378
Views
16
CrossRef citations to date
0
Altmetric
Reviews

The importance of coagulation factors binding to adenovirus: historical perspectives and implications for gene delivery

, BSc [Hons] MSc [Hons], , BSc [Hons] PhD, , BSc [Hons] PhD & , BSc [Hons] PhD

Bibliography

  • Davison AJ, Benko M, Harrach B. Genetic content and evolution of adenoviruses. J Gen Virol 2003;84:2895-908
  • Bailey A, Mautner V. Phylogenetic relationships among adenovirus serotypes. Virology 1994;205:438-52
  • Jones MS II, Harrach B, Ganac RD, et al. New adenovirus species found in a patient presenting with gastroenteritis. J Virol 2007;81:5978-84
  • Russell WC. Update on adenovirus and its vectors. J Gen Virol 2000;81:2573-604
  • Russell WC. Adenoviruses: update on structure and function. J Gen Virol 2009;90:1-20
  • Vellinga J, Van der Heijdt S, Hoeben RC. The adenovirus capsid: major progress in minor proteins. J Gen Virol 2005;86:1581-8
  • Roberts DM, Nanda A, Havenga MJ, et al. Hexon-chimaeric adenovirus serotype 5 vectors circumvent pre-existing anti-vector immunity. Nature 2006;441:239-43
  • Abe S, Okuda K, Ura T, et al. Adenovirus type 5 with modified hexons induces robust transgene-specific immune responses in mice with pre-existing immunity against adenovirus type 5. J Gene Med 2009;11:570-9
  • Bradley RR, Lynch DM, Iampietro MJ, et al. Adenovirus serotype 5 neutralizing antibodies target both hexon and fiber following vaccination and natural infection. J Virol 2012;86:625-9
  • Yu B, Dong J, Wang C, et al. Characteristics of neutralizing antibodies to adenovirus capsid proteins in human and animal sera. Virology 2013;437:118-23
  • Roelvink PW, Lizonova A, Lee JG, et al. The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J Virol 1998;72:7909-15
  • Sharma A, Li X, Bangari DS, et al. Adenovirus receptors and their implications in gene delivery. Virus Res 2009;143:184-94
  • Arnberg N. Adenovirus receptors: implications for targeting of viral vectors. Trends Pharmacol Sci 2012;33:442-8
  • Bergelson JM, Cunningham JA, Droguett G, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997;275:1320-3
  • Bergelson JM, Krithivas A, Celi L, et al. The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J Virol 1998;72:415-19
  • Kirby I, Davison E, Beavil AJ, et al. Identification of contact residues and definition of the CAR-binding site of adenovirus type 5 fiber protein. J Virol 2000;74:2804-13
  • Roelvink PW, Mi Lee G, Einfeld DA, et al. Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 1999;286:1568-71
  • Santis G, Legrand V, Hong SS, et al. Molecular determinants of adenovirus serotype 5 fibre binding to its cellular receptor CAR. J Gen Virol 1999;80:1519-27
  • Wickham TJ, Filardo EJ, Cheresh DA, et al. Integrin alpha v beta 5 selectively promotes adenovirus mediated cell membrane permeabilization. J Cell Biol 1994;127:257-64
  • Li E, Stupack D, Klemke R, et al. Adenovirus endocytosis via alpha(v) integrins requires phosphoinositide-3-OH kinase. J Virol 1998;72:2055-61
  • Tibbles LA, Spurrell JC, Bowen GP, et al. Activation of p38 and ERK signaling during adenovirus vector cell entry lead to expression of the C-X-C chemokine IP-10. J Virol 2002;76:1559-68
  • Bhat NR, Fan F. Adenovirus infection induces microglial activation: involvement of mitogen-activated protein kinase pathways. Brain Res 2002;948:93-101
  • Meier O, Boucke K, Hammer SV, et al. Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J Cell Biol 2002;158:1119-31
  • Ziello JE, Huang Y, Jovin IS. Cellular endocytosis and gene delivery. Mol Med 2010;16:222-9
