2,964
Views
38
CrossRef citations to date
0
Altmetric
Reviews

Packaging biological cargoes in mesoporous materials: opportunities for drug delivery

, MS, , PhD & , PhD

Bibliography

  • Langer R, Peppas NA. Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J 2003;49:2990-3006
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001;70:1-20
  • Lin C-Y, Javadi M, Belnap DM, et al. Ultrasound sensitive eLiposomes containing doxorubicin for drug targeting therapy. Nanomedicine 2014;10(1):67-76
  • LaVan DA, McGuire T, Langer R. Small-scale systems for in vivo drug delivery. Nat Biotechnol 2003;21:1184-91
  • Hrkach J, Von Hoff D, Ali MM, et al. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci Transl Med 2012;4:128ra39-9
  • Senzer N, Nemunaitis J, Nemunaitis D, et al. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther 2013;21:1096-103
  • Evans I. Follow-on biologics: a new play for big pharma: healthcare 2010. Yale J Biol Med 2010;83:97-100
  • Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs: peptides in drug development. Chem Biol Drug Design 2013;81:136-47
  • Vittorini M, Dumitriu E, Barletta G, Secundo F. Immobilization of Thermoanaerobium brockii alcohol dehydrogenase on SBA-15. Bioprocess Biosyst Eng 2011;34:247-51
  • Sang L-C, Coppens M-O. Effects of surface curvature and surface chemistry on the structure and activity of proteins adsorbed in nanopores. Phys Chem Chem Phys 2011;13:6689-98
  • Gagner JE, Qian X, Lopez MM, et al. Effect of gold nanoparticle structure on the conformation and function of adsorbed proteins. Biomaterials 2012;33:8503-16
  • Vilaça N, Amorim R, Machado AF, et al. Potentiation of 5-fluorouracil encapsulated in zeolites as drug delivery systems for in vitro models of colorectal carcinoma. Colloids Surf B Biointerfaces 2013;112:237-44
  • Saha D, Payzant EA, Kumbhar AS, Naskar AK. Sustainable mesoporous carbons as storage and controlled-delivery media for functional molecules. ACS Appl Mater Interfaces 2013;5:5868-74
  • Mellaerts R, Mols R, Jammaer JAG, et al. Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica. Eur J Pharm Biopharm 2008;69:223-30
  • Molina-Manso D, Manzano M, Doadrio JC, et al. Usefulness of SBA-15 mesoporous ceramics as a delivery system for vancomycin, rifampicin and linezolid: a preliminary report. Int J Antimicrob Agents 2012;40:252-6
  • Zhuang J, Kuo C-H, Chou L-Y, et al. Optimized metal–organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano 2014;8:2812-19
  • Sun C-Y, Qin C, Wang X-L, Su Z-M. Metal-organic frameworks as potential drug delivery systems. Expert Opin Drug Deliv 2013;10:89-101
  • Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2012;64:18-23
  • Ginebra M-P, Canal C, Espanol M, et al. Calcium phosphate cements as drug delivery materials. Adv Drug Deliv Rev 2012;64:1090-110
  • Yang P, Zhao D, Margolese DI, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 1998;396:152-5
  • Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012;14:1-16
  • Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 2010;7:653-64
  • Prabhakar U, Maeda H, Jain RK, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 2013;73:2412-17
  • Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 2008;69:1-9
  • Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 2006;103:4930-4
  • Park J, Lim D-H, Lim H-J, et al. Size dependent macrophage responses and toxicological effects of Ag nanoparticles. Chem Commun 2011;47:4382
  • Gratton SEA, Ropp PA, Pohlhaus PD, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 2008;105:11613-18
  • Kralj S, Rojnik M, Romih R, et al. Effect of surface charge on the cellular uptake of fluorescent magnetic nanoparticles. J Nanopart Res 2012;14:1151-64
  • Schaeublin NM, Braydich-Stolle LK, Schrand AM, et al. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 2011;3:410
  • Roh YH, Lee JB, Kiatwuthinon P, et al. DNAsomes: multifunctional DNA-Based Nanocarriers. Small 2011;7:74-8
