212
Views
49
CrossRef citations to date
0
Altmetric
Original Research

Optimization of niosomes for enhanced antibacterial activity and reduced bacterial resistance: in vitro and in vivo evaluation

, , , &

Bibliography

  • Finch R. Introduction: standards of antibacterial performance. Clin Microbiol Infect 2004;10(s2):1-5
  • Gwynn MN, Portnoy A, Rittenhouse SF, Payne DJ. Challenges of antibacterial discovery revisited. Ann N Y Acad Sci 2010;1213(1):5-19
  • Livermore DM, Blaser M, Carrs O, et al. Discovery research: the scientific challenge of finding new antibiotics. J Antimicrob Chemother 2011;66(9):1941-4
  • Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 2004;10(12 Suppl):S122-9
  • Levy SB. Factors impacting on the problem of antibiotic resistance. J Antimicrob Chemother 2002;49(1):25-3
  • Smith AW. Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Adv Drug Deliv Rev 2005;57(10):1539-50
  • Li X-Z, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs 2009;69(12):1555-623
  • Kumar A, Schweizer HP. Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev 2005;57(10):1486-513
  • Wright GD. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev 2005;57(10):1451-70
  • Molnár J, Engi H, Hohmann J, et al. Reversal of multidrug resistance by natural substances from plants. Curr Top Med Chem 2010;10(17):1757-68
  • Zhang L, Gu F, Chan J, et al. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 2008;83(5):761-9
  • Zhang L, Pornpattananangkul D, Hu C-M, Huang C-M. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem 2010;17(6):585-94
  • Drulis-Kawa Z, Dorotkiewicz-Jach A. Liposomes as delivery systems for antibiotics. Int J Pharm 2010;387(1–2):187-98
  • Skidan I, Gel’perina S, Severin S, Guliaev A. [Enhanced activity of rifampicin loaded with polybutyl cyanoacrylate nanoparticles in relation to intracellularly localized bacteria]. Antibiot khimioter 2002;48(1):23-2
  • Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 2005;172(12):1487
  • Sanna V, Gavini E, Cossu M, et al. Solid lipid nanoparticles (SLN) as carriers for the topical delivery of econazole nitrate: in-vitro characterization, ex-vivo and in-vivo studies. J Pharm Pharmacol 2007;59(8):1057-64
  • Yang W, Wiederhold NP, Williams RO. Drug delivery strategies for improved azole antifungal action. Expert Opin Drug Deliv 2008;5(11):1199-216
  • Trafny EA, Stepińska M, Antos M, Grzybowski J. Effects of free and liposome-encapsulated antibiotics on adherence of Pseudomonas aeruginosa to collagen type I. Antimicrob Agents Chemother 1995;39(12):2645-9
  • Sanderson NM, Guo B, Jacob AE, et al. The interaction of cationic liposomes with the skin-associated bacterium Staphylococcus epidermidis: effects of ionic strength and temperature. Biochim Biophys Acta 1996;1283(2):207-14
  • Whitehead T, Lovering A, Cropley I, et al. Kinetics and toxicity of liposomal and conventional amikacin in a patient with multidrug-resistant tuberculosis. Eur J Clin Microbiol Infect Dis 1998;17(11):794-7
  • Gubernator J, Drulis-Kawa Z, Dorotkiewicz-Jach A, et al. In vitro antimicrobial activity of liposomes containing ciprofloxacin, meropenem and gentamicin against gram-negative clinical bacterial strains. Lett Drug Des Discov 2007;4(4):297-304
  • Drulis-Kawa Z, Dorotkiewicz-Jach A, Gubernator J, et al. The interaction between Pseudomonas aeruginosa cells and cationic PC: chol: DOTAP liposomal vesicles versus outer-membrane structure and envelope properties of bacterial cell. Int J Pharm 2009;367(1):211-19
  • Torres IMS, Bento EB, Almeida Lda C, et al. Preparation, characterization and in vitro antimicrobial activity of liposomal ceftazidime and cefepime against Pseudomonas aeruginosa strains. Braz J Microbiol 2012;43(3):984-92
  • Rajera R, Nagpal K, Singh SK, Mishra DN. Niosomes: a controlled and novel drug delivery system. Biol Pharm Bull 2011;34(7):94
  • Mahale N, Thakkar P, Mali R, et al. Niosomes: novel sustained release nonionic stable vesicular systems—An overview. Adv Colloid Interface Sci 2012;183:46-5