  • Wiethoff CM, Wodrich H, Gerace L, et al. Adenovirus protein VI mediates membrane disruption following capsid disassembly. J Virol 2005;79:1992-2000
  • Kelkar SA, Pfister KK, Crystal RG, et al. Cytoplasmic dynein mediates adenovirus binding to microtubules. J Virol 2004;78:10122-32
  • Bremner KH, Scherer J, Yi J, et al. Adenovirus transport via direct interaction of cytoplasmic dynein with the viral capsid hexon subunit. Cell Host Microbe 2009;6:523-35
  • Greber UF, Suomalainen M, Stidwill RP, et al. The role of the nuclear pore complex in adenovirus DNA entry. EMBO J 1997;16:5998-6007
  • Trotman LC, Mosberger N, Fornerod M, et al. Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1. Nat Cell Biol 2001;3:1092-100
  • Maione D, Della Rocca C, Giannetti P, et al. An improved helper-dependent adenoviral vector allows persistent gene expression after intramuscular delivery and overcomes preexisting immunity to adenovirus. Proc Natl Acad Sci USA 2001;98:5986-91
  • Dudley RW, Lu Y, Gilbert R, et al. Sustained improvement of muscle function one year after full-length dystrophin gene transfer into mdx mice by a gutted helper-dependent adenoviral vector. Hum Gene Ther 2004;15:145-56
  • Ehrhardt A, Kay MA. A new adenoviral helper-dependent vector results in long-term therapeutic levels of human coagulation factor IX at low doses in vivo. Blood 2002;99:3923-30
  • Huard J, Lochmuller H, Acsadi G, et al. The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants. Gene Ther 1995;2:107-15
  • Lozier JN, Csako G, Mondoro TH, et al. Toxicity of a first-generation adenoviral vector in rhesus macaques. Hum Gene Ther 2002;13:113-24
  • Raper SE, Yudkoff M, Chirmule N, et al. A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum Gene Ther 2002;13:163-75
  • Atencio IA, Grace M, Bordens R, et al. Biological activities of a recombinant adenovirus p53 (SCH 58500) administered by hepatic arterial infusion in a Phase 1 colorectal cancer trial. Cancer Gene Ther 2006;13:169-81
  • Morral N, O’Neal WK, Rice K, et al. Lethal toxicity, severe endothelial injury, and a threshold effect with high doses of an adenoviral vector in baboons. Hum Gene Ther 2002;13:143-54
  • Fejer G, Freudenberg M, Greber UF, et al. Adenovirus-triggered innate signalling pathways. Eur J Microbiol Immunol (Bp) 2011;1:279-88
  • Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol 2012;30:658-70
  • Davie EW, Fujikawa K, Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 1991;30:10363-70
  • Vermeer C, De Boer-Van den Berg MA. Vitamin K-dependent carboxylase. Haematologia (Budap) 1985;18:71-97
  • Vermeer C. Gamma-carboxyglutamate-containing proteins and the vitamin K-dependent carboxylase. Biochem J 1990;266:625-36
  • Furie B, Furie BC. Molecular basis of vitamin K-dependent gamma-carboxylation. Blood 1990;75:1753-62
  • Stenflo J. Structure-function relationships of epidermal growth factor modules in vitamin K-dependent clotting factors. Blood 1991;78:1637-51
  • O’Hara PJ, Grant FJ, Haldeman BA, et al. Nucleotide sequence of the gene coding for human factor VII, a vitamin K-dependent protein participating in blood coagulation. Proc Natl Acad Sci USA 1987;84:5158-62
  • Yoshitake S, Schach BG, Foster DC, et al. Nucleotide sequence of the gene for human factor IX (antihemophilic factor B). Biochemistry 1985;24:3736-50
  • Leytus SP, Foster DC, Kurachi K, et al. Gene for human factor X: a blood coagulation factor whose gene organization is essentially identical with that of factor IX and protein C. Biochemistry 1986;25:5098-102
  • Foster DC, Yoshitake S, Davie EW. The nucleotide sequence of the gene for human protein C. Proc Natl Acad Sci USA 1985;82:4673-7