  • Haque F, Shu D, Shu Y, et al. Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano Today 2012;7:245-57
  • Birtalan S, Zhang Y, Fellouse FA, et al. The intrinsic contributions of tyrosine, serine, glycine and arginine to the affinity and specificity of antibodies. J Mol Biol 2008;377:1518-28
  • Dicheva BM, Koning GA. Targeted thermosensitive liposomes: an attractive novel approach for increased drug delivery to solid tumors. Expert Opin Drug Deliv 2014;11(1):83-100
  • Qu X, Khutoryanskiy VV, Stewart A, et al. Carbohydrate-based micelle clusters which enhance hydrophobic drug bioavailability by up to 1 order of magnitude. Biomacromolecules 2006;7:3452-9
  • Zhang H, Ma Y, Sun X-L. Recent developments in carbohydrate-decorated targeted drug/gene delivery. Med Res Rev 2010;30:270-89
  • Buyens K, De Smedt SC, Braeckmans K, et al. Liposome based systems for systemic siRNA delivery: stability in blood sets the requirements for optimal carrier design. J Control Release 2012;158:362-70
  • Ernst B, Magnani JL. From carbohydrate leads to glycomimetic drugs. Nat Rev Drug Discov 2009;8:661-77
  • Borwankar AU, Dinin AK, Laber JR, et al. Tunable equilibrium nanocluster dispersions at high protein concentrations. Soft Matter 2013;9:1766
  • Park WM, Champion JA. Two-step protein self-assembly in the extracellular matrix. Angew Chem Int Ed 2013;52:8098-101
  • Hagedorn PH, Yakimov V, Ottosen S, et al. Hepatotoxic potential of therapeutic oligonucleotides can be predicted from their sequence and modification pattern. Nucleic Acid Ther 2013;23:302-10
  • Videira M, Arranja A, Rafael D, Gaspar R. Preclinical development of siRNA therapeutics: towards the match between fundamental science and engineered systems. Nanomedicine 2014;10(4):689-702
  • Schmidt JJ, Jeong JH, Chan V, et al. Tailoring the dependency between rigidity and water uptake of a microfabricated hydrogel with the conformational rigidity of a polymer cross-linker. Biomacromolecules 2013;14:1361-9
  • Fryxell GE, Mattigod SV, Lin Y, et al. Design and synthesis of self-assembled monolayers on mesoporous supports (SAMMS): the importance of ligand posture in functional nanomaterials. J Mater Chem 2007;17:2863
  • Frokjaer S, Otzen DE. Protein drug stability: a formulation challenge. Nat Rev Drug Discov 2005;4:298-306
  • Bakhru SH, Furtado S, Morello AP, Mathiowitz E. Oral delivery of proteins by biodegradable nanoparticles. Adv Drug Deliv Rev 2013;65:811-21
  • Dressman JB, Berardi RR, Dermentzoglou LC, et al. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm Res 1990;7:756-61
  • Chaturvedi K, Ganguly K, Nadagouda MN, Aminabhavi TM. Polymeric hydrogels for oral insulin delivery. J Control Release 2013;165:129-38
  • Zhao P, Wang L, Sun C, et al. Uniform mesoporous carbon as a carrier for poorly water soluble drug and its cytotoxicity study. Eur J Pharm Biopharm 2012;80:535-43
  • Bhange P, Sridevi N, Bhange DS, et al. Immobilization of bile salt hydrolase enzyme on mesoporous SBA-15 for co-precipitation of cholesterol. Int J Biol Macromol 2014;63:218-24
  • Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2010;2:85-120
  • Izquierdo-Barba I, Colilla M, Manzano M, Vallet-Regi M. In vitro stability of SBA-15 under physiological conditions. Microporous Mesoporous Mater 2010;132:442-52
  • Thielemann JP, Girgsdies F, Schlögl R, Hess C. Pore structure and surface area of silica SBA-15: influence of washing and scale-up. Beilstein J Nanotechnol 2011;2:110-18
  • Salis A, Parsons DF, BostroÌm M, et al. Ion specific surface charge density of SBA-15 mesoporous silica. Langmuir 2010;26:2484-90
  • Ruthstein S, Schmidt J, Kesselman E, et al. Resolving intermediate solution structures during the formation of mesoporous SBA-15. J Am Chem Soc 2006;128:3366-74
  • Denkova AG, Mendes E, Coppens M-O. Non-equilibrium dynamics of block copolymer micelles in solution: recent insights and open questions. Soft Matter 2010;6:2351