  • Padeĭskaia E. [Norfloxacin: more than 20 years of clinical use, the results and place among fluoroquinolones in modern chemotherapy for infections]. Antibiot khimioter 2002;48(9):28-3
  • Nakayama K, Kawato H, Watanabe J, et al. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 3: optimization of potency in the pyridopyrimidine series through the application of a pharmacophore model. Bioorg Med Chem Lett 2004;14(2):475-9
  • De Kievit TR, Parkins MD, Gillis RJ, et al. Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2001;45(6):1761-70
  • Junker LM, Clardy J. High-throughput screens for small-molecule inhibitors of Pseudomonas aeruginosa biofilm development. Antimicrob Agents Chemother 2007;51(10):3582-90
  • US Pharmacopoeia & National Formulary. <81> Antibiotics-Microbial assays, USP32-NF27. United States Pharmacopeial Convention, Inc, Rockville; 2009. p. 86
  • Abdelaziz AA, Elbanna TE, Gamaleldeen NM. Validated microbiological and HPLC methods for the determination of moxifloxacin in pharmaceutical preparations and human plasma. Braz J Microbiol 2012;43(4):1291-301
  • Hewitt W. Microbiological assay for pharmaceutical analysis: a rational approach. CRC Press, Boca Raton, FL, USA; 2004
  • Alomrani AH, El Maghraby GM, Alanazi FK, et al. Liposomes for enhanced cytotoxic activity of bleomycin. Drug Dev Res 2011;72(3):265-7
  • Felgner JH, Kumar R, Sridhar C, et al. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J Biol Chem 1994;269(4):2550-61
  • El Maghraby GME, Williams AC, Barry BW. Skin Delivery of Oestradiol from Deformable and Traditiona Liposomes: mechanistic Studies. J Pharm Pharmacol 1999;51(10):1123-34
  • El Maghraby GM, Williams AC, Barry BW. Skin delivery of 5-fluorouracil from ultradeformable and standard liposomes in-vitro. J Pharm Pharmacol 2001;53(8):1069-77
  • El Maghraby GM. Self-microemulsifying and microemulsion systems for transdermal delivery of indomethacin: effect of phase transition. Colloids Surf B Biointerfaces 2010;75(2):595-600
  • Kaszuba M, Robinson A, Song Y-H, et al. The visualisation of the targeting of phospholipid liposomes to bacteria. Colloids Surf B Biointerfaces 1997;8(6):321-32
  • Bibi S, Kaur R, Henriksen-Lacey M, et al. Microscopy imaging of liposomes: from coverslips to environmental SEM. Int J Pharm 2011;417(1):138-50
  • Bozzola JJ, Russell LD. Electron microscopy: principles and techniques for biologists. Jones & Bartlett Learning, London, UK; 1999
  • Ruckmani K, Jayakar B, Ghosal S. Nonionic surfactant vesicles (niosomes) of cytarabine hydrochloride for effective treatment of leukemias: encapsulation, storage, and in vitro release. Drug Dev Ind Pharm 2000;26(2):217-22
  • Papahadjopoulos D, Jacobson K, Nir S, Isac I. Phase transitions in phospholipid vesicles fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim Biophys Acta 1973;311(3):330-48
  • El Maghraby GM, Barry BW, Williams AC. Liposomes and skin: from drug delivery to model membranes. Eur J Pharm Sci 2008;34(4):203-22
  • Clinical, Institute LS. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A7. Clinical and Laboratory Standards Institute, Wayne, PA, USA; 2006
  • LiPuma JJ, Rathinavelu S, Foster BK, et al. In vitro activities of a novel nanoemulsion against Burkholderia and other multidrug-resistant cystic fibrosis-associated bacterial species. Antimicrob Agents Chemother 2009;53(1):249-5
  • Stepanović S, Vuković D, Dakić I, et al. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 2000;40(2):175-9
  • Stepanović S, Ćirković I, Ranin L. Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Lett Appl Microbiol 2004;38(5):428-32
  • Tré-Hardy M, Vanderbist F, Traore H, Devleeschouwer MJ. In vitro activity of antibiotic combinations against Pseudomonas aeruginosa biofilm and planktonic cultures. Int J Antimicrob Agents 2008;31(4):329-36
  • New RR. Liposomes: a practical approach. Oxford University Press, USA; 1990
  • Wikler MA. Performance standards for antimicrobial susceptibility testing: twentieth informational supplement. Clinical and Laboratory Standards Institute, Wayne, PA, USA; 2010
  • Fang J-Y, Yu S-Y, Wu P-C, et al. In vitro skin permeation of estradiol from various proniosome formulations. Int J Pharm 2001;215(1):919 9