  • Plutzky J, Hoskins JA, Long GL, et al. Evolution and organization of the human protein C gene. Proc Natl Acad Sci USA 1986;83:546-50
  • Furie B, Furie BC. The molecular basis of blood coagulation. Cell 1988;53:505-18
  • Patthy L. Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules. Cell 1985;41:657-63
  • Mathur A, Bajaj SP. Protease and EGF1 domains of factor IXa play distinct roles in binding to factor VIIIa. Importance of helix 330 (helix 162 in chymotrypsin) of protease domain of factor IXa in its interaction with factor VIIIa. J Biol Chem 1999;274:18477-86
  • Ohlin AK, Bjork I, Stenflo J. Proteolytic formation and properties of a fragment of protein C containing the gamma-carboxyglutamic acid rich domain and the EGF-like region. Biochemistry 1990;29:644-51
  • Ohlin AK, Linse S, Stenflo J. Calcium binding to the epidermal growth factor homology region of bovine protein C. J Biol Chem 1988;263:7411-17
  • Ohlin AK, Landes G, Bourdon P, et al. Beta-hydroxyaspartic acid in the first epidermal growth factor-like domain of protein C. Its role in Ca2+ binding and biological activity. J Biol Chem 1988;263:19240-8
  • Venkateswarlu D, Perera L, Darden T, et al. Structure and dynamics of zymogen human blood coagulation factor X. Biophys J 2002;82:1190-206
  • Astermark J, Hogg PJ, Stenflo J. The gamma-carboxyglutamic acid and epidermal growth factor-like modules of factor IXa beta. Effects on the serine protease module and factor X activation. J Biol Chem 1994;269:3682-9
  • Rao Z, Handford P, Mayhew M, et al. The structure of a Ca(2+)-binding epidermal growth factor-like domain: its role in protein-protein interactions. Cell 1995;82:131-41
  • Christophe OD, Lenting PJ, Kolkman JA, et al. Blood coagulation factor IX residues Glu78 and Arg94 provide a link between both epidermal growth factor-like domains that is crucial in the interaction with factor VIII light chain. J Biol Chem 1998;273:222-7
  • Rees DJ, Jones IM, Handford PA, et al. The role of beta-hydroxyaspartate and adjacent carboxylate residues in the first EGF domain of human factor IX. EMBO J 1988;7:2053-61
  • McCord DM, Monroe DM, Smith KJ, et al. Characterization of the functional defect in factor IX Alabama. Evidence for a conformational change due to high affinity calcium binding in the first epidermal growth factor domain. J Biol Chem 1990;265:10250-4
  • Handford PA, Baron M, Mayhew M, et al. The first EGF-like domain from human factor IX contains a high-affinity calcium binding site. EMBO J 1990;9:475-80
  • Huang LH, Ke XH, Sweeney W, et al. Calcium binding and putative activity of the epidermal growth factor domain of blood coagulation factor IX. Biochem Biophys Res Commun 1989;160:133-9
  • Lenting PJ, Christophe OD, Maat H, et al. Ca2+ binding to the first epidermal growth factor-like domain of human blood coagulation factor IX promotes enzyme activity and factor VIII light chain binding. J Biol Chem 1996;271:25332-7
  • Persson E, Bjork I, Stenflo J. Protein structural requirements for Ca2+ binding to the light chain of factor X. Studies using isolated intact fragments containing the gamma-carboxyglutamic acid region and/or the epidermal growth factor-like domains. J Biol Chem 1991;266:2444-52
  • Lee CJ, Chandrasekaran V, Wu S, et al. Recent estimates of the structure of the factor VIIa (FVIIa)/tissue factor (TF) and factor Xa (FXa) ternary complex. Thromb Res 2010;125(Suppl 1):S7-S10
  • Ndonwi M, Broze G Jr, Bajaj SP. The first epidermal growth factor-like domains of factor Xa and factor IXa are important for the activation of the factor VII – tissue factor complex. J Thromb Haemost 2005;3:112-18
