876
Views
49
CrossRef citations to date
0
Altmetric
Reviews

Microrobots: a new era in ocular drug delivery

, , , , , , , & show all

Bibliography

  • Wheeler JR. History of ophthalmology through the ages. Br J Ophthalmol 1946;30(5):264-75
  • Achouri D, Alhanout K, Piccerelle P, Andrieu V. Recent advances in ocular drug delivery. Drug Dev Ind Pharm 2013;39(11):1599-617
  • Eagle RCJ. Eye Pathology, an atlas and text. Lippincott Williams & Wilkins: Philadelphia, USA; 2011
  • Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J 2010;12(3):348-60
  • Lang JC. Ocular drug-delivery conventional ocular formulations. Adv Drug Deliv Rev 1995;16(1):39-43
  • Hughes PM, Olejnik O, Chang-Lin JE, Wilson CG. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev 2005;57(14):2010-32
  • Jarvinen K, Jarvinen T, Urtti A. Ocular absorption following topical delivery. Adv Drug Deliv Rev 1995;16(1):3-19
  • Agrawal AK, Das M, Jain S. In situ gel systems as ’smart’ carriers for sustained ocular drug delivery. Expert Opin Drug Deliv 2012;9(4):383-402
  • Sahoo SK, Diinawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today 2008;13(3-4):144-51
  • Lallemand F, Furrer P, Felt-Baeyens O, et al. A novel water-soluble cyclosporine A prodrug: ocular tolerance and in vivo kinetics. Int J Pharm 2005;295(1-2):7-14
  • Bengani LC, Hsu KH, Gause S, Chauhan A. Contact lenses as a platform for ocular drug delivery. Expert Opin Drug Deliv 2013;10(11):1483-96
  • Baudouin C, Chassain C, Caujolle C, Gastaud P. Treatment of cytomegalovirus retinitis in AIDS patients using intravitreal injections of highly concentrated ganciclovir. Ophthalmologica 1996;210(6):329-35
  • Sampat KM, Garg SJ. Complications of intravitreal injections. Curr Opin Ophthalmol 2010;21(3):178-83
  • Idris I. News and Views. Diabetes, Obesity and Metabolism 2011;13:866-68
  • Fischer N, Narayanan R, Loewenstein A, Kuppermann BD. Drug delivery to the posterior segment of the eye. Eur J Ophthalmol 2011;21:S20-6
  • Hughes PM, Olejnik O, Chang-Lin J-E, Wilson CG. Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev 2005;57(14):2010-32
  • LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol 2003;21(10):1184-91
  • Martin DF, Parks DJ, Mellow SD, et al. Treatment of cytomegalovirus retinitis with an intraocular sustained-release ganciclovir implant: a randomized controlled clinical trial. Arch Ophthalmol 1994;112(12):1531-39
  • Moya FJ, Gariano RF. Endopthalmitis associated with Vitrasert implantation. Invest Ophthalmol Vis Sci 2001;42(4):S249-S49
  • Jonas JB, Rensch F. Intravitreal steroid slow-release device replacing repeated intravitreal triamcinolone injections for sympathetic ophthalmia. Eur J Ophthalmol 2008;18(5):834-6
  • Sims JL, Chee SP. Cytomegalovirus endotheliitis following fluocinolone acetonide (Retisert) implant. Eye (Lond) 2010;24(1):197-8
  • Taban M, Lowder CY, Ventura AACM, et al. Scleral thickness following fluocinolone acetonide implant (Retisert). Ocul Immunol Inflamm 2010;18(4):305-13
  • Rofagha S, Prechanond T, Stewart JM. Late spontaneous dissociation of a fluocinolone acetonide implant (Retisert) (vol 21, pg 77, 2013). Ocul Immunol Inflamm 2013;Jun;21(3):255-5
  • Kane FE, Burdan J, Cutino A, Green KE. Iluvien (TM): a new sustained delivery technology for posterior eye disease. Expert Opin Drug Deliv 2008;5(9):1039-46
  • Idris I. FDA truned down Iluvien for the treatment of Diabetic Macular Edema (DME). Diabetes Obes Metab 2011;13(3):285-6
  • Barnett PJ. Mathematical modeling of triamcinolone acetonide drug release from the I-vation (TM) intravitreal implant (a controlled release platform). Conf Proc IEEE Eng Med Biol Soc 2009;2009:3087-90
  • Matonti F, Meyer F, Guigou S, et al. Ozurdex in the management of the macular edema following retinal vein occlusion in clinical practice. Acta Ophthalmol 2013;91(7):E584-E86
  • Sejpal P, Scott-Weideman J. Surgical intervention of steroid-induced ocular hypertension from ozurdex. Optom Vis Sci 2013;90(1):e24-30
  • Napper G, Douglas I, Albietz J. Lucentis: a new treatment for ARMD. Clin Exp Optom 2006;89(5):334-5
  • Nelson BJ, Kaliakatsos IK, Abbott JJ. Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 2010;12:55-85