  • Zhao D, Yang P, Chmelka BF, Stucky GD. Multiphase assembly of Mesoporousâ’Macroporous Membranes. Chem Mater 1999;11:1174-8
  • Bao XY, Zhao XS. Morphologies of large-pore periodic mesoporous organosilicas. J Phys Chem B 2005;109:10727-36
  • Pitchumani R, Li W, Coppens M-O. Tuning of nanostructured SBA-15 silica using phosphoric acid. Catal Today 2005;105:618-22
  • Zu S-Z, Mao L-J, Sayari A, Han B-H. Facile synthesis route to monodispersed platelet-like SBA-15 silica. J Porous Mater 2011;19:745-9
  • Yu C, Fan J, Tian B, et al. High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Adv Mater 2002;14:1742-5
  • Sayari A, Han B-H, Yang Y. Simple synthesis route to monodispersed SBA-15 silica rods. J Am Chem Soc 2004;126:14348-9
  • Zhi J, Song D, Li Z, et al. Palladium nanoparticles in carbon thin film-lined SBA-15 nanoreactors: efficient heterogeneous catalysts for Suzuki–Miyaura cross coupling reaction in aqueous media. Chem Commun 2011;47:10707
  • Pollock RA, Walsh BR, Fry J, et al. Size and spatial distribution of micropores in SBA-15 using CM-SANS. Chem Mater 2011;23:3828-40
  • Pang J, Zhao L, Zhang L, et al. Folate-conjugated hybrid SBA-15 particles for targeted anticancer drug delivery. J Colloid Interface Sci 2013;395:31-9
  • Popova MD, Szegedi Á, Kolev IN, et al. Carboxylic modified spherical mesoporous silicas as drug delivery carriers. Int J Pharm 2012;436:778-85
  • Xue M, Findenegg GH. Lysozyme as a pH-responsive valve for the controlled release of guest molecules from mesoporous silica. Langmuir 2012;28:17578-84
  • Radford SE. GroEL: more than just a folding cage. Cell 2006;125:831-3
  • Vertegel AA, Siegel RW, Dordick JS. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 2004;20:6800-7
  • Radhakrishna M, Grimaldi J, Belfort G, Kumar SK. Stability of proteins inside a hydrophobic cavity. Langmuir 2013;29:8922-8
  • Lynch M, Siefker J, Coppens M-O. Confinement protection effects of mesoporous silica SBA-15 on myoglobin, in an environment inspired by the GroEL/ES chaperonin system. AIChE Annual Meeting; Pittsburgh, PA; 2012
  • Zhang H, Sun J, Ma D, et al. Unusual mesoporous SBA-15 with parallel channels running along the short axis. J Am Chem Soc 2004;126:7440-1
  • Katiyar A, Yadav S, Smirniotis PG, Pinto NG. Synthesis of ordered large pore SBA-15 spherical particles for adsorption of biomolecules. J Chromatogr A 2006;1122:13-20
  • Fang Y, Zhang J, Zhou X, et al. “Soggy sand” electrolyte based on COOH-functionalized silica nanoparticles for dye-sensitized solar cells. Electrochem Commun 2012;16:10-13
  • An Y, Chen M, Xue Q, Liu W. Preparation and self-assembly of carboxylic acid-functionalized silica. J Colloid Interface Sci 2007;311:507-13
  • Kim MI, Kim J, Lee J, et al. One-dimensional crosslinked enzyme aggregates in SBA-15: superior catalytic behavior to conventional enzyme immobilization. Microporous Mesoporous Mater 2008;111:18-23
  • Ahmadi E, Dehghannejad N, Hashemikia S, et al. Synthesis and surface modification of mesoporous silica nanoparticles and its application as carriers for sustained drug delivery. Drug Deliv 2014;21(3):164-72
  • Mellaerts R, Houthoofd K, Elen K, et al. Aging behavior of pharmaceutical formulations of itraconazole on SBA-15 ordered mesoporous silica carrier material. Microporous Mesoporous Mater 2010;130:154-61
  • Chandra D, Karande P. Transferrin mediated drug delivery to brain. IEEE 37th Annual Northeast Bioengineering Conference; Troy, NY; 2011
  • Rozhkova EA, Ulasov I, Lai B, et al. A high-performance nanobio photocatalyst for targeted brain cancer therapy. Nano Lett 2009;9:3337-42
  • Kim D-H, Rozhkova EA, Ulasov IV, et al. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat Mater 2009;9:165-71
  • Rodriguez PL, Harada T, Christian DA, et al. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013;339:971-5