  • Manconi M, Sinico C, Valenti D, et al. Niosomes as carriers for tretinoin: III. A study into the in vitro cutaneous delivery of vesicle-incorporated tretinoin. Int J Pharm 2006;311(1):11-19
  • Srinivas S, Kumar YA, Hemanth A, Anitha M. Preparation and evaluation of niosomes containing aceclofenac. Dig J Nanomater Bios 2010;5(1):249-54
  • Ruckmani K, Sankar V. Formulation and optimization of zidovudine niosomes. AAPS PharmSciTech 2010;11(3):1119-12
  • Bini K, Akhilesh D, Prabhakara P, JV K. Development and Characterization of Non-Ionic Surfactant Vesicles (Niosomes) for Oral delivery of Lornoxicam. Int J Drug Dev Res 2012;4(3):147-54
  • El Maghraby G, Williams A, Barry B. Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes. Int J Pharm 2004;276(1):143-61
  • Lyczak JB, Cannon CL, Pier GB. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2000;2(9):1051-60
  • Ma L, Conover M, Lu H, et al. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 2009;5(3):e1000354
  • Fang J-Y, Hong C-T, Chiu W-T, Wang Y-Y. Effect of liposomes and niosomes on skin permeation of enoxacin. Int J Pharm 2001;219(1):61-7
  • Abdelbary G, El-gendy N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech 2008;9(3):740-7
  • Pandey VP, Deivasigamani K. Preparation and characterization of ofloxacin non-ionic surfactant vesicles for ophthalmic use. J Pharm Res 2009;2:8
  • Moazeni E, Gilani K, Sotoudegan F, et al. Formulation and in vitro evaluation of ciprofloxacin containing niosomes for pulmonary delivery. J Microencapsul 2010;27(7):618-27
  • Drulis-Kawa Z, Gubernator J, Dorotkiewicz-Jach A, et al. A comparison of the in vitro antimicrobial activity of liposomes containing meropenem and gentamicin. Cell Mol Biol Lett 2006;11(3):360-75
  • Mugabe C, Halwani M, Azghani AO, et al. Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2006;50(6):2016-22
  • Barry B. Mode of action of penetration enhancers in human skin. J Control Release 1987;6(1):85-97
  • Furneri PM, Fresta M, Puglisi G, Tempera G. Ofloxacin-loaded liposomes: in vitro activity and drug accumulation in bacteria. Antimicrob Agents Chemother 2000;44(9):2458-64
  • Rukholm G, Mugabe C, Azghani AO, Omri A. Antibacterial activity of liposomal gentamicin against Pseudomonas aeruginosa: a time–kill study. Int J Antimicrob Agents 2006;27(3):247-52
  • Nicolosi D, Scalia M, Nicolosi VM, Pignatello R. Encapsulation in fusogenic liposomes broadens the spectrum of action of vancomycin against Gram-negative bacteria. Int J Antimicrob Agents 2010;35(6):553-8
  • Sihorkar V, Vyas S. Potential of polysaccharide anchored liposomes in drug delivery, targeting and immunization. J Pharm Pharm Sci 2001;4(2):138-58
  • Kim H-J, Jones MN. The delivery of benzyl penicillin to Staphylococcus aureus biofilms by use of liposomes. J Liposome Res 2004;14(3-4):123-39
  • DiTizio V, Ferguson GW, Mittelman MW, et al. A liposomal hydrogel for the prevention of bacterial adhesion to catheters. Biomaterials 1998;19(20):1877-84
  • Sanderson N, Jones M. Encapsulation of vancomycin and gentamicin within cationic liposomes for inhibition of growth of Staphylococcus epidermidis. J Drug Target 1996;4(3):181-9
  • Sachetelli S, Khalil H, Chen T, et al. Demonstration of a fusion mechanism between a fluid bactericidal liposomal formulation and bacterial cells. Biochim Biophys Acta 2000;1463(2):254-66
  • Halwani M, Mugabe C, Azghani AO, et al. Bactericidal efficacy of liposomal aminoglycosides against Burkholderia cenocepacia. J Antimicrob Chemother 2007;60(4):760-9
  • Alam M, Zubair S, Farazuddin M, et al. Development, characterization and efficacy of niosomal diallyl disulfide in treatment of disseminated murine candidiasis. Nanomedicine 2013;9(2):247-56
  • Magallanes M, Dijkstra J, Fierer J. Liposome-incorporated ciprofloxacin in treatment of murine salmonellosis. Antimicrob Agents Chemother 1993;37(11):2293-7
  • Price CI, Horton JW, Baxter CR. Liposome encapsulation: a method for enhancing the effectiveness of local antibiotics. Surgery 1994;115(4):480-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.