  • Wilkinson FH, London FS, Walsh PN. Residues 88-109 of factor IXa are important for assembly of the factor X activating complex. J Biol Chem 2002;277:5725-33
  • Persson E, Valcarce C, Stenflo J. The gamma-carboxyglutamic acid and epidermal growth factor-like domains of factor X. Effect of isolated domains on prothrombin activation and endothelial cell binding of factor X. J Biol Chem 1991;266:2453-8
  • Wilkinson FH, Ahmad SS, Walsh PN. The factor IXa second epidermal growth factor (EGF2) domain mediates platelet binding and assembly of the factor X activating complex. J Biol Chem 2002;277:5734-41
  • Astermark J, Bjork I, Ohlin AK, et al. Structural requirements for Ca2+ binding to the gamma-carboxyglutamic acid and epidermal growth factor-like regions of factor IX. Studies using intact domains isolated from controlled proteolytic digests of bovine factor IX. J Biol Chem 1991;266:2430-7
  • Sabharwal AK, Padmanabhan K, Tulinsky A, et al. Interaction of calcium with native and decarboxylated human factor X. Effect of proteolysis in the autolysis loop on catalytic efficiency and factor Va binding. J Biol Chem 1997;272:22037-45
  • Schwalbe RA, Ryan J, Stern DM, et al. Protein structural requirements and properties of membrane binding by gamma-carboxyglutamic acid-containing plasma proteins and peptides. J Biol Chem 1989;264:20288-96
  • Stenflo J, Suttie JW. Vitamin K-dependent formation of gamma-carboxyglutamic acid. Annu Rev Biochem 1977;46:157-72
  • Sunnerhagen M, Forsen S, Hoffren AM, et al. Structure of the Ca(2+)-free Gla domain sheds light on membrane binding of blood coagulation proteins. Nat Struct Biol 1995;2:504-9
  • Tulinsky A. The structures of domains of blood proteins. Thromb Haemost 1991;66:16-31
  • Bajaj SP, Rapaport SI, Maki SL. A monoclonal antibody to factor IX that inhibits the factor VIII:ca potentiation of factor X activation. J Biol Chem 1985;260:11574-80
  • Astermark J, Stenflo J. The epidermal growth factor-like domains of factor IX. Effect on blood clotting and endothelial cell binding of a fragment containing the epidermal growth factor-like domains linked to the gamma-carboxyglutamic acid region. J Biol Chem 1991;266:2438-43
  • O’Brien LM, Medved LV, Fay PJ. Localization of factor IXa and factor VIIIa interactive sites. J Biol Chem 1995;270:27087-92
  • Keyt B, Furie BC, Furie B. Structural transitions in bovine factor X associated with metal binding and zymogen activation. Studies using conformation-specific antibodies. J Biol Chem 1982;257:8687-95
  • Bajaj SP, Sabharwal AK, Gorka J, et al. Antibody-probed conformational transitions in the protease domain of human factor IX upon calcium binding and zymogen activation: putative high-affinity Ca(2+)-binding site in the protease domain. Proc Natl Acad Sci USA 1992;89:152-6
  • Sherrill GB, Meade JB, Kalayanamit T, et al. Calcium enhances factor Xa activity independent of gamma-carboxyglutamic acid residues. Thromb Res 1988;52:53-60
  • Leissner P, Legrand V, Schlesinger Y, et al. Influence of adenoviral fiber mutations on viral encapsidation, infectivity and in vivo tropism. Gene Ther 2001;8:49-57
  • Alemany R, Curiel DT. CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Ther 2001;8:1347-53
  • Mizuguchi H, Koizumi N, Hosono T, et al. CAR- or alphav integrin-binding ablated adenovirus vectors, but not fiber-modified vectors containing RGD peptide, do not change the systemic gene transfer properties in mice. Gene Ther 2002;9:769-76
  • Einfeld DA, Schroeder R, Roelvink PW, et al. Reducing the native tropism of adenovirus vectors requires removal of both CAR and integrin interactions. J Virol 2001;75:11284-91
