunol 1998;86:171-81
  • Broekhuyse RM, Huitinga I, Kuhlmann ED, et al. Differential effect of macrophage depletion on two forms of experimental uveitis evoked by pigment epithelial membrane protein (EAPU), and by Melanin-protein (EMIU). Exp Eye Res 1997;65:841-8
  • Bucolo C, Maltese A, Puglisi G, et al. Enhanced ocular anti-inflammatory activity of ibuprofen carried by an Eudragit RS100® nanoparticle suspension. Ophthalmic Res 2002;34:319-23
  • Patel A, Cholkar K, Agrahari V, et al. Ocular drug delivery systems: an overview. World J Pharmacol 2013;2(2):47-64
  • Chopra P, Hao J, Li SK. Sustained release micellar carrier systems for iontophoretic transport of dexamethasone across human sclera. J Control Release 2002;160:96-104
  • Tommaso CD, Bourges JL. Valamanesh Fatemeh. Novel micelle carriers for cyclosporin A topical ocular delivery: in vivo cornea penetration, ocular distribution and efficacy studies. Eur J Pharm Biopharm 2012;81:257-64
  • Malmsten M. Soft drug delivery systems. Soft Matter 2006;2:760-9
  • Zhao XY, Zhang J, Zheng LQ, Li DH. Studies of cubosomes as a sustained drug delivery system. J Disp Sci Tech 2004;25:795-9
  • Garg G, Saraf S, Saraf S. Cubosomes: an overview. Biol Pharm Bull 2007;30:350-3
  • Han S, Shen J, Gan Y, et al. Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability. Acta Pharmacol Sin 2010;31:990-8
  • Tenjarla S. Microemulsions: an overview and pharmaceutical applications. Crit Rev Ther Drug Carrier Syst 1999;16:461-521
  • Kreilgaard M. Dermal pharmacokinetics of microemulsion formulations determined by in vivo microdialysis. Pharm Res 2001a;18:367-73
  • Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv Rev 2002b;54:S77-98
  • Gaudana R, Jwala J, Boddu SH, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res 2009;26:1197-216
  • Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol 2004;56:827-40
  • Warisnoicharoen W, Lansley AB, Lawrence MJ. Nonionic oil-in-water microemulsions: the effect of oil type on phase behaviour. Int J Pharm 2000;198:7-27
  • Vandamme TF. Microeulsions as ocular drug delivery system: recent developments and future challenges. Prog Retin Eye Res 2002;21:15-34
  • Garcia-Celma HJ. Solubilization of drug in microemulsions. In: Solans C, Kunieda H, editors, Industrial applications of microemulsions. Marcel Dekker, NY, USA;1996. p. 123-45
  • Silva-Cunha A, Fialho SL, Carneiro LB, Orefice F. Microemulsoes como veiculos de drogas para adminstracao ocular topica. Arq Bras Oftalmol 2003;66:385-91
  • Muchtar S, Abdulrazik M, Frucht-pery J, et al. Ex vivo permeation study of indomethacin from a submicron emulsion through albino rabbit cornea. J Control Release 1997;44:55-64
  • Silvia LF, Armando da SC. New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clin Expert Ophthalmol 2004;32:626-32
  • Fialho SL, Behar CF, Silva CA. Dexamethasone-loaded poly (ε-caprolactone) intravitreal implants: a pilot study. Eur J Pharm Biopharm 2008;68:637-64
  • Möschwitzer J, Achleitner G, Pomper H, et al. Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nanosuspension technology. Eur J Pharm Biopharm 2004;58:615-61
  • Böhm BHL, Müller RH. Lab-scale production unit design for nanosuspensions of sparingly soluble cytotoxic drugs. Pharm Sci Tech Today 1999;2:336-9
  • Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulation in therapy rationale for development and what we can expect for the future. Adv Drug Deliv Rev 2001;47:3-19
  • Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 2003;18:113-20
  • Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov 2004;3:785-96
  • Hecq J, Deleers M, Fanara D, et al. Preparation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine. Int J Pharm 2005;299:167-77
  • Kocbek P, Baumgartner S, Kristl J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int J Pharm 2006;312:179-86