  • Azhdarinia A, Daquinag AC, Tseng C, et al. A peptide probe for targeted brown adipose tissue imaging. Nat Commun 2013;4:2472
  • Lee NK, Kim HS, Kim KH, et al. Identification of a novel peptide ligand targeting visceral adipose tissue via transdermal route by in vivo phage display. J Drug Target 2011;19:805-13
  • Slowing II, Trewyn BG, Giri S, Lin VS-Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater 2007;17:1225-36
  • Tarn D, Ashley CE, Xue M, et al. Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res 2013;46:792-801
  • Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VS-Y. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 2010;6:1952-67
  • Liu R, Liao P, Liu J, Feng P. Responsive polymer-coated mesoporous silica as a pH-sensitive nanocarrier for controlled release. Langmuir 2011;27:3095-9
  • Xue M, Cao D, Stoddart JF, Zink JI. Size-selective pH-operated megagates on mesoporous silica materials. Nanoscale 2012;4:7569
  • Kresge CT, Leonowicz ME, Roth WJ, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992;359:710-12
  • . Max Zhao XS, Lu GQMillar GJ. Advances in mesoporous molecular sieve MCM-41. Ind Eng Chem Res 1996;35:2075-90
  • Beck JS, Vartuli JC, Roth WJ, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 1992;114:10834-43
  • Arai R, Ueda H, Kitayama A, et al. Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng Des Sel 2001;14:529-32
  • Lee CC, Perchiacca JM, Tessier PM. Toward aggregation-resistant antibodies by design. Trends Biotechnol 2013;31:612-20
  • Ryu DDY, Nam D-H. Recent progress in biomolecular engineering. Biotechnol Prog 2000;16:2-16
  • Chen Y, Varani G. Engineering RNA-binding proteins for biology. FEBS J 2013;280:3734-54
  • Hutchison CA III, Phillips S, Edgell MH, et al. Mutagenesis at a specific position in a DNA sequence. J Biol Chem 1978;253:6551-60
  • Borwankar AU, Dinin AK, Laber JR, et al. Tunable equilibrium nanocluster dispersions at high protein concentrations. Soft Matter 2013;9:1766-71
  • Hudson SP, Padera RF, Langer R, Kohane DS. The biocompatibility of mesoporous silicates. Biomaterials 2008;29:4045-55
  • Kwon S, Singh RK, Perez RA, et al. Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng 2013;4: 2041731413503357. doi:10.1177/2041731413503357
  • Lu J, Liong M, Li Z, et al. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 2010;6:1794-805
  • Huang X, Zhuang J, Teng X, et al. The promotion of human malignant melanoma growth by mesoporous silica nanoparticles through decreased reactive oxygen species. Biomaterials 2010;31:6142-53
  • Lunn JD, Shantz DF. Novel polypeptide/thiol-SBA-15 hybrid materials synthesized via surface selective grafting. Chem Commun 2010;46:2926
  • De Juan F, Ruiz-Hitzky E. Selective functionalization of mesoporous silica. Adv Mater 2000;12:430-2
  • Kecht J, Schlossbauer A, Bein T. Selective functionalization of the outer and inner surfaces in mesoporous silica nanoparticles. Chem Mater 2008;20:7207-14
  • Yang C-M, Lin H-A, Zibrowius B, et al. Selective surface functionalization and metal deposition in the micropores of mesoporous silica SBA-15. Chem Mater 2007;19:3205-11
  • Cao L, Man T, Kruk M. Synthesis of ultra-large-pore SBA-15 silica with two-dimensional hexagonal structure using triisopropylbenzene as micelle expander. Chem Mater 2009;21:1144-53
  • Van Der Voort P, Benjelloun M, Vansant EF. Rationalization of the synthesis of SBA-16: controlling the micro- and mesoporosity. J Phys Chem B 2002;106:9027-32
  • Yu T, Zhang H, Yan X, et al. Pore structures of ordered large cage-type mesoporous silica FDU-12s. J Phys Chem B 2006;110:21467-72
  • Lettow JS, Han YJ, Schmidt-Winkel P, et al. Hexagonal to mesocellular foam phase transition in polymer-templated mesoporous silicas. Langmuir 2000;16:8291-5
  • Willingham SB, Volkmer J-P, Gentles AJ, et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA 2012;109:6662-7