  • Nicol CG, Graham D, Miller WH, et al. Effect of adenovirus serotype 5 fiber and penton modifications on in vivo tropism in rats. Mol Ther 2004;10:344-54
  • Smith T, Idamakanti N, Kylefjord H, et al. In vivo hepatic adenoviral gene delivery occurs independently of the coxsackievirus-adenovirus receptor. Mol Ther 2002;5:770-9
  • Martin K, Brie A, Saulnier P, et al. Simultaneous CAR- and alpha V integrin-binding ablation fails to reduce Ad5 liver tropism. Mol Ther 2003;8:485-94
  • Fechner H, Haack A, Wang H, et al. Expression of coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Ther 1999;6:1520-35
  • Walters RW, Grunst T, Bergelson JM, et al. Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J Biol Chem 1999;274:10219-26
  • Dechecchi MC, Tamanini A, Bonizzato A, et al. Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2-host cell interactions. Virology 2000;268:382-90
  • Dechecchi MC, Melotti P, Bonizzato A, et al. Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. J Virol 2001;75:8772-80
  • Smith TA, Idamakanti N, Marshall-Neff J, et al. Receptor interactions involved in adenoviral-mediated gene delivery after systemic administration in non-human primates. Hum Gene Ther 2003;14:1595-604
  • Di Paolo NC, Kalyuzhniy O, Shayakhmetov DM. Fiber shaft-chimeric adenovirus vectors lacking the KKTK motif efficiently infect liver cells in vivo. J Virol 2007;81:12249-59
  • Smith TA, Idamakanti N, Rollence ML, et al. Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice. Hum Gene Ther 2003;14:777-87
  • Koizumi N, Mizuguchi H, Sakurai F, et al. Reduction of natural adenovirus tropism to mouse liver by fiber-shaft exchange in combination with both CAR- and alphav integrin-binding ablation. J Virol 2003;77:13062-72
  • Bayo-Puxan N, Cascallo M, Gros A, et al. Role of the putative heparan sulfate glycosaminoglycan-binding site of the adenovirus type 5 fiber shaft on liver detargeting and knob-mediated retargeting. J Gen Virol 2006;87:2487-95
  • Shayakhmetov DM, Gaggar A, Ni S, et al. Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol 2005;79:7478-91
  • Parker AL, Waddington SN, Nicol CG, et al. Multiple vitamin K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. Blood 2006;108:2554-61
  • Waddington SN, McVey JH, Bhella D, et al. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 2008;132:397-409
  • Kalyuzhniy O, Di Paolo NC, Silvestry M, et al. Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. Proc Natl Acad Sci USA 2008;105:5483-8
  • Tran L, Ouisse LH, Richard-Fiardo P, et al. Adrenal gland infection by serotype 5 adenovirus requires coagulation factors. PLoS One 2013;8:e62191
  • Greig JA, Buckley SM, Waddington SN, et al. Influence of coagulation factor x on in vitro and in vivo gene delivery by adenovirus (Ad) 5, Ad35, and chimeric Ad5/Ad35 vectors. Mol Ther 2009;17:1683-91
  • Jonsson MI, Lenman AE, Frangsmyr L, et al. Coagulation factors IX and X enhance binding and infection of adenovirus types 5 and 31 in human epithelial cells. J Virol 2009;83:3816-25
  • Perrio MJ, Ewen D, Trevethick MA, et al. Fibrin formation by wounded bronchial epithelial cell layers in vitro is essential for normal epithelial repair and independent of plasma proteins. Clin Exp Allergy 2007;37:1688-700
  • Lenman A, Muller S, Nygren MI, et al. Coagulation factor IX mediates serotype-specific binding of species A adenoviruses to host cells. J Virol 2011;85:13420-31
  • Neels JG, van Den Berg BM, Mertens K, et al. Activation of factor IX zymogen results in exposure of a binding site for low-density lipoprotein receptor-related protein. Blood 2000;96:3459-65