  • Müller RH, Böhm BHL. Nanosuspensions. In: Müller RH, Benita S, Böhm B, editors. Emulsions and nanosuspensions for the formulation of poorly soluble drugs. Medpharm Scientific Publishers, Stuttgart, Germany; 1998
  • Müller RH, Becker R, Kruss B, et al. Pharmaceutical nanosuspensions for medicament administration as system of increased saturation solubility and rate of solution. US5858410; 1999
  • Müller RH, Keck CM. Challenges and solutions for the delivery of biotech drugs - a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 2004c;113:151-70
  • Zhang J, Shen Z, Zhong J, et al. Preparation of amorphous cefuroxime axetil nanoparticles by controlled nanoprecipitation method without surfactants. Int J Pharm 2006;323:153-63
  • Duchene D, Ponchel G. Bioadhesion of solid oral dosage forms, why and how. Eur J Pharm Biopharm 1997;44:15-23
  • Yoncheva K, Lizarraga E, Irache JM. Pegylated nanoparticles based on poly (methyl vinyl ether-co-maleic anhydride): preparation and evaluationof their bioadhesive properties. Eur J Pharm Sci 2005;24:411-19
  • Kassem MA, Rahman Abdel AA, Ghorab MM, et al. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm 2007;340:126-33
  • Dilbaghi N, Kaur H, Ahuja M, et al. Evaluation of tropicamide-loaded tamarind seed xyloglucan nanoaggreagtes for ophthalmic delivery. Carbohydr Polym 2013;94:286-91
  • Akhter S, Talegaonkar S, Khan ZI, et al. Assessment of ocular pharmacokinetics and safety of Ganciclovir loaded nanoformulations. J Biomed Nanotechnol 2011;11:144-5
  • Mudgil M, Pawar PK. Preparation and in vitro/ex vivo evaluation of moxifloxacin-loaded PLGA nanosuspensions for ophthalmic application. Sci Pharm 2013;81:591-606
  • Li X, Zhang Z, Chen H. Development and evaluation of fast-forming nano-composite hydrogel for ocular delivery of diclofenac. Int J Pharm 2013;448:96-100
  • Yang H, Tyagi P, Kadam RS, et al. Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration. ACS Nano 2012;6:7595-606
  • Joseph TM. A critical look at ocular allergy drugs. Am Fam Physician 1996;53:2637-42
  • Sitenga GL, Ing EB, Van Dellen RG, et al. Asthma caused by topical application of ketorolac. Ophthalmology 1996;103:890-2
  • Stroobants A, Fabre K, Maudgal PC. Effect of non-steroidal anti-inflammatory drugs (NSAID) on the rabbit corneal epithelium studied by scanning electron microscopy. Bull Soc Belge Ophtalmol 2002;276:73-81
  • Alonso MJ, Sanchez A. The potential of chitosan in ocular drug delivery. J Pharm Pharmacol 2003;55:1451-63
  • Badawi AA, El-Laithy HM, El Qidra RK, et al. Chitosan based nanocarriers for indomethacin ocular delivery. Arch Pharm Res 2008;31:1040-9
  • Diebold Y, Jarrin M, Saez V, et al. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials 2007;28:1553-64
  • Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2007;2:16
  • Harmia T, Speiser P, Kreuter J. A solid colloidal drugdelivery system for the eye: encapsulation of pilocarpin in nanoparticles. J Microencapsulation 1986;3:3-12
  • Losa C, Calvo P, Vila-Jato JL, et al. Improvement of ocular penetration of amikacin sulphate by association to poly-(butylcyanoacrylate) nanoparticles. J Pharm Pharmacol 1991;43:548-52
  • Losa C, Marchal-Heussler L, Orallo F, et al. Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm Res 1993;10:80-7
  • Calvo P, Sanchez A, Martinez J, et al. Polyester nanocapsules as new topical ocular delivery systems for cyclosporin A. Pharm Res 1996;13:311-15
  • Calvo P, Alonso MJ, Vila-Jato JL, et al. Improved ocular bioavailability of indomethacin by novel ocular drug carriers. J Pharm Pharmacol 1996;48:1147-52
  • Calvo P, Thomas C, Alonso MJ, et al. Study of the mechanism of interaction of poly-ε- caprolactone nanocapsules with the cornea by confocal laser scanning microscopy. Int J Pharm 1994;103:283-91
  • De Salamanca AE, Diebold Y, Calonge M, et al. Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance. Invest Ophthalmol Vis Sci 2006;47:1416-25