  • Abbott JJ, Nagy Z, Beyeler F, Nelson BJ. Robotics in the small - part I: microrobotics. IEEE Robot Autom Mag 2007;14(2):92-103
  • Zhu D, Xu X, Zheng Z, Gu Q. Regulation of vascular endothelial growth factor and pigment epithelium-derived factor in rat retinal explants under retinal acidification. Eye (Lond) 2009 Nov;23(11):2105-11
  • Yesin KB, Vollmers K, Nelson BJ. Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. Int J Robot Res 2006;25(5-6):527-36
  • Siauve N, Scorretti R, Burais N, et al. Electromagnetic fields and human body: a new challenge for the electromagnetic field computation. Compel: Int J Comput Math Electr Electron Eng 2003;22(3):457-69
  • Nagy Z, Ergeneman O, Abbott JJ, et al. Modeling assembled-MEMS microrobots for wireless magnetic control. Proc. of the IEEE International Conference on Robotics and Automation. Pasadena 2008;874-79
  • Ishiyama K, Arai KI, Sendoh M, Yamazaki A. Spiral-type micro-machine for medical applications. J Micromechatronics 2002;2(1):77-86
  • Gillies GT, Ritter RC, Broaddus WC, et al. Magnetic manipulation instrumentation for medical physics research. Rev Sci Instrum 1994;65(3):533-62
  • Dreyfus R, Baudry J, Roper ML, et al. Microscopic artificial swimmers. Nature 2005;437(7060):862-5
  • Zhang L, Abbott JJ, Dong LX, et al. Artificial bacterial flagella: fabrication and magnetic control. Appl Phys Lett 2009;94:6
  • Edd J, Payen S, Rubinsky B, et al. Biomimetic propulsion for a swimming surgical micro-robot. Iros 2003: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas; 2003;3:2583-88
  • Choi H, Choi J, Jeong S, et al. Two-dimensional locomotion of a microrobot with a novel stationary electromagnetic actuation system. Smart Mater Struct 2009;18:115017
  • Floyd S, Pawashe C, Sitti M. Two-dimensional contact and noncontact micromanipulation in liquid using an untethered mobile magnetic microrobot. IEEE Trans Robot 2009;25(6):1332-42
  • Martel S, Felfoul O, Mathieu JB, et al. MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int J Robot Res 2009;28(9):1169-82
  • Ergeneman O, Dogangil G, Abbott JJ, et al. Magnetically controlled wireless intraocular oxygen sensor: concept, prototype, and in vitro experiments. Conf Proc IEEE Eng Med Biol Soc 2007;1-16:4189-93
  • Dogangil G, Ergeneman O, Abbott JJ, et al. Toward targeted retinal drug delivery with wireless magnetic microrobots. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France; 2008;1921-26
  • Schubert C, van Langeveld MC, Donoso LA. Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol 2014;98(2):159-61
  • Spearing SM. Materials issues in microelectromechanical systems (MEMS). Acta Mater 2000;48(1):179-96
  • Bertsch A, Jiguet S, Bernhard P, Renaud P. Microstereolithography: a review. Rapid Prototyping Technol 2003;758:3-15
  • Xia Y, Whitesides GM. Soft lithography. Angew Chem Int Ed 1998;37:550-75
  • Datta M, Landolt D. Fundamental aspects and applications of electrochemical microfabrication. Electrochim Acta 2000;45(15-16):2535-58
  • Kummer MP, Abbott JJ, Kratochvil BE, et al. OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans Robot 2010;26(6):1006-17
  • Ergeneman O, Pokki J, Pocepcova V, et al. Characterization of puncture forces for retinal vein cannulation. J Med Devices 2011;5(4):1-6
  • Ergeneman O, Chatzipirpiridis G, Pokki J, et al. In vitro oxygen sensing using intraocular microrobots. IEEE Trans Biomed Eng 2012;59(11):3104-9
  • Ullrich F, Bergeles C, Pokki J, et al. Mobility experiments with microrobots for minimally invasive intraocular surgery. Invest Ophthalmol Vis Sci 2013;54(4):2853-63
  • Wenz LM, Merritt K, Brown SA, et al. Invitro biocompatibility of polyetheretherketone and polysylfone composites. J Biomed Mater Res 1990;24(2):207-15
  • Gastaldello K, Melot C, Kahn RJ, et al. Comparison of cellulose diacetate and polysulfone membranes in the outcome of acute renal failure. a prospective randomized study. Nephrol Dial Transplant 2000;15(2):224-30
  • Rahimy MH, Peyman GA, Chin SY, et al. Polysulfone capillary fiber for intraocular drug delivery: in-vitro and in-vivo elavuations. J Drug Target 1994;2(4):289-98