  • Xu Z, Qiu Q, Tian J, et al. Coagulation factor X shields adenovirus type 5 from attack by natural antibodies and complement. Nat Med 2013;19:452-7
  • Di Paolo NC, van Rooijen N, Shayakhmetov DM. Redundant and synergistic mechanisms control the sequestration of blood-born adenovirus in the liver. Mol Ther 2009;17:675-84
  • Parker AL, McVey JH, Doctor JH, et al. Influence of coagulation factor zymogens on the infectivity of adenoviruses pseudotyped with fibers from subgroup D. J Virol 2007;81:3627-31
  • Waddington SN, Parker AL, Havenga M, et al. Targeting of adenovirus serotype 5 (Ad5) and 5/47 pseudotyped vectors in vivo: fundamental involvement of coagulation factors and redundancy of CAR binding by Ad5. J Virol 2007;81:9568-71
  • Crawford-Miksza L, Schnurr DP. Analysis of 15 adenovirus hexon proteins reveals the location and structure of seven hypervariable regions containing serotype-specific residues. J Virol 1996;70:1836-44
  • Rux JJ, Burnett RM. Type-specific epitope locations revealed by X-ray crystallographic study of adenovirus type 5 hexon. Mol Ther 2000;1:18-30
  • Zhang Z, Krimmel J, Zhang Z, et al. Systemic delivery of a novel liver-detargeted oncolytic adenovirus causes reduced liver toxicity but maintains the antitumor response in a breast cancer bone metastasis model. Hum Gene Ther 2011;22:1137-42
  • Coughlan L, Bradshaw AC, Parker AL, et al. Ad5:ad48 hexon hypervariable region substitutions lead to toxicity and increased inflammatory responses following intravenous delivery. Mol Ther 2012;20:2268-81
  • Short JJ, Rivera AA, Wu H, et al. Substitution of adenovirus serotype 3 hexon onto a serotype 5 oncolytic adenovirus reduces factor X binding, decreases liver tropism, and improves antitumor efficacy. Mol Cancer Ther 2010;9:2536-44
  • Shashkova EV, May SM, Doronin K, et al. Expanded anticancer therapeutic window of hexon-modified oncolytic adenovirus. Mol Ther 2009;17:2121-30
  • Vigant F, Descamps D, Jullienne B, et al. Substitution of hexon hypervariable region 5 of adenovirus serotype 5 abrogates blood factor binding and limits gene transfer to liver. Mol Ther 2008;16:1474-80
  • Yu B, Wang C, Dong J, et al. Chimeric hexon HVRs protein reflects partial function of adenovirus. Biochem Biophys Res Commun 2012;421:170-6
  • Alba R, Bradshaw AC, Parker AL, et al. Identification of coagulation factor (F)X binding sites on the adenovirus serotype 5 hexon: effect of mutagenesis on FX interactions and gene transfer. Blood 2009;114:965-71
  • Doronin K, Flatt JW, Di Paolo NC, et al. Coagulation factor X activates innate immunity to human species C adenovirus. Science 2012;338:795-8
  • Irons EE, Flatt JW, Doronin K, et al. Coagulation factor binding orientation and dimerization may influence infectivity of adenovirus-coagulation factor complexes. J Virol 2013;87:9610-19
  • Tao N, Gao GP, Parr M, et al. Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol Ther 2001;3:28-35
  • Wolff G, Worgall S, van Rooijen N, et al. Enhancement of in vivo adenovirus-mediated gene transfer and expression by prior depletion of tissue macrophages in the target organ. J Virol 1997;71:624-9
  • Alba R, Bradshaw AC, Coughlan L, et al. Biodistribution and retargeting of FX-binding ablated adenovirus serotype 5 vectors. Blood 2010;116:2656-64
  • Corjon S, Gonzalez G, Henning P, et al. Cell entry and trafficking of human adenovirus bound to blood factor X is determined by the fiber serotype and not hexon:heparan sulfate interaction. PLoS One 2011;6:e18205
  • Ganesh S, Gonzalez-Edick M, Gibbons D, et al. Evaluation of biodistribution of a fiber-chimeric, conditionally replication-competent (oncolytic) adenovirus in CD46 receptor transgenic mice. Hum Gene Ther 2009;20:1201-13