  • Das S, Suresh PK, Desmukh R. Design of Eudragit RL 100 nanoparticles by nanoprecipitation method for ocular drug delivery. Nanomedicine 2010;6:318-23
  • Das S, Suresh PK. Nanosuspension: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to amphotericin B. Nanomedicine 2011;7:242-7
  • Vega E, Egea MA, Valls O, et al. Flurbiprofen loaded biodegradable nanoparticles for ophthalmic administration. J Pharm Sci 2006;95:2393-405
  • Pignatello R, Bucolo C, Ferrara P, et al. Eudragit RS100 nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci 2002;16:53-61
  • Kay JH, Calandra JK. Interpretation of eye irritation test. J Soc Cosm Chem 1962;13:281-9
  • Agnihotri SM, Vavia PR. Diclofenac-loaded biopolymeric nanosuspensions for ophthalmic application. Nanomedicine 2009;5:90-5
  • Pignatello R, Bucolo C, Spedalieri G, et al. Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials 2002;23:3247-55
  • Bucolo C, Maltese A, Puglisi G, et al. Enhanced ocular antiinflammatoryactivity of ibuprofen carried by an Eudragit RS100 nanoparticle suspension. Ophthalmic Res 2002;34:319-23
  • Amrite AC, Kompella UB. Nanoparticles for ocular drug delivery. In: Gupta RB, Kompella UB, editors, Nanoparticle technology for drug delivery. Volume 159 Taylor & Francis Group, NY, USA;2006. p. 319-53
  • Merodio M, Irache JM, Valamanesh F, et al. Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats. Biomaterials 2002;23:1587-94
  • Bourges JL, Gautier SE, Delie F, et al. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci 2003;44:3562-9
  • Merodio M, Espuelas MS, Mirshahi M, et al. Efficacy of ganciclovir-loaded nanoparticles in human cytomegalovirus (HCMV)-infected cells. J Drug Target 2002b;10:231-8
  • De Kozak Y, Andrieux K, Villarroya H, et al. Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur J Immunol 2004;34:3702-12
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, et al. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001;70:1-20
  • Caspi RR. Animal models of autoimmune and immune-mediated uveitis. Drug Disc Today 2006;3(1):3-9
  • Smith JR, Hart PH, Williams KA. Basic pathogenic mechanisms operating in experimental models of acute anterior uveitis. Immunol Cell Biol 1998;76:497-512
  • Gery I, Nussenblatt RB, Chan CC, et al. The molecular pathology of autoimmune diseases. Taylor and Francis, NY, USA;2002. p. 978-98
  • Agarwal RK, Caspi RR. Rodent models of experimental autoimmune uveitis. Methods Mol Med 2004;102:395-419
  • Farzaneh R, Yousef J, Ali RJ, et al. In vivo evaluation of novel nanoparticles containing dexamethasone for ocular drug delivery on rabbit eye. Curr Eye Res 2010;35:1081-9
  • Zhang L, Li Y, Zhang C, et al. Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits. Int J Nanomedicine 2009;4:175-8
  • Barcia E, Herrero VR, Dıez A, et al. Downregulation of endotoxin-induced uveitis by intravitreal injection of polylactic-glycolic acid (PLGA) microspheres loaded with dexamethasone. Exp Eye Res 2009;89:238-45
  • Loftsson T, Sigurdsson HH, Hreinsdottir D, et al. Dexamethasone delivery to posterior segment of the eye. J Incl Phenom Macrocycl Chem 2007;57:585-9
  • Herrero VR, Refojo MF. Biodegradable microspheres for vitreoretinal drug delivery. Adv Drug Deliv Rev 2001;52:5-16
  • Coffey MJ, Cory HHD, Lane SS. Development of a non-settling gel formulation of 0.5% loteprednol etabonate for anti-inflammatory use as an ophthalmic drop. Clin Ophthalmol 2013;7:299-312
  • Adibkia K, Omidi Y, Siahi MR, et al. Inhibition of endotoxin-induced uveitis by methylprednisolone acetate nanosuspension in rabbits. J Ocul Pharmacol Ther 2007;23:421-32
  • Nagarwal RC, Kant S, Singh PN, et al. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release 2009;136:2-13
  • Adibkia K, Shadbad MRS, Nokhodchi A, et al. Piroxicam nanoparticles for ocular delivery: physicochemical characterization and implementation in endotoxin-induced uveitis. J Drug Target 2007b;15:407-16