  • Luechinger NA, Walt SG, Stark WJ. Printable nanoporous silver membranes. Chem Mater 2010;22(17):4980-6
  • Sivaraman KM, Kellenberger C, Pane S, et al. Porous polysulfone coatings for enhanced drug delivery. Biomed Microdevices 2012;14(3):603-12
  • Huhtala A, Pohjonen T, Salminen L, et al. In vitro biocompatibility of degradable biopolymers in cell line cultures from various ocular tissues: extraction studies. J Mater Sci Mater Med 2008;19(2):645-9
  • Colthurst MJ, Williams RL, Hiscott PS, Grierson I. Biomaterials used in the posterior segment of the eye. Biomaterials 2000;21(7):649-65
  • Green RA, Lovell NH, Wallace GG, Poole-Warren LA. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 2008;29(24–25):3393-9
  • Wallace GG, Kane-Maguire LAP. Manipulating and monitoring biomolecular interactions with conducting electroactive polymers. Adv Mater 2002;14(13-14):953-60
  • Geetha S, Rao CRK, Vijayan M, Trivedi DC. Biosensing and drug delivery by polypyrrole. Anal Chim Acta 2006;568(1–2):119-25
  • Wong JY, Langer R, Ingber DE. Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells. Proc Natl Acad Sci USA 1994;91(8):3201-4
  • Schmidt CE, Shastri VR, Vacanti JP, Langer R. Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci USA 1997;94(17):8948–53
  • Sivaraman KM, Bayrakceken K, Ergeneman O, et al. Tailoring the drug loading capacity of polypyrrole films for use in intraocular biomicrorobots. Conf Proc IEEE Eng Med Bio Soc 2010;2010:4359-62
  • Sivaraman KM, Ozkale B, Ergeneman O, et al. Redox cycling for passive modification of polypyrrole surface properties: effects on cell adhesion and proliferation. Adv Healthc Mater 2013;2(4):591-8
  • Sivaraman KM, Chatzipirpiridis G, Becsek B, et al. Functional polypyrrole coatings for wirelessly controlled magnetic microrobots. IEEE Point-of-Care Healthcare Technologies (PHT), Bangalore, India; 2013;22-5
  • Pokki J, Ergeneman O, Sivaraman KM, et al. Electroplated porous polypyrrole nanostructures patterned by colloidal lithography for drug-delivery applications. Nanoscale 2012;4(10):3083-8
  • Paolicelli P, de la Fuente M, Sanchez A, et al. Chitosan nanoparticles for drug delivery to the eye. Expert Opin Drug Deliv 2009;6(3):239-53
  • Muzzarelli RA. Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cell Mol Life Sci 1997;53(2):131-40
  • Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev 2001;52(2):117-26
  • Berger J, Reist M, Mayer JM, et al. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 2004;57(1):19-34
  • Koev ST, Dykstra PH, Luo X, et al. Chitosan: an integrative biomaterial for lab-on-a-chip devices. Lab Chip 2010;10(22):3026-42
  • Cheng Y, Luo XL, Betz J, et al. In situ quantitative visualization and characterization of chitosan electrodeposition with paired sidewall electrodes. Soft Matter 2010;6(14):3177-83
  • Fusco S, Chatzipirpiridis G, Sivaraman KM, et al. Chitosan electrodeposition for microrobotic drug delivery. Adv Healthc Mater 2013;2(7):1037-44
  • Khangtragool A, Ausayakhun S, Leesawat P, et al. Chitosan as an ocular drug delivery vehicle for vancomycin. J Appl Polym Sci 2011;122(5):3160-7
  • Steen KH, Steen AE, Reeh PW. A dominant role of acid Ph in inflammatory excitation and sensitization of nociceptors in rat skin. in-vitro. J Neurosci 1995;15(5):3982-9
  • Shu XZ, Zhu KJ. Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure. Int J Pharm 2002;233(1-2):217-25
  • Tottori S, Zhang L, Qiu FM, et al. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv Mater 2012;24(6):811-16
  • Kim S, Qiu FM, Kim S, et al. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv Mater 2013;25(41):5863-8
  • Martel S. Combining pulsed and DC gradients in a clinical MRI-based microrobotic platform to guite therapeutic agents in the vascular network. Int J Adv Robot Syst 2013;10(30):1-7
  • Shahid H, Hossain P, Amoaku WM. The management of retinal vein occlusion: is interventional ophthalmology the way forward? Br J Ophthalmol 2006;90(5):627-39
  • Olson JL, Velez-Montoya R, Erlanger M. Ocular biocompatibility of nitinol intraocular clips. Invest Ophthalmol Vis Sci 2012;53(1):354-60

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.