  • Bradshaw AC, Parker AL, Duffy MR, et al. Requirements for receptor engagement during infection by adenovirus complexed with blood coagulation factor X. PLoS Pathog 2010;6:e1001142
  • Shayakhmetov DM, Eberly AM, Li ZY, et al. Deletion of penton RGD motifs affects the efficiency of both the internalization and the endosome escape of viral particles containing adenovirus serotype 5 or 35 fiber knobs. J Virol 2005;79:1053-61
  • Rezaie AR. Identification of basic residues in the heparin-binding exosite of factor Xa critical for heparin and factor Va binding. J Biol Chem 2000;275:3320-7
  • Murakami MT, Rios-Steiner J, Weaver SE, et al. Intermolecular interactions and characterization of the novel factor Xa exosite involved in macromolecular recognition and inhibition: crystal structure of human Gla-domainless factor Xa complexed with the anticoagulant protein NAPc2 from the hematophagous nematode Ancylostoma caninum. J Mol Biol 2007;366:602-10
  • Monteiro RQ, Rezaie AR, Ribeiro JM, et al. Ixolaris: a factor Xa heparin-binding exosite inhibitor. Biochem J 2005;387:871-7
  • Duffy MR, Bradshaw AC, Parker AL, et al. A cluster of basic amino acids in the factor X serine protease mediates surface attachment of adenovirus/FX complexes. J Virol 2011;85:10914-19
  • Hacker U, Nybakken K, Perrimon N. Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 2005;6:530-41
  • Esko JD, Lindahl U. Molecular diversity of heparan sulfate. J Clin Invest 2001;108:169-73
  • Vongchan P, Warda M, Toyoda H, et al. Structural characterization of human liver heparan sulfate. Biochim Biophys Acta 2005;1721:1-8
  • Martínez-Martínez I, Ordonez A, Pedersen S, et al. Heparin affinity of factor VIIa: implications on the physiological inhibition by antithrombin and clearance of recombinant factor VIIa. Thromb Res 2011;127:154-60
  • Yang L, Manithody C, Rezaie AR. Localization of the heparin binding exosite of factor IXa. J Biol Chem 2002;277:50756-60
  • Johnson DJ, Langdown J, Huntington JA. Molecular basis of factor IXa recognition by heparin-activated antithrombin revealed by a 1.7-A structure of the ternary complex. Proc Natl Acad Sci USA 2010;107:645-50
  • Vigne E, Mahfouz I, Dedieu JF, et al. RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection. J Virol 1999;73:5156-61
  • Wang H, Liu Y, Li Z, et al. In vitro and in vivo properties of adenovirus vectors with increased affinity to CD46. J Virol 2008;82:10567-79
  • Barr D, Tubb J, Ferguson D, et al. Strain related variations in adenovirally mediated transgene expression from mouse hepatocytes in vivo: comparisons between immunocompetent and immunodeficient inbred strains. Gene Ther 1995;2:151-5
  • Yang Y, Xiang Z, Ertl HC, et al. Upregulation of class I major histocompatibility complex antigens by interferon gamma is necessary for T-cell-mediated elimination of recombinant adenovirus-infected hepatocytes in vivo. Proc Natl Acad Sci USA 1995;92:7257-61
  • Kay MA, Holterman AX, Meuse L, et al. Long-term hepatic adenovirus-mediated gene expression in mice following CTLA4Ig administration. Nat Genet 1995;11:191-7
  • Yang Y, Wilson JM. Clearance of adenovirus-infected hepatocytes by MHC class I-restricted CD4+ CTLs in vivo. J Immunol 1995;155:2564-70
  • Manickan E, Smith JS, Tian J, et al. Rapid Kupffer cell death after intravenous injection of adenovirus vectors. Mol Ther 2006;13:108-17
  • Alemany R, Suzuki K, Curiel DT. Blood clearance rates of adenovirus type 5 in mice. J Gen Virol 2000;81:2605-9