  • Vincent HKL, Ray WW, Jorg K, et al. Ocular drug delivery of progesterone using nanoparticles. J Microencapsulation 1986;3:213-18
  • Lajavardi L, Camelo S, Agnely F, et al. New formulation of vasoactive intestinal peptide using liposomes in hyaluronic acid gel for uveitis. J Control Release 2009;139:22-30
  • Camelo S, Lajavardi L, Bochot A, et al. Protective effect of intravitreal injection of vasoactive intestinal peptide loaded liposomes on experimental autoimmune uveoretinitis. J Ocul Pharmacol Ther 2009;25:9-21
  • Pennesi G, Mattapalli MJ, Sun SH, et al. A humanized model of experimental autoimmune uveitis in HLA class II transgenic mice. J Clin Invest 2003;111:1171-80
  • Ham DI, Kim SJ, Chen J, et al. Central immunotolerance in transgenic mice expressing a foreign antigen under control of the rhodopsin promoter. Invest Ophthalmol Vis Sci 2004;45:857-62
  • Gregerson DS, Torseth JW, McPherson SW, et al. Retinal expression of a neo-self antigen, betagalactosidase, is not tolerogenic and creates a target for autoimmune uveoretinitis. J Immunol 1999;163:1073-80
  • Broekhuyse RM, Kuhlmann ED, Winkens HJ. Experimental melanin-protein induced uveitis (EMIU) is the sole type of uveitis evoked by a diversity of ocular melanin preparations and melanin-derived soluble polypeptides. Jpn J Ophthalmol 1996;40:459-68
  • Broekhuyse RM, Kuhlmann ED, Winkens HJ. Experimental autoimmune anterior uveitis (EAAU). II. Dose-dependent induction and adoptive transfer using a melanin-bound antigen of the retinal pigment epithelium. Exp Eye Res 1992;55:401-11
  • Yamaki K, Kondo I, Nakamura M, et al. Ocular and extraocular inflammation induced by immunization of tyrosinase related protein 1 and 2 in Lewis rats. Exp Eye Res 2000;71:361-9
  • Broekhuyse RM, Kuhlmann ED, Winkens HJ. Experimental autoimmune posterior uveitis accompanied by epitheloid cell accumulations (EAPU). A new type of experimental ocular disease induced by immunization with PEP-65, a pigment epithelial polypeptide preparation. Exp Eye Res 1992;55:819-29
  • Ham DI, Gentlman S, Chan CC, et al. RPE65 is highly uveitogenic in rats. Invest Ophthalmol Vis Sci 2002;43:2258-63
  • Buenafe AC, Offner H, Machnicki M, et al. EAE TCR motifs and antigen recognition in myelin basic protein-induced anterior uveitis in Lewis rats. J Immunol 1998;161:2052-9
  • Szpak Y, Vieville JC, Tabary T, et al. Spontaneous retinopathy in HLA-A29 transgenic mice. Proc Natl Acad Sci USA 2001;98:2572-6
  • Ichikawa T, Taguchi O, Takahashi T, et al. Spontaneous development of autoimmune uveoretinitis in nude mice following reconstitution with embryonic rat thymus. Clin Exp Immunol 1991;86:112-17
  • Anderson MS, Venanzi ES, Klein L, et al. Projection of an immunological self shadow within the thymus by the air protein. Science 2002;298:1395-401
  • Kane FE, Burdan J, Cutino A, et al. Iluvien (TM): a new sustained delivery technology for posterior eye disease. Expert Opin Drug Del 2008;5:1039-46
  • Lee SS, Yuan P, Robinson MR. Ocular implants for drug delivery. In: Wnek GE, Bowlin GL, editors, Encyclopedia of biomaterials and biomedical engineering. 2nd edition. Informa Healthcare, NY, USA; 2008. p. 2259-69
  • Seah SK, Husain R, Gazzard G, et al. Use of Surodex in phacotrabeculectomy surgery. Am J Ophthalmol 2005;139:927-8
  • Allergan, Inc. Allergan receives FDA approval for Ozurdex™ biodegradable, injectable steroid implant with extended drug release for retinal disease. Press Release. Allergan, Irvine, CA 2009. Available from: http://agn.client.shareholder.com/releasedetailcfm?ReleaseID=390519 [Last accessed 15 September 2009]
  • Mansoor S, Kuppermann BD, Kenney MC. Intraocular sustained-release delivery systems for triamcinolone acetonide. Pharm Res 2009;26:770-84
  • Ashton P, Brown JD, Pearson PA. Intravitreal ganciclovir pharmacokinetics in. rabbits and man. J Ocular Pharmacol 1992;8:343-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.