  • Schiedner G, Hertel S, Johnston M, et al. Selective depletion or blockade of Kupffer cells leads to enhanced and prolonged hepatic transgene expression using high-capacity adenoviral vectors. Mol Ther 2003;7:35-43
  • van Rooijen N, van Kesteren-Hendrikx E. “In vivo” depletion of macrophages by liposome-mediated “suicide”. Methods Enzymol 2003;373:3-16
  • Smith JS, Xu Z, Byrnes AP. A quantitative assay for measuring clearance of adenovirus vectors by Kupffer cells. J Virol Methods 2008;147:54-60
  • Haisma HJ, Kamps JA, Kamps GK, et al. Polyinosinic acid enhances delivery of adenovirus vectors in vivo by preventing sequestration in liver macrophages. J Gen Virol 2008;89:1097-105
  • Xu Z, Tian J, Smith JS, et al. Clearance of adenovirus by Kupffer cells is mediated by scavenger receptors, natural antibodies, and complement. J Virol 2008;82:11705-13
  • Khare R, Reddy VS, Nemerow GR, et al. Identification of adenovirus serotype 5 hexon regions that interact with scavenger receptors. J Virol 2012;86:2293-301
  • He JQ, Katschke KJ Jr, Gribling P, et al. CRIg mediates early Kupffer cell responses to adenovirus. J Leukoc Biol 2013;93:301-6
  • Appledorn DM, Kiang A, McBride A, et al. Wild-type adenoviruses from groups A-F evoke unique innate immune responses, of which HAd3 and SAd23 are partially complement dependent. Gene Ther 2008;15:885-901
  • Cichon G, Boeckh-Herwig S, Schmidt HH, et al. Complement activation by recombinant adenoviruses. Gene Ther 2001;8:1794-800
  • Jiang H, Wang Z, Serra D, et al. Recombinant adenovirus vectors activate the alternative complement pathway, leading to the binding of human complement protein C3 independent of anti-ad antibodies. Mol Ther 2004;10:1140-2
  • Kiang A, Hartman ZC, Everett RS, et al. Multiple innate inflammatory responses induced after systemic adenovirus vector delivery depend on a functional complement system. Mol Ther 2006;14:588-98
  • Zinn KR, Szalai AJ, Stargel A, et al. Bioluminescence imaging reveals a significant role for complement in liver transduction following intravenous delivery of adenovirus. Gene Ther 2004;11:1482-6
  • Tian J, Xu Z, Smith JS, et al. Adenovirus activates complement by distinctly different mechanisms in vitro and in vivo: indirect complement activation by virions in vivo. J Virol 2009;83:5648-58
  • Khare R, Hillestad ML, Xu Z, et al. Circulating antibodies and macrophages as modulators of adenovirus pharmacology. J Virol 2013;87:3678-86
  • Carlisle RC, Di Y, Cerny AM, et al. Human erythrocytes bind and inactivate type 5 adenovirus by presenting Coxsackie virus-adenovirus receptor and complement receptor 1. Blood 2009;113:1909-18
  • Cotter MJ, Zaiss AK, Muruve DA. Neutrophils interact with adenovirus vectors via Fc receptors and complement receptor 1. J Virol 2005;79:14622-31
  • Chen CY, May SM, Barry MA. Targeting adenoviruses with factor x-single-chain antibody fusion proteins. Hum Gene Ther 2010;21:739-49
  • Wheeler MD, Yamashina S, Froh M, et al. Adenoviral gene delivery can inactivate Kupffer cells: role of oxidants in NF-kappaB activation and cytokine production. J Leukoc Biol 2001;69:622-30
  • Smith JS, Xu Z, Tian J, et al. Interaction of systemically delivered adenovirus vectors with Kupffer cells in mouse liver. Hum Gene Ther 2008;19:547-54
  • Shayakhmetov DM, Li ZY, Ni S, et al. Analysis of adenovirus sequestration in the liver, transduction of hepatic cells, and innate toxicity after injection of fiber-modified vectors. J Virol 2004;78:5368-81
  • Lowenstein PR. With a little help from my f(X)riends!: the basis of Ad5-mediated transduction of the liver revealed. Mol Ther 2008;16:1